UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Evaluating pediatric tuberculosis dosing guidelines: A model-based individual data pooled analysis

Galileya, Lufina Tsirizani; Wasmann, Roeland E; Chabala, Chishala; Rabie, Helena; Lee, Janice; Njahira Mukui, Irene; Hesseling, Anneke; ... Denti, Paolo; + view all (2023) Evaluating pediatric tuberculosis dosing guidelines: A model-based individual data pooled analysis. PLoS Medicine , 20 (11) , Article e1004303. 10.1371/journal.pmed.1004303. Green open access

[thumbnail of journal.pmed.1004303.pdf]
Preview
PDF
journal.pmed.1004303.pdf - Published Version

Download (1MB) | Preview

Abstract

BACKGROUND: The current World Health Organization (WHO) pediatric tuberculosis dosing guidelines lead to suboptimal drug exposures. Identifying factors altering the exposure of these drugs in children is essential for dose optimization. Pediatric pharmacokinetic studies are usually small, leading to high variability and uncertainty in pharmacokinetic results between studies. We pooled data from large pharmacokinetic studies to identify key covariates influencing drug exposure to optimize tuberculosis dosing in children. METHODS AND FINDINGS: We used nonlinear mixed-effects modeling to characterize the pharmacokinetics of rifampicin, isoniazid, and pyrazinamide, and investigated the association of human immunodeficiency virus (HIV), antiretroviral therapy (ART), drug formulation, age, and body size with their pharmacokinetics. Data from 387 children from South Africa, Zambia, Malawi, and India were available for analysis; 47% were female and 39% living with HIV (95% on ART). Median (range) age was 2.2 (0.2 to 15.0) years and weight 10.9 (3.2 to 59.3) kg. Body size (allometry) was used to scale clearance and volume of distribution of all 3 drugs. Age affected the bioavailability of rifampicin and isoniazid; at birth, children had 48.9% (95% confidence interval (CI) [36.0%, 61.8%]; p < 0.001) and 64.5% (95% CI [52.1%, 78.9%]; p < 0.001) of adult rifampicin and isoniazid bioavailability, respectively, and reached full adult bioavailability after 2 years of age for both drugs. Age also affected the clearance of all drugs (maturation), children reached 50% adult drug clearing capacity at around 3 months after birth and neared full maturation around 3 years of age. While HIV per se did not affect the pharmacokinetics of first-line tuberculosis drugs, rifampicin clearance was 22% lower (95% CI [13%, 28%]; p < 0.001) and pyrazinamide clearance was 49% higher (95% CI [39%, 57%]; p < 0.001) in children on lopinavir/ritonavir; isoniazid bioavailability was reduced by 39% (95% CI [32%, 45%]; p < 0.001) when simultaneously coadministered with lopinavir/ritonavir and was 37% lower (95% CI [22%, 52%]; p < 0.001) in children on efavirenz. Simulations of 2010 WHO-recommended pediatric tuberculosis doses revealed that, compared to adult values, rifampicin exposures are lower in most children, except those younger than 3 months, who experience relatively higher exposure for all drugs, due to immature clearance. Increasing the rifampicin doses in children older than 3 months by 75 mg for children weighing <25 kg and 150 mg for children weighing >25 kg could improve rifampicin exposures. Our analysis was limited by the differences in availability of covariates among the pooled studies. CONCLUSIONS: Children older than 3 months have lower rifampicin exposures than adults and increasing their dose by 75 or 150 mg could improve therapy. Altered exposures in children with HIV is most likely caused by concomitant ART and not HIV per se. The importance of the drug-drug interactions with lopinavir/ritonavir and efavirenz should be evaluated further and considered in future dosing guidance. TRIAL REGISTRATION: ClinicalTrials.gov registration numbers; NCT02348177, NCT01637558, ISRCTN63579542.

Type: Article
Title: Evaluating pediatric tuberculosis dosing guidelines: A model-based individual data pooled analysis
Location: United States
Open access status: An open access version is available from UCL Discovery
DOI: 10.1371/journal.pmed.1004303
Publisher version: https://doi.org/10.1371/journal.pmed.1004303
Language: English
Additional information: © 2023 Galileya et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/).
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Inst of Clinical Trials and Methodology
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Population Health Sciences > Inst of Clinical Trials and Methodology > MRC Clinical Trials Unit at UCL
URI: https://discovery.ucl.ac.uk/id/eprint/10181984
Downloads since deposit
11Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item