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Moritz Herle, Ruth J.F. Loos, Gerome Breen,

Cynthia M. Bulik, Nadia Micali

Correspondence
nadia.micali@hcuge.ch
Abdulkadir et al., 2022, The American Journal of Human Genetics 109, 1242–
1254
July 7, 2022 � 2022 The Authors.
https://doi.org/10.1016/j.ajhg.2022.05.005 ll

mailto:nadia.micali@hcuge.�ch
https://doi.org/10.1016/j.ajhg.2022.05.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2022.05.005&domain=pdf


ARTICLE

The impact of anorexia nervosa and BMI
polygenic risk on childhood growth:
A 20-year longitudinal population-based study

Mohamed Abdulkadir,1,2,5,14 Christopher Hübel,3,4,5,6,14 Moritz Herle,8,14 Ruth J.F. Loos,9,10

Gerome Breen,3,4 Cynthia M. Bulik,6,11,12,14 and Nadia Micali1,2,7,13,14,*
Summary
Growth deviating from the normduring childhood has been associatedwith anorexia nervosa (AN) and obesity later in life. In this study,

we examined whether polygenic scores (PGSs) for AN and BMI are associated with growth trajectories spanning the first two decades of

life. AN PGSs and BMI PGSs were calculated for participants of the Avon Longitudinal Study of Parents and Children (ALSPAC; n ¼
8,654). Using generalized (mixed) linear models, we associated PGSs with trajectories of weight, height, body mass index (BMI), fat

mass index (FMI), lean mass index (LMI), and bone mineral density (BMD). Female participants with AN PGSs one standard deviation

(SD) higher had, on average, 0.004% slower growth in BMI between the ages 6.5 and 24 years and a 0.4% slower gain in BMD between

the ages 10 and 24 years. Higher BMI PGSs were associated with faster growth for BMI, FMI, LMI, BMD, and weight trajectories in both

sexes throughout childhood. Female participants with both a high AN PGS and a low BMI PGS showed slower growth compared to those

with both a low AN PGS and a low BMI PGS. We conclude that AN PGSs and BMI PGSs have detectable sex-specific effects on growth

trajectories. Female participants with a high AN PGS and low BMI PGS likely constitute a high-risk group for AN, as their growth was

slower compared to their peers with high PGSs on both traits. Further research is needed to better understand how the AN PGS and

the BMI PGS co-influence growth during childhood and whether a high BMI PGS can mitigate the effects of a high AN PGS.
Introduction

Anorexia nervosa (AN) is a serious psychiatric disorder that

is characterized by low fat and lean mass.1–3 Observations

from genome-wide association studies (GWASs) suggest

that genomic variants that influence body composition

are also associated with psychiatric traits.4 Genetically,

AN is negatively correlated with body mass index (BMI),

fat mass, fat-free mass, and obesity,4 suggesting that bio-

logical mechanisms contributing to ANmay also influence

body composition. This association is supported by several

studies showing that low premorbid BMI is associated with

AN in adolescence.5,6 Furthermore, an Avon Longitudinal

Study of Parents and Children (ALSPAC) study reported

that individuals who go on to develop AN followed lower

BMI trajectories (as early as age 2 years) compared to their

peers that did not develop an eating disorder (ED).7

In contrast to low body weight, high body weight has

not only been associated with increased risk for cardiovas-

cular disease but also with psychiatric disorders (e.g., mood

disorders and anxiety disorders).8,9 In addition, individuals
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with high body weight face stigmatization and discrimina-

tion from the public and health professionals, which can

exacerbate the negative health effects of obesity.10–12

Similar to AN, BMI has been extensively studied on a ge-

netic level and is a heritable polygenic trait.13,14 Khera

et al.15 reported that a BMI polygenic score (PGS), calcu-

lated by summing the BMI-increasing alleles of all variants

of a BMI GWAS, weighted by their reported effect sizes,13 is

associated with body weight at different time points dur-

ing childhood and adolescence. For example, individuals

with a BMI PGS in the top decile have modest yet signifi-

cantly higher birth weight (þ60 g) than individuals with

a BMI PGS in the bottom decile.15 However, this difference

in weight increases over time, reaching 3.5 kg by age 8

years and 12.3 kg by age 18 years.15 These findings high-

light differences in growth associated with the polygenic li-

ability to high BMI.

In summary, both AN and BMI have a genetic compo-

nent that can be summarized by PGSs, and these genetic

components are inversely correlated. However, it is unclear

how genetic risk for both traits, individually and
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combined, affect growth developmentally during the first

two decades of life. We identified individuals considered

to be at high risk (defined as PGS in the top two deciles)

for either AN or BMI and compared them with their peers

with lower risk (defined as PGS in the lower 8 deciles) for

the same trait. We then studied the longitudinal effects

of the AN PGS4 and the BMI PGS14 (separately and com-

bined) on weight, height, BMI, fat mass index (FMI), lean

mass index (LMI), and bonemineral density (BMD) growth

trajectories during the first two decades of life using data

from ALSPAC.16–20 We hypothesized that a higher AN

PGS would be associated with slower growth for the

weight, BMI, FMI, LMI, and BMD trajectories. Previous

studies reported no genetic correlation between height

and AN, and therefore we used a height trajectory as a

negative control.3 We also hypothesized that a higher

BMI PGS would be associated with faster growth trajec-

tories. Lastly, we hypothesized that individuals with both

a high AN PGS and low BMI PGS would represent a sub-

group at higher risk for poor growth (slower growth)

compared to those with both a low AN PGS and a low

BMI PGS.
Material and methods

Participants
The ALSPAC study is an ongoing population-based birth-cohort

study of 14,541 mothers and their children (that were born be-

tween April 1, 1991 and December 31, 1992) residing in the south-

west of England (UK).16–20 From the 15,541 pregnancies, 13,988

were alive at 1 year. At age 7 years, this sample was bolstered

with an additional 913 children. The total sample size for analyses

using any data collected after the age of 7 is therefore 15,454 preg-

nancies; of these, 14,901 were alive at 1 year of age. Participants

are assessed at regular intervals using clinical interviews, self-

report questionnaires, medical records, and physical examina-

tions. Study data were collected and managed using REDCap

(Research Electronic Data Capture) electronic data capture tools

hosted at University of Bristol.21,22 REDCap is a secure, web-based

software platform designed to support data capture for research

studies, providing (1) an intuitive interface for validated data

capture, (2) audit trails for tracking data manipulation and export

procedures, (3) automated export procedures for seamless data

downloads to common statistical packages, and (4) procedures

for data integration and interoperability with external sources.

Please note that the study website contains details of all data

that are available and includes a fully searchable data dictionary

and variable search tool: http://www.bristol.ac.uk/alspac/

researchers/our-data/. To avoid potential confounding due to

relatedness, one sibling per set of multiple births was randomly

selected to guarantee independence of participants; this resulted

in the removal of 75 individuals. Furthermore, individuals who

are closely related to each other, defined as a phi hat >0.2 (calcu-

lated using PLINK v1.90b), were removed; specifically, we removed

any duplicates ormonozygotic twins, first-degree relatives (parent-

offspring and full siblings), and second-degree relatives (half

siblings, uncles, aunts, grandparents, and double cousins). The au-

thors assert that all procedures contributing to this work comply

with the ethical standards of the relevant national and institu-
The Americ
tional committees on human experimentation and with the Hel-

sinki Declaration of 1975, as revised in 2008. Ethical approval

for the study was obtained from the ALSPAC Ethics and Law Com-

mittee and the Local Research Ethics Committees. Informed con-

sent for the use of data collected via questionnaires and clinics was

obtained from participants following the recommendations of the

ALSPAC Ethics and Law Committee at the time. The main care-

giver initially provided consent for child participation, and from

the age 16 years the offspring themselves have provided informed

written consent.
Measures
Weight, height, and BMI

Numerous measurements of weight and height were collected

from different sources (i.e., routine clinic visits, information

collected from midwives, linkage to child health records) between

birth and age 24 years. Information on weight was collected at

research clinic visits annually up to age 14 years and further clinic

measurements at ages 16, 18, and 24 years using the Tanita Body

Fat Analyzer (Tanita TBFUK Ltd.) to the nearest 50 g. During the

same clinic visits, height (standing) was measured to the nearest

millimeter with shoes and socks removed using a Holtain stadiom-

eter (Holtain Ltd, Crymych, Pembs, UK). The different measure-

ments of weight and height were highly correlated (Figure S1)

across various methods.16,23 Information on child and adolescent

BMI (weight in kilograms/height squared in meters) was derived

using weight and height measurements obtained during clinic

visits.

FMI, LMI, and BMD

All ALSPAC participants were invited to undergo whole-body dual-

energy X-ray absorptiometry (DEXA) scans using the Lunar Prod-

igy DEXA scanner as part of face-to-face visits at the ages of 10, 12,

14, 16, 18, and 24 years. FMI was calculated by dividing total body

fat mass (in kilograms) by height (in meters) squared. Similarly,

LMI was calculated by dividing total lean mass by height (in me-

ters) squared. Additionally, whole-body (minus head) BMD was

also estimated using the Lunar Prodigy DEXA scanner.
Trajectory modeling
Censoring for the presence of an ED

To derive the trajectories for each outcome, we censored for the

presence of any ED, i.e., AN, bulimia nervosa, and binge-eating

disorder. Information on a probable ED was available at ages 14,

16, and 18 years (see Micali et al.24 and Hübel et al.25 for more in-

formation on how ED diagnoses were derived). The presence of an

ED diagnosis at age 14 years meant that all values for that individ-

ual regarding their measurement (BMI, FMI, LMI, etc.) at age 14

years up to age 24 years were set to missing. This was also done

for the presence of an ED diagnosis at age 16 years (set values at

age 16 and beyond to missing) and 18 years (set values at age 18

and beyond to missing). Therefore, censoring did not lead to

loss of participants in the analyses, but rather loss of observations

(n¼ 1,055). This censoring allowed us to derive unbiased results in

the following longitudinal modeling, while retaining the largest

amount of data possible. This is important, as these models are

sensitive to outliers and including individuals with EDs would

likely introduce extreme values in the distribution.

Spline modeling

To capture the potential impact of AN on growth, we derived a

BMI trajectory across both childhood and adolescence for all par-

ticipants jointly. Prior to analyses, BMI values (Table S1 and
an Journal of Human Genetics 109, 1242–1254, July 7, 2022 1243
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Figure S2) were transformed using the natural log due to the right-

skewed distribution of the data. Spline models involve placing

spline points (knots) at time points where the direction of growth

changes. This is necessary as children’s growth in the first two de-

cades of life is not linear, but follows a more complex pattern,

rendering standard growth models unsuitable to accurately reflect

the data.26 The advantage of linear splinemodels is that they allow

knot points to be fitted at different ages to derive periods of change

(between the knots) that are approximately linear. After visual in-

spection of the BMI medians at each time point, two spline points

(knots), in addition to the starting point (intercept) at 4 months

and the final data wave (24 years), were placed, creating the

following periods of linear growth: between ages 4 months and

1 year, between ages 1 and 6.5 years, and between ages 6.5 and

24 years. Mixed-effects spline models were run to describe the lon-

gitudinal growth outcomes. The mixed-effects framework lends it-

self to the analyses of repeatedmeasures as it accounts for the non-

independence of measures within an individual. After model

fitting, we extracted parameters of slopes using the best linear un-

biased predictions (BLUPs). The linear spline modeling resulted in

three slopes (coefficients), which correspondwith the slopes in the

periods of growth between age 4 months and 1 year, growth be-

tween age 1 year and 6.5 years, and growth between age 6.5 years

and 24 years. Spline models were obtained using STATA (v.15).
Genotyping
Genotype data were available for 9,915 out of the total of 15,247

ALSPAC participants. Participants were genome-wide genotyped

on the Illumina HumanHap550 quad chip. Following quality

control of the genetic data, a total of 8,654 participants with gen-

otyping data and at least one outcome measure were included in

the analyses (Table 1). Details of the quality control checks are

described in the supplemental information.
PGS calculations
The AN PGS was derived from the GWAS on AN by the Eating Dis-

orders Working Group of the Psychiatric Genomics Consortium

(PGC-ED; ncases ¼ 16,992, ncontrols ¼ 55,525),4 and the BMI PGS

was derived from the BMI GWAS conducted by the Genetic

Investigation of Anthropometric Traits (GIANT; n �700,000

individuals).14 The datasets will be referred to as the AN and BMI

discovery cohorts, respectively. The PGSswere calculated using the

polygenic risk score continuous shrinkage (PRS-CS) software; a

method that infers posterior SNP effect sizes under continuous

shrinkage (CS) priors.27

Furthermore, we derived a categorical variable using the AN PGS

and BMI PGS as follows. We dichotomized the AN and the BMI

PGS based on a cut-off value at the 8th decile of the PGS distribu-

tion. This value was selected based on previous studies that

reported that individuals in top deciles of BMI PGS and schizo-

phrenia PGS are at greater risk than those in lower deciles for being

overweight and being diagnosed with schizophrenia, respec-

tively.15,28 We did not choose the highest decile as cut-off, as

this would have resulted in a small sample size and thus low statis-

tical power for this particular bin. Individuals with a PGS lower

than the 8th decile were grouped into a ‘‘low PGS’’ group, and

those with a PGS score at or higher than 8th decile were grouped

into a ‘‘high PGS’’ group. Based on this grouping, we were able

to determine four categories: individuals with a (1) low PGS for

AN and low PGS for BMI, (2) high PGS for AN and low PGS for

BMI, (3) low PGS for AN and high PGS for BMI, and (4) high
1244 The American Journal of Human Genetics 109, 1242–1254, July
PGS for AN and high PGS for BMI. The ‘‘low AN PGS and low

BMI PGS’’ groupwas used as the reference category in the analyses.
Statistical analyses
PGS analyses

In the first set of analyses, we addressed whether the AN PGS and

BMI PGS separately were associated with body composition trajec-

tories. For the BMI spline trajectory, we regressed each derived

slope onto the standardized AN PGS or the BMI PGS and the first

four ancestry-informative principal components. Data for FMI,

LMI, and BMD were measured objectively at 10, 12, 14, 16, 18,

and 24 years during face-to-face visits, as described above. For uni-

formity, we restricted analyses of weight and height to measure-

ments at these ages as growth is more linear from mid-childhood

onwards. Height was included to test the quality ofmethodological

approach as a negative control for the association with the AN

PGS.3 FMI, LMI, BMD, weight, and height trajectories were

analyzed using linear mixed-effects regression (LMER) using the

LMER function from the LME4 package in R;29 the standardized

AN PGS or BMI PGS, the first four ancestry-informative principal

components, and age were added as fixed effects. For the linear

mixed-effects models, the intercept and the slope were all

allowed to vary randomly across individuals. We stratified our an-

alyses on biological sex; phenotypic sex differences in body

composition have been reported in the general population that

are detectable as early as adolescence.30,31 For comparisons

between females andmales, we tested whether the slopes of the as-

sociation of the ANPGS or the BMI PGSwith the body composition

trajectories differed using the methods described by Clogg et al.

and Paternoster et al.32,33 Considering that the BMI slopes are high-

ly correlated, we additionally corrected for slope(s) that preceded

the one that is being analyzed; i.e., for the model in which the

slope between the ages 1 year and 6.5 years is the outcome, we

controlled for the slope preceding this period (slope between the

ages 4 months and 1 year), and for the model in which the slope

between the ages 6.5 years and 24 years is the outcome, we

controlled for the slopes preceding this period (slope between the

ages 4 months and 1 year and slope between ages 1 year and 6.5

years). We report for each model the beta (as a measure of effect

size, with 95% confidence intervals) and the percent change in

the estimated parameter to ease the interpretation of the beta point

estimates.

Correction for multiple testing across all tests (n ¼ 648) was

done by calculating false discovery rate-corrected Q values.34

The significance threshold was met if the false discovery rate-

adjusted Q was <0.05.

Extreme group comparison of the PGS analyses

The effects of PGS are often most discernable in the most extreme

deciles. We therefore tested whether groups characterized by a

particularly high PGS load differ from one another. Note that

this differs from testing a formal interaction between the AN

PGS and the BMI PGS, as our focus is on understanding the differ-

ence in growth in the extreme end of the PGS distribution. In this

second set of analyses, we used LMER to determine the association

between the body composition measures (BMI, FMI, LMI, BMD,

weight, and height) and the derived categorical AN and BMI PGS

(see PGS calculations). For each regression model, the derived cat-

egorical variable of the AN PGS or BMI PGS, age, and the first four

ancestry-informative principal components were included as fixed

effects. We included random intercepts and slope for each individ-

ual in the model to account for variance in body composition
7, 2022



Table 1. Descriptive data from the Avon Longitudinal Study of Parents and Children (ALSPAC)

Body composition measure Age (years)

Female Male

n Median (IQR) n Median (IQR)

BMI (kg/m2)a 10 3,072 17.31 (15.77, 19.41) 3,026 16.77 (15.61, 18.73)

12 2,902 18.6 (16.74, 21.14) 2,797 17.96 (16.43, 20.5)

14 2,433 20.17 (18.43, 22.58) 2,394 19.28 (17.71, 21.45)

16 1,496 20.95 (19.47, 23.14) 1,289 20.83 (19.14, 22.78)

18 1,986 22.14 (20.35, 24.78) 1,681 21.76 (20.08, 24.34)

24 1,671 23.63 (21.47, 27.04) 1,131 24.25 (21.97, 27.09)

FMI (kg/m2) 10 2,932 4.4 (3.14, 6.18) 2,880 2.96 (2.08, 4.67)

12 2,862 4.91 (3.52, 7.11) 2,750 3.65 (2.53, 5.9)

14 2,406 5.77 (4.28, 7.74) 2,353 3.11 (2.09, 5.26)

16 1,266 6.5 (5.00, 8.36) 1,066 2.67 (1.83, 4.14)

18 1,895 7.13 (5.68, 9.28) 1,624 3.37 (2.22, 5.64)

24 1,618 8.07 (6.43, 10.61) 1,100 5.7 (4.32, 7.8)

LMI (kg/m2) 10 2,932 12.07 (11.5, 12.69) 2,880 12.98 (12.43, 13.55)

12 2,862 12.64 (11.95, 13.42) 2,750 13.28 (12.63, 14)

14 2,406 13.39 (12.7, 14.1) 2,353 14.87 (13.9, 15.92)

16 1,266 13.56 (12.81, 14.3) 1,066 15.93 (14.76, 16.98)

18 1,895 13.86 (13.17, 14.64) 1,624 17.19 (16.16, 18.18)

24 1,618 14.8 (13.95, 15.82) 1,100 17.45 (16.25, 18.83)

BMD (g/cm2) 10 2,965 0.77 (0.74, 0.81) 2,900 0.78 (0.75, 0.82)

12 2,865 0.85 (0.8, 0.9) 2,756 0.84 (0.80, 0.89)

14 2,406 0.96 (0.91, 1.01) 2,354 0.95 (0.90, 1.01)

16 2,050 1 (0.96, 1.05) 1,952 1.06 (0.99, 1.12)

18 1,902 1.04 (0.99, 1.09) 1,634 1.14 (1.08, 1.21)

24 1,619 1.19 (1.13, 1.26) 1,101 1.32 (1.23, 1.39)

Weight (kg) 10 3,105 33.6 (29.6, 38.8) 3,045 33 (29.4, 37.8)

12 2,904 42.8 (37, 50.2) 2,801 40.6 (35.8, 47.6)

14 2,433 53.4 (47.8, 60.2) 2,394 53 (46.8, 61.35)

16 1,599 57 (52, 64) 1,330 66 (59, 74)

18 1,986 61 (55.1, 68.4) 1,683 70.4 (63.7, 79)

24 1,671 64.9 (58.7, 75.55) 1,131 79 (70.7, 88.5)

Height (cm) 10 3,074 139.05 (135, 143.4) 3,027 139.8 (135.7, 143.9)

12 2,904 151.4 (146.4, 156.2) 2,797 149.8 (145.1, 154.7)

14 2,438 162.1 (157.8, 166.3) 2,394 165.2 (158.9, 170.8)

16 1,666 165 (160, 170) 1,361 178 (173, 183)

18 1,988 165.1 (161.1, 169.2) 1,683 179 (174.45, 183.4)

24 1,672 165.8 (161.88, 170) 1,131 180 (175.5, 184.5)

Data are presented on age, BMI, FMI, LMI, weight, and height. The sample size per outcome varies. Observations were censored for the presence of an eating
disorder (ED), i.e., anorexia nervosa, bulimia nervosa, and binge-eating disorder. Information on a probable ED was available at age 14, 16, and 18 years.24,25

The presence of an ED diagnosis at age 14 years meant that all values for that individual regarding their measurement (BMI, FMI, LMI, etc.) at age 14 years
up to age 24 years were set to missing. This was also done for the presence of an ED diagnosis at age 16 years (set values at age 16 and beyond to missing)
and 18 years (set values at age 18 and beyond to missing). BMI was calculated using objectively measured weight and height during a routine clinic visit at
age 24 years. Height was measured to the nearest millimeter using a Harpenden Stadiometer (Holtain Ltd.), and weight was measured using the Tanita body
fat analyzer (Tanita TBF UK Ltd.) to the nearest 50 grams. FMI, LMI, and BMD were derived using a Lunar Prodigy dual-energy X-ray absorptiometry (DEXA) scan-
ner (GE Medical Systems Lunar, Madison, WI, USA). FMI and LMI were calculated by dividing each measure (in kilograms) by height squared (in meters). BMDwas
calculated for the whole body excluding the head values. IQR, interquartile range; BMI, body mass index (weight in kilograms/height2 in meters); FMI, fat mass
index (fat mass in kilograms/height2 in meters); LMI, lean mass index (lean mass in kilograms/height2 in meters); BMD, bone mineral density.
aTo limit the size of this table, only the BMI values at age 10 years and later are shown; for BMI values prior to age 10 years, see Table S1.
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Table 2. Associations of the AN PGS with body composition stratified for biological sex in ALSPAC

Trajectory Parameter

Female Male

Betaa % changeb Qc Betaa % changeb Qc

BMI Slope age 4 months to 1 year 1.0000 (1.000, 1.0000) <0.001 0.76 1.0000 (1.0000, 1.0000) <0.001 0.71

BMI Slope age 1–6.5 years 1.0000 (1.0000, 1.0001) <0.001 0.36 1.0000 (1.0000, 1.0000) < �0.001 0.74

BMI Slope age 6.5–24 years 1.0000 (0.9999, 1.0000) �0.004 <0.001d 1.0000 (1.0000, 1.0000) < �0.001 0.06

FMI Slope age 10–24 years 0.9919 (0.9774, 1.0067) �0.81 0.36 0.9942 (0.9758, 1.0130) �0.58 0.62

LMI Slope age 10–24 years 0.9973 (0.9944, 1.0002) �0.27 0.11 0.9993 (0.9961, 1.0027) �0.07 0.74

BMD Slope age 10–24 years 0.9960 (0.9929, 0.9991) �0.40 0.02d 0.9986 (0.9950, 1.0022) �0.14 0.51

Weight Slope age 10–24 years 0.9937 (0.9867, 1.0008) �0.63 0.13 0.9956 (0.9877, 1.0036) �0.44 0.36

Height Slope age 10–24 years 0.9990 (0.9974, 1.0006) �0.10 0.31 0.9991 (0.9970, 1.0012) �0.09 0.48

Full description of ALSPAC is provided elsewhere.16–20 BMI trajectory was derived using spline modeling. Prior to deriving the trajectory, BMI was transformed
using the natural logarithm. For the spline modeling, three spline segments (slopes) were created: a slope capturing growth between age 4 months and 1
year, a slope capturing growth between age 1 and 6.5 years, and a slope capturing growth between age 6.5 and 24 years. FMI, LMI, BMD, weight, and height
trajectories were analyzed using generalized linear mixed models.35 The AN PGS and the first four ancestry-informative principal components were added as fixed
effects. The intercept and the slope were all allowed to vary randomly across individuals. BMI, body mass index (weight in kilograms/height2 in meters); FMI, fat
mass index (fat mass in kilograms/height2 in meters); LMI, lean mass index (lean mass in kilograms/height2 in meters); BMD, bone mineral density (gram/cm2).
aBetas reflect one SD change in the standardized (to mean zero and SD of one) AN PGS.
bConsidering that the outcomes were log-transformed, we report the percent change in the outcome for one SD increase in the PGS to ease the interpretation of
the betas.
cBenjamini & Hochberg false discovery rate adjustment for the number tests performed.34
dSignificant after accounting for multiple testing using the false discovery rate-corrected Q values. Significance was set at Q < 0.05.
measures due to inter-individual differences. The analyses were

stratified by sex, given differences in body composition.31 The

‘‘low AN PGS and low BMI PGS’’ group was used as the reference

category in the analyses. For this set of tests, correction for multi-

ple testing was done by calculating false discovery rate-corrected Q

values.34 The significance threshold was met if the false discovery

rate-adjusted Q was <0.05.

Post-hoc analyses of the extreme group comparisons

Based on the reported negative genetic correlations between AN

and BMI,4 we also examined whether the BMI PGS mitigates the

effect of the AN PGS. Therefore, we carried out post-hoc analyses,

comparing the above extreme groups in order to understand how

they differed from one another. Post-hoc comparisons were cor-

rected for multiple testing using Tukey’s adjustment.
Results

Sample description

Following quality control of the genetic data, a total of

8,654 children with genotyping data and at least one

outcome measure were included in the analyses (Table 1,

Table S1, and Figure S2).

Association of the AN PGS with growth trajectories

We observed several significant associations between the

AN PGS and growth trajectories (on the additive scale)

exclusively in the periods of linear growth in female partic-

ipants (Table 2). For female participants, between the ages

6.5 and 24 years, a one-SD increase in the AN PGS was asso-

ciated with a 0.004% slower growth per year in their BMI

trajectory, given their BMI at 4 months (the intercept).

Furthermore, in female participants, on average a one-

SD-higher AN PGS was associated with a 0.40% slower

gain per year for their BMD trajectory between the ages
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10 and 24 years, given BMD at 10 years. There was no sig-

nificant association between the AN PGS and growth tra-

jectories in male participants.

We did not observe a significant difference in slopes of

associations between the AN PGS and growth trajectories

between females and males (Table S2). Post-hoc power

analysis indicates that the AN PGS analyses were well pow-

ered (power >0.8; post-hoc power analysis supplementary

note and Table S3)
Association of the BMI PGS with growth trajectories

The BMI PGS was associated with periods of linear growth

of the BMI trajectory between the ages 1 and 24 years; a

one-SD-higher BMI PGS was associated with a 0.02% faster

growth in BMI per year in female and male participants

(Table 3).

Between ages 10 and 24 years, a one-SD-higher BMI PGS

was associated with a faster growth/gain in FMI (16.74%),

LMI (2.11%), BMD (1.64%), and weight (6.42%) in female

participants. We observed no association between the BMI

PGS and the height trajectory in females. We observed a

similar pattern of results in male participants, with a

notable exception for the FMI trajectory, in which a one-

SD-higher BMI PGS was associated with a 20.4% faster

growth in FMI between ages 10 and 24 years.

Furthermore, slopes of associations of the BMI PGS with

body composition trajectories differed between females

and males. Increases in BMI were more pronounced in fe-

males, a 20% steeper slope, in the association between

the BMI PGS and the BMI trajectory between ages 4months

and 1 year compared to males (Table S4). Higher BMI PGS

corresponded with increases in FMI in both sexes; how-

ever, this increase in FMI was more pronounced in males
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Table 3. Associations of the BMI PGS with body composition stratified for biological sex in ALSPAC

Trajectory Parameter

Female Male

Betaa % changeb Qc Betaa % changeb Qc

BMI Slope age 4 months to 1 year 1.0000 (1.0000, 1.0000) <0.001 <0.001d 1.0000 (1.0000, 1.0000) <0.001 <0.001d

BMI Slope age 1–6.5 years 1.0002 (1.0001, 1.0002) 0.02 <0.001d 1.0002 (1.0002, 1.0002) 0.02 <0.001d

BMI Slope age 6.5–24 years 1.0002 (1.0002, 1.0002) 0.02 <0.001d 1.0002 (1.0001, 1.0002) 0.02 <0.001d

FMI Slope age 10–24 years 1.1673 (1.1516, 1.1832) 16.73 <0.001d 1.2040 (1.1837, 1.2247) 20.4 <0.001d

LMI Slope age 10–24 years 1.0211 (1.0183, 1.0239) 2.11 <0.001d 1.0185 (1.0153, 1.0217) 1.85 <0.001d

BMD Slope age 10–24 years 1.0164 (1.0133, 1.0195) 1.64 <0.001d 1.0142 (1.0107, 1.0178) 1.42 <0.001d

Weight Slope age 10–24 years 1.0642 (1.0572, 1.0713) 6.42 <0.001d 1.0584 (1.0506, 1.0663) 5.84 <0.001d

Height Slope age 10–24 years 1.0016 (1.0000, 1.0033) 0.16 0.09 1.0023 (1.0003, 1.0044) 0.23 0.05

Full description of ALSPAC is provided elsewhere.16–20 BMI trajectory was derived using spline modeling. Prior to deriving the trajectory, BMI was transformed
using the natural logarithm. For the spline modeling, three spline segments (slopes) were created: a slope capturing growth between age 4 months and 1
year, a slope capturing growth between age 1 and 6.5 years, and a slope capturing growth between age 6.5 and 24 years. FMI, LMI, BMD, weight, and height
trajectories were analyzed using generalized linear mixedmodels.35 The BMI PGS and the first four ancestry-informative principal components were added as fixed
effects. The intercept and the slope were all allowed to vary randomly across individuals. BMI, body mass index (weight in kilograms/height2 in meters); FMI, fat
mass index (fat mass in kilograms/height2 in meters); LMI, lean mass index (lean mass in kilograms/height2 in meters); BMD, bone mineral density (gram/cm2).
aBetas reflect one SD change in the standardized (to mean zero and SD of one) BMI PGS.
bConsidering that the outcomes were log-transformed we report the percent change in the outcome for one SD increase in the PGS to ease the interpretation of
the betas.
cBenjamini & Hochberg false discovery rate adjustment for the number of tests performed.34
dSignificant after accounting for multiple testing using the false discovery rate-corrected Q values. Significance was set at Q < 0.05.
than in females—the slope of this association was 20%

steeper in males than in females. Post-hoc power analysis

indicates that the BMI PGS analyses were well powered

(power >0.8; post-hoc power analysis supplementary

note and Table S3).

Extreme group comparisons

The effects of PGS are often most discernable in the most

extreme deciles, so we therefore tested whether groups

characterized by a particularly high PGS load differed

from one another. Note that this differs from testing a

formal interaction between the AN PGS and the BMI

PGS, as our focus is on understanding difference in growth

at the extreme end of the PGS distribution. For the extreme

group comparisons, for the BMI trajectory, we focused only

on the period of growth between ages 6.5 and 24 years as

the AN PGS was associated only with this stage of growth

(see Table 2). For the FMI, LMI, BMD, weight, and height

trajectories, we analyzed the period between ages 10 and

24 years. Sample sizes of the extreme group comparisons

can be found in Table S5.

Individuals with a low AN PGS and a high BMI PGS had

on average faster growth compared to individuals with a

low AN PGS and a low BMI PGS. The difference was most

pronounced for the FMI trajectory (Table 4). Female partic-

ipantswith a lowANPGS and ahigh BMI PGShad a 27.81%

faster growth in FMI compared to their peers with a low AN

PGS and a low BMI PGS. Male participants with a low AN

PGS and a high BMI PGS also showed faster growth in FMI

(38.14%) compared to their peers with a low AN PGS and

a low BMI PGS. In addition, male participants with a low

AN PGS and a high BMI PGS showed 0.62% faster growth

in height compared to the reference group. Furthermore,
The Americ
although not statistically significant, we observed a trend

in which female participants with a high AN PGS and a

low BMI PGS had slower growth/gain for the BMI, FMI,

LMI, BMD, weight, and height trajectories compared to

the reference category of individuals with a low AN PGS

and a low BMI PGS (Figure 1 and Table 4).
Post-hoc analyses of extreme group comparisons

In order to understand how the various PGS groups differ

from one another, we conducted post-hoc analyses of the

extreme group comparisons. Though the group with

high AN PGS and low BMI PGS did not differ from the

reference category (Table 4), this group did differ (slower

growth) significantly from the group with high AN PGS

and high BMI PGS and from the group with low AN PGS

and high BMI PGS (Table 5 and S6).
Discussion

Using longitudinal data across the first two decades of life,

we report that common genomic variants associated with

AN and BMI are significantly associated with growth trajec-

tories. Female participants with a high AN genetic liability

differ significantly in growth, as marked by slower growth

as early as age 6.5 years for the BMI trajectory and age 10

years for the BMD trajectory. This effect was not observed

in male participants.

Sex differences in body composition have been well

documented in the medical literature, with men on

average being taller and having more lean body mass,

higher BMD, and lower fat mass compared to women.36

These biological differences are driven by both
an Journal of Human Genetics 109, 1242–1254, July 7, 2022 1247



Table 4. Associations of the combined AN and BMI PGS with the body composition measures stratified for biological sex using linear
mixed models in ALSPAC

Trajectory PGS category

Female Male

Betaa
%
changeb Qc Betaa

%
changeb Qc

BMI (age 6.5–24 years) Low AN and high BMI 1.10 (1.08, 1.11) 9.78 <0.001d 1.07 (1.06, 1.09) 7.41 <0.001d

BMI (age 6.5–24 years) High AN and high BMI 1.11 (1.08, 1.14) 10.74 <0.001d 1.10 (1.08, 1.13) 10.28 <0.001d

BMI (age 6.5–24 years) High AN and low BMI 1.10 (0.99, 1.01) �0.17 0.89 1.00 (0.99, 1.01) 0.09 0.93

FMI (age 10–24 years) Low AN and high BMI 1.28 (1.23, 1.33) 27.81 <0.001d 1.38 (1.32, 1.45) 38.14 <0.001d

FMI (age 10–24 years) High AN and high BMI 1.32 (1.21, 1.43) 31.56 <0.001d 1.48 (1.33, 1.64) 47.76 <0.001d

FMI (age 10–24 years) High AN and low BMI 0.99 (0.95, 1.02) �1.29 0.65 1.02 (0.97, 1.07) 1.51 0.71

LMI (age 10–24 years) Low AN and high BMI 1.03 (1.03, 1.04) 3.32 <0.001d 1.03 (1.02, 1.03) 2.77 <0.001d

LMI (age 10–24 years) High AN and high BMI 1.03 (1.01, 1.04) 2.77 0.001d 1.03 (1.02, 1.05) 3.26 <0.001d

LMI (age 10–24 years) High AN and low BMI 0.99 (0.99, 1.00) �0.56 0.17 1.00 (0.99, 1.01) 0.00 0.99

BMD (age 10–24 years) Low AN and high BMI 1.03 (1.02, 1.04) 2.92 <0.001d 1.03 (1.02, 1.03) 2.77 <0.001d

BMD (age 10–24 years) High AN and high BMI 1.02 (1.01, 1.04) 2.09 0.012d 1.03 (1.02, 1.05) 3.26 <0.001d

BMD (age 10–24 years) High AN and low BMI 0.99 (0.99, 1.00) �0.68 0.07 1.00 (0.99, 1.01) 0.00 0.99

Weight (age 10–24 years) Low AN and high BMI 1.11 (1.09, 1.13) 11.29 <0.001d 1.12 (1.10, 1.13) 11.52 <0.001d

Weight (age 10–24 years) High AN and high BMI 1.10 (1.06, 1.14) 10.08 <0.001d 1.12 (1.08, 1.16) 11.85 <0.001d

Weight (age 10–24 years) High AN and low BMI 0.99 (0.98, 1.01) �0.77 0.53 1.00 (0.98, 1.02) 0.17 0.92d

Height (age 10–24 years) Low AN and high BMI 1.00 (1.00, 1.01) 0.15 0.64 1.01 (1.00, 1.01) 0.62 0.01d

Height (age 10–24 years) High AN and high BMI 1.00 (0.99,1.01) �0.25 0.72 1.00 (0.99, 1.01) �0.25 0.72

Height (age 10–24 years) High AN and low BMI 1.00 (1.00, 1.00) �0.08 0.79 1.00 (1.00, 1.01) 0.13 0.71

Full description of ALSPAC is provided elsewhere.16–20 Categorical variables were derived from dichotomizing the AN PGS and the BMI PGS. For both the AN and
the BMI PGSs, individuals with scores at or greater than the 8th decile point were regarded as the ‘‘high PGS group,’’ and those with scores lower were considered
the ‘‘low PGS group.’’ From the dichotomized AN PGS and BMI PGS, we were able to create a categorical variable with four levels: (1) low AN PGS and low BMI
PGS, (2) high AN PGS and low BMI PGS, (3) high AN PGS and high BMI PGS, and (4) low AN PGS and high BMI PGS. The ‘‘low AN PGS and low BMI PGS’’ group
was used as the reference category in the analyses. AN, anorexia nervosa; PGS, polygenic score; BMI, body mass index (weight in kilograms/height2 in meters);
FMI, fat mass index (fat mass in kilograms/height2 in meters); LMI, lean mass index (lean mass in kilograms/height2 in meters); BMD, bone mineral density (gram/
cm2).
aBetas reflect change in outcome compared to the reference category ‘‘low AN PGS and low BMI PGS.’’
bConsidering that the outcomes were log-transformed we report the percent change in the outcome in the comparison to the reference group (‘‘low AN PGS and
BMI PGS’’) to ease the interpretation of the betas.
cBenjamini & Hochberg false discovery rate adjusting for the number of hypotheses tested.34
dSignificant after accounting for multiple testing using the false discovery rate-corrected Q values. Significance was set at Q < 0.05.
environmental and genetic factors.31,37 In a recent study,

we reported a negative genetic correlation between body

fat percentage and AN, which was significantly more

pronounced in women than in men (women SNP-rg ¼
�0.44, SE ¼ 0.04; men SNP-rg ¼ �0.26; SE ¼ 0.04).37 The

negative association between the AN PGS and the BMD tra-

jectory is consistent with the established literature that AN

is phenotypically associated with BMD; AN has marked

and severe adverse effects on bone metabolism.3,38 The

negative association between the AN PGS and BMD was

found only in female participants. The observed sex-spe-

cific effects of the AN PGS suggest that a specific set of com-

mon genetic variants may be differentially active in

women and may increase the liability for AN. To ensure

that these associations are not driven byminor sex-specific

differences as a consequence of the sampling of the AN

GWAS (that mostly included female participants), it is

important to collect adequate samples from men with
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AN and all EDs, allowing for the calculation of ED PGSs

specific for men, to confirm our findings on sex-specific ge-

netic effects.

We also demonstrate that developmental changes in

body composition are in part drivenby theBMI PGS as early

as 4 months of age. The pattern of association of the BMI

PGS with the growth trajectories did not differ between

the sexes. The BMI PGS was significantly associated with

FMI and LMI trajectories, whereas the AN PGS was not—

another point of divergence between the BMI PGS and

the AN PGS. The association of the BMI PGS with FMI and

LMI is in part due to shared genomics.37 In a previous

study,37 we showed a significant genetic correlation be-

tween childhood BMI and adiposity (SNP-rg¼ 0.46) and be-

tween childhood BMI and lean mass (SNP-rg ¼ 0.41).

Consistent with our findings, increases in body weight are

reported to be associated with higher BMD.39 Whether

these associations are due to adaptive changes of the body
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Figure 1. Growth trajectories for the categorial AN and
BMI PGS groups
PGS groups were derived by first dichotomizing the AN and
the BMI PGSs based on a cut-off value of the 8th decile of the
scores. Individuals with a PGS lower than the 8th decile were
grouped into a ‘‘low PGS’’ group, and those with a PGS at or
higher than 8th decile were grouped into a ‘‘high PGS’’
group. Based on this grouping, we determined four cate-
gories: individuals with (1) low PGS for both AN and BMI,
(2) high PGS for AN and low PGS for BMI, (3) low PGS for
AN and high PGS for BMI, and (4) high PGS for both AN
and BMI.
(A) Median (with 95% bootstrapped confidence interval
[CI]) BMI (weight in kilograms/height2 in meters) trajec-
tories across childhood and adolescence.
(B) Median (with 95% bootstrapped CI) FMI (fat mass in ki-
lograms/height2 in meters) trajectories across childhood
and adolescence.
(C) Median (with 95% bootstrapped CI) LMI (lean mass in
kilograms/height2 in meters) trajectories across childhood
and adolescence.
(D) Median (with 95% bootstrapped CI) BMD (g/cm2) tra-
jectories across childhood and adolescence.
(E) Median (with 95% bootstrapped CI) weight (in kilo-
grams) trajectories across childhood and adolescence.
(F) Median (with 95% bootstrapped CI) height (in centime-
ters) trajectories across childhood and adolescence.
to increased body weight (i.e., higher BMI PGS leads to in-

creases in body weight, which in turn leads to increases in

BMD to sustain a higher body weight) or whether this is

due to shared genomics is currently unclear.
The American Jou
Furthermore, regression slopes of PGSs and body

composition did not differ between males and fe-

males, with two exceptions being the association

between BMI PGS and BMI trajectory (in which

females had a 24% steeper slope) and the FMI tra-

jectory (in which males had a 20% steeper slope).

The formula32,33 used for comparing the slopes de-

pends on standard error estimates and is therefore

sensitive to sample size; hence the negative results

for the AN PGS might be a reflection of sample

size.

We also sought to understand how AN and BMI ge-

netics could co-influence growth across childhood

and adolescence. We found that female participants

with high AN PGS and low BMI PGS did not differ

significantly from a reference group with a low AN

PGS and low BMI PGS, although the direction of dif-

ference aligned with expectations—individuals with

high AN PGS and low BMI PGS have lower growth

trajectories compared to the reference group. Inter-

estingly, female participants with high genetic liabil-

ity for AN and low genetic liability for BMI followed

lower growth trajectories than individuals with high

PGSs on both traits, which might suggest that the

BMI PGS mitigated the effects of the AN PGS. This

interpretation is consistent with reports of a negative

genetic correlation between AN and BMI.4,40 Taken

together, the findings from the univariate AN PGS
analyses and the findings from the extreme-group compar-

isons suggest that genetic liability to high weight exerts a

modulating role in the association between the AN PGS

and growth trajectories. However, we cannot exclude
rnal of Human Genetics 109, 1242–1254, July 7, 2022 1249



Table 5. Associations of the combined AN and BMI PGS with the body composition measures stratified for biological sex using linear
mixed models in ALSPAC: Post-hoc analyses of the BMI trajectory

PGS comparison group

BMI female BMI male

Beta SE Z ratio Pa Beta SE Z ratio Pa

Low AN PGS and low BMI PGS—high
AN PGS and low BMI PGS

0.002 0.006 0.270 0.99 �0.001 0.006 �0.153 1

Low AN PGS and low BMI PGS—high
AN PGS and high BMI PGS

�0.102 0.014 �7.044 <0.001b �0.097 0.012 �7.775 <0.001b

Low AN PGS and low BMI PGS—low
AN PGS and high BMI PGS

�0.093 0.006 �14.374 <0.001b �0.071 0.006 �12.310 <0.001b

High AN PGS and low BMI PGS—high
AN PGS and high BMI PGS

�0.103 0.015 �6.806 <0.001b �0.097 0.013 �7.314 <0.001b

High AN PGS and low BMI PGS—low
AN PGS and high BMI PGS

�0.095 0.008 �11.690 <0.001b �0.071 0.007 �9.707 <0.001b

High AN PGS and high BMI PGS—low
AN PGS and high BMI PGS

0.009 0.015 0.567 0.94 0.026 0.013 1.989 0.19

Full description of ALSPAC is provided elsewhere.16–20 Shown here are the post-hoc comparisons of the PGS groups for only the BMI trajectory (see also Table 4).
The full results for the remaining trajectories (FMI, LMI, BMD, weight, and height) can be found in Table S3. Categorical variables were derived from dichotomizing
the AN PGS and the BMI PGS. For both the AN and the BMI PGSs, individuals with PGS scores at or greater than the 8th decile point were regarded as the ‘‘high PGS
group,’’ and those with scores lower were considered the ‘‘low PGS group.’’ From the dichotomized AN PGS and BMI PGS, we were able to create a categorical
variable with two levels: (1) high AN PGS and high BMI PGS and (2) high AN PGS and low BMI PGS. AN, anorexia nervosa; PGS, polygenic score; BMI, body mass
index (weight in kilograms/height2 in meters); SE, standard error.
aPost-hoc comparisons corrected for multiple testing using Tukey’s adjustment.
bSignificant after accounting for multiple testing.
that other unmeasured PGSs (e.g., depression) could also

exert influence on these associations.41

The observation that AN PGS and BMI PGS co-influence

growth trajectories is an interesting finding that encourages

exploration of the underlying biological mechanisms. The

fact that a PGS of one trait could mitigate the effects of

another trait is intriguing andhas previously beendescribed

ina study investigating stressful life events; ahigherwell-be-

ing PGS buffered against increased depressive symptoms

following a spouse’s death.42 Common genomic variants

that are associated with AN or BMI are primarily expressed

in the central nervous system4,13,43 suggesting that body

mass is behaviorally influenced. This view is also supported

by our previouswork and that of others, showing that a PGS

for a higher BMI is associated with increased food-approach

eating behaviors such as emotional eating as well as disor-

dered eating behaviors such as higher propensity to engage

in self-reported binge eating.44–46 Research also indicates

that a higher PGS for AN is associated with emotional

eating44 and childhood fussy eating.47 Taken together,

several sources of converging evidence suggest that poly-

genic risk for AN and/or BMI may impact growth at least

in part via eating behaviors.

The biology behind sex-specific effects in AN is not fully

understood. From the literature it is clear that AN occurs

more often in females than in males (male-to-female ratios

of 1:8), and it is likely that some of this sex discrepancy in

risk is due to genetics.48 One possible explanation could

be that there is an interaction between common genetic

variants of AN (as captured by our AN PGS) on the auto-

somes and variants on the X chromosomes that differen-

tially impact growth in females compared tomales.Another

possible explanation for the sex-specific effects observed in
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this study may be due to increases in ovarian hormones in

females during puberty.49 Klump et al.49 found that

genetic influence on disordered eating increases in females

during puberty, whereas no significant difference in genetic

influence was observed in males during the same period.49

This study has several strengths, including the large sam-

ple size and the prospective and repeated collection of

objective body composition measures spanning more

than 20 years. We included a negative control (i.e., the

height trajectory, which was not associated with the AN

PGS), adequately controlled for multiple testing, and

controlled for potential genetic confounders using

ancestry-informative principal components. The use of

splines enabled modeling of BMI trajectories more accu-

rately, as growth throughout childhood is not linear.

Further, by stratifying on biological sex, we were able to

identify sex-related effects that otherwise would have

been masked, and censoring on EDs ruled out that growth

changes during puberty were a consequence of an ED. We

would also like to highlight that the sex differences

observed for the AN PGS are likely not due to the sampling

of the GWAS of AN that mostly included female partici-

pants; the authors of the GWAS of AN, in their sensitivity

analysis, found no differences in polygenic architecture be-

tween female and male AN cases.4 However, this does not

exclude that the sampling of the AN GWAS could have

caused minor sex-specific differences in our PGS analysis.

Findings from this study should be interpreted in the

context of some limitations. Participants were recruited

from the same geographical region in the southwest of En-

gland, and therefore the results may not be generalizable to

other populations. However, the homogeneity of this sam-

ple lends itself to genetic analyses as bias from population
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stratification is low.50 Considering the longitudinal nature

of the study, participants tend to drop out over time, lead-

ing to missing data. We maximized available data by using

mixed-effects models, which allowed us to use all available

data points in deriving the growth trajectories rather than

only including complete cases. We acknowledge that any

bias as a consequence of missing data in our analyses could

have biased our results toward the null.

The effect sizes observed in this study were relatively

small, but they are consistentwith thosepreviously reported

in other PGS studies and aid our understanding of growth

trajectories.15,51Height andweight data inALSPACwere ob-

tained from a range of clinical sources, which could have

introduced variability in the obtained measures. However,

measures of height andweightwere highly correlated across

different measurement settings (clinic and self-report)

(Figure S1). Furthermore, the BMI GWAS that was used in

deriving the PGS was conducted mostly in adult partici-

pants, which could have biased our analyses. However, for

BMI, a previous study found substantial overlap between

childhood and adult BMI GWAS loci (Rg ¼ 0.76, p ¼
1.45 3 10�112).52 Regarding the AN GWAS, it is important

to note that both adolescents and children were included

in the study; therefore, the AN GWAS should be equipped

to pick up genomic variants associated with the disorder in

adolescence, which is the typical age of onset.

In conclusion, we show that polygenic risk for AN and

BMI has detectable sex-specific effects on growth during

the first two decades of life. Especially noteworthy, female

participants with high polygenic risk for AN and a low

polygenic risk for BMI likely constitute a high-risk group,

as they followed lower growth trajectories, which have pre-

viously been associated with AN in the ALSPAC sample.7

This study adds to a growing body of evidence suggesting

that risk for AN could emerge during early childhood and

that a combination of AN and BMI polygenic risk could

aid the early identification of individuals at high risk for

AN. These findings encourage further research to under-

stand how AN PGS and BMI PGS co-influence growth dur-

ing childhood and how BMI PGS can amplify or mitigate

the effects of AN PGS.
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Després, J.-P., Matsuzawa, Y., Loos, R.J.F., Moreno, L.A., Bray,

G.A., and Martinez, J.A. (2017). Obes. Nat. Rev. Dis. Prim. 3,

17034. https://doi.org/10.1038/nrdp.2017.34.

10. Tomiyama, A.J., Carr, D., Granberg, E.M., Major, B., Robinson,

E., Sutin, A.R., and Brewis, A. (2018). How and why weight

stigma drives the obesity ‘‘epidemic’’ and harms health.

BMC Med. 16, 123. https://doi.org/10.1186/s12916-018-

1116-5.

11. Spahlholz, J., Baer, N., König, H.H., Riedel-Heller, S.G., and

Luck-Sikorski, C. (2016). Obesity and discrimination - a

systematic review and meta-analysis of observational

studies. Obes. Rev. 17, 43–55. https://doi.org/10.1111/obr.

12343.

12. Daly, M., Sutin, A.R., and Robinson, E. (2019). Perceived

weight discrimination mediates the prospective association

between obesity and physiological dysregulation: evidence

from a population-based cohort. Psychol. Sci. 30, 1030–

1039. https://doi.org/10.1177/0956797619849440.

13. Locke, A.E., Kahali, B., Berndt, S.I., Justice, A.E., Pers, T.H.,

Day, F.R., Powell, C., Vedantam, S., Buchkovich, M.L., Yang,

J., et al. (2015). Genetic studies of body mass index yield

new insights for obesity biology. Nature 518, 197–206.

https://doi.org/10.1038/nature14177.

14. Yengo, L., Sidorenko, J., Kemper, K.E., Zheng, Z., Wood, A.R.,

Weedon, M.N., Frayling, T.M., Hirschhorn, J., Yang, J., and

Visscher, P.M. (2018). Meta-analysis of genome-wide associa-
1252 The American Journal of Human Genetics 109, 1242–1254, July
tion studies for height and body mass index in �700000 indi-

viduals of European ancestry. Hum. Mol. Genet. 27, 3641–

3649. https://doi.org/10.1093/hmg/ddy271.

15. Khera, A.V., Chaffin, M., Wade, K.H., Zahid, S., Brancale, J.,

Xia, R., Distefano, M., Senol-Cosar, O., Haas, M.E., Bick, A.,

et al. (2019). Polygenic prediction of weight and obesity tra-

jectories from birth to adulthood. Cell 177, 587–596.e9.

https://doi.org/10.1016/j.cell.2019.03.028.

16. Fraser, A., Macdonald-wallis, C., Tilling, K., Boyd, A., Gold-

ing, J., Davey smith, G., Henderson, J., Macleod, J., Molloy,

L., Ness, A., et al. (2013). Cohort profile: the avon longitudi-

nal study of parents and children: ALSPAC mothers cohort.

Int. J. Epidemiol. 42, 97–110. https://doi.org/10.1093/ije/

dys066.

17. Boyd, A., Golding, J., Macleod, J., Lawlor, D.A., Fraser, A., Hen-

derson, J., Molloy, L., Ness, A., Ring, S., and Davey Smith, G.

(2013). Cohort profile: the ’Children of the 90s’-The index

offspring of the avon longitudinal study of parents and chil-

dren. Int. J. Epidemiol. 42, 111–127. https://doi.org/10.

1093/ije/dys064.

18. Golding, J., Pembrey, M., Jones, R.; and The Alspac Study

Team (2001). ALSPAC-the avon longitudinal study of parents

and children. Paediatr. Perinat. Epidemiol. 15, 74–87. https://

doi.org/10.1046/j.1365-3016.2001.00325.x.

19. Golding, J. (2004). The avon longitudinal study of parents and

children (ALSPAC)–study design and collaborative opportu-

nities. Eur. J. Endocrinol., U119–U123. https://doi.org/10.

1530/eje.0.151u119.

20. Northstone, K., Lewcock, M., Groom, A., Boyd, A., Macleod,

J., Timpson, N., and Wells, N. (2019). The Avon Longitudinal

Study of Parents and Children (ALSPAC): an update on the

enrolled sample of index children in 2019. Wellcome

Open Res. 4, 51. https://doi.org/10.12688/wellcomeo-

penres.15132.1.

21. Harris, P.A., Taylor, R., Thielke, R., Payne, J., Gonzalez, N., and

Conde, J.G. (2009). Research electronic data capture

(REDCap)-Ametadata-drivenmethodology andworkflow pro-

cess for providing translational research informatics support.

J. Biomed. Inform. 42, 377–381. https://doi.org/10.1016/j.

jbi.2008.08.010.

22. Harris, P.A., Taylor, R., Minor, B.L., Elliott, V., Fernandez, M.,

O’Neal, L., McLeod, L., Delacqua, G., Delacqua, F., Kirby, J.,

and Duda, S.N. (2019). The REDCap consortium: Building

an international community of software platform partners.

J. Biomed. Inform. 95, 103208. https://doi.org/10.1016/j.jbi.

2019.103208.

23. Micali, N., De Stavola, B., Ploubidis, G., Simonoff, E., Treasure,

J., and Field, A.E. (2015). Adolescent eating disorder behav-

iours and cognitions: Gender-specific effects of child,

maternal and family risk factors. Br. J. Psychiatry 207, 320–

327. https://doi.org/10.1192/bjp.bp.114.152371.

24. Micali, N., Solmi, F., Horton, N.J., Crosby, R.D., Eddy, K.T.,

Calzo, J.P., Sonneville, K.R., Swanson, S.A., and Field, A.E.

(2015). Adolescent eating disorders predict psychiatric, high-

risk behaviors and weight outcomes in young adulthood.

J. Am. Acad. Child Adolesc. Psychiatry 54, 652–659.e1.

https://doi.org/10.1016/j.jaac.2015.05.009.
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