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Abstract 

 

People’s forecasts from time series underestimate future values for upward trends and overestimate them 

for downward ones. This trend damping may occur because 1) people anchor on the last data point and 

make insufficient adjustment to take the trend into account, 2) they adjust towards the average of the 

trends they have encountered within the experiment, or 3) they are adapted to an environment in which 

natural trends tend to be damped. Two experiments eliminated the first account: for series that are 

negatively accelerated or have shallow slopes, people showed anti-damping (the opposite of damping), a 

phenomenon that cannot be interpreted in terms of under-adjustment.  These experiments also produced 

results consistent with the second account: forecasts for a given function clearly depended on the other 

functions that were forecast within the same experiment. However, this second account was itself 

eliminated by a third experiment demonstrating both damping and, to a lesser degree, anti-damping when 

people forecast from a single series. We conclude that people have adapted to degrees of growth and 

decay that are representative of their environment: damping occurs when trends in presented series are 

steeper than this and anti-damping occurs when they are shallower. 
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How do people predict the future and how does that help them to control it? In dynamic judgment tasks, 

people are presented with time series information and use their judgment to make forecasts (Lawrence, 

Goodwin, O’Connor & Önkal, 2006), to gain control over the series (Osman, 2010), or to detect a change 

in the way it is being produced (Brown & Steyvers, 2009). To perform these tasks well, they have to take 

some account of how information is patterned over time. This feature distinguishes them from static tasks 

such as multiple cue probability learning (Cooksey, 1996), function learning (Kalish, Lewandowsky & 

Kruschke, 2004), and causal learning (Shanks, Holyoak & Medin, 1996). However, though static and 

dynamic tasks differ in terms of the demands they make on temporal pattern perception, they are similar 

in other ways. For example, both require systematic relations to be separated from random noise and the 

way that this separation is achieved may be similar for the two classes of task. 

 

Here we focus on one particular dynamic task, judgmental forecasting. However, the issue that concerns 

us is relevant to other dynamic and, indeed, many static tasks. Specifically, we address the issue of 

whether people’s performance depends on use of very simple judgment heuristics or on more complex 

pattern extraction strategies.  

 

People’s forecasts from time series are subject to a number of systematic errors: they add random noise to 

their forecasts (Harvey, 1995), their forecasts show less regression from the last data point towards the 

mean of the series than they should do (Reimers & Harvey, 2011), and they damp trends in data so that 

forecasts lie below upward trend lines but above downward ones (Lawrence & Makridakis, 1989). These 

errors have been taken as evidence that forecasting performance relies on simple heuristics, such as 

representativeness and anchoring-and-adjustment (Tversky & Kahneman, 1974). 

 

Here we focus on trend damping. We first outline the accepted heuristic account of it and then consider 

two other explanations. Then we report three experiments designed to select between these alternatives. 
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Trend damping as under-adjustment  

Hogarth and Makridakis (1981) argued that judgmental forecasters use the same cognitive heuristics that 

can produce judgmental biases in other domains (Tversky & Kahneman, 1974). When they forecast from 

time series, people would use the anchoring-and-adjustment heuristic (Eggleton, 1982). They could treat 

long-term mean of the series as a mental anchor and adjust away from it to take the trend into account. 

Alternatively, they could use the last data point in the series, which, on average, will lie on the trend line, 

as their anchor and adjust away from that to allow for the series trend. In either case, the under-

adjustment that is associated with use of this heuristic (Tversky & Kahneman, 1974) would produce the 

observed damping effect. 

 

Trend damping as a context effect   

There have been many studies of trend damping. Typically, people have forecast from a number of series, 

some of which have upward trends and some of which have downward ones (e.g., Bolger & Harvey, 

1993; Harvey & Bolger, 1996; Lawrence & Makridakis, 1989; Mackinnon & Wearing, 1991; O’Connor, 

Remus, & Griggs, 1997). If people in those studies regressed their forecasts towards the mean trend they 

encountered within their respective experiments, the observed damping effects would have occurred. This 

contextual explanation attributes damping to a contraction bias (Poulton, 1989), a widespread 

phenomenon that is also known variously as the central tendency of judgment (Hollingsworth, 1910), 

regression (Stevens & Greenbaum, 1966), and assimilation (Warren, 1985).  

 

Although Poulton (1989) referred to this type of context effect as a bias, it may reflect a reasonable 

response on the part of participants to their uncertainty about the steepness and/or acceleration of the 

trend on each trial.  If only the mean trend across trials can be estimated, expected forecast error is 

minimized by forecasting according to that estimated mean trend. If, however, the trend on a particular 
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trial can be estimated subject to uncertainty, expected forecast error is minimized by forecasting 

according to a trend produced by taking a weighted average of the estimated trend on that trial and the 

estimated mean trend.  This sensible strategy would have produced trend damping in the studies cited 

above. However, accounting for the effect in these terms implies that it should be regarded as an artifact 

of the mixture of trends included in the experimental designs used in these studies. 

 

Trend damping as adaptation  

This final explanation is an extension of the context-effect account, but assumes that we are adapted not 

just to the immediate context of the experiment, but to the wider context of the environment more 

generally. If trends in real series that do not currently show negative acceleration tend to develop such 

acceleration in the future, then people able to take that into account are likely to damp current trends 

when making their forecasts.   

 

Why would the future points in real series show negative acceleration? In the natural world, growth 

initially tends to accelerate positively because sufficient resources are available to allow it to continue in 

an unconstrained manner. It may, for example, approximate an exponential or power function. 

Eventually, however, the demands of this type of growth outpace the resources available. As a result, the 

original pattern of growth becomes damped. Thus, series that initially show positive acceleration become 

sigmoidal. For example, adding a damping term to the differential equation for exponential growth 

produces logistic growth. Such logistic growth initially accelerates in a way that is indistinguishable from 

exponential growth but later the effects of resource constraints produce an inflection in the curve. It 

decelerates and eventually levels off at a value known as the carrying capacity of the environment. 

 

Many studies have shown that sigmoidal growth is characteristic of a very wide variety of natural time 

series (Tsoularis & Wallace, 2002). These include population growth of animals and plants (Law, Murrell 
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& Dieckmann, 2003; Watson, 1984), growth of tumors (Foryś & Marciniak-Czochra, 2003; Ledzewicz, 

Munden & Schättler, 2009), growth of linguistic variants in speech communities (Altmann, Buttlar, Rott, 

& Strauß, 1983; Niyogi & Berwick, 1995), growth of charitable donations after natural disasters 

(Schweitzer & Mach, 2008), diffusion of technologies (Kucharavy & De Guio, 2011), changes in energy 

consumption (Bodger & Tay, 1987), growth of human populations within individual countries (Meade, 

1988), the socio-economic growth of countries (Herman & Montroll, 1972), and many more. Although 

there is broad agreement that growth curves are typically sigmoidal, it is recognized that exceptions occur 

when growth of one element influences that of another, as in the predator-prey relations described by 

Lotka-Volterra equations. In these cases, both elements typically show cycles of growth and decay.  

 

Whether growth levels off or is followed by decay, it is clear that, from experience of their environment, 

people can reasonably expect that growth that is positively accelerating will, in the future, decelerate and 

that growth that has already started to decelerate will continue to do so. This means that, in the words of 

Lawrence and Makridakis (1989), trend damping “appears to reflect a good deal of common sense”. 

 

If it is reasonable to expect that trends in natural series will decelerate (or accelerate less) in the future, 

forecasts that are based on trends extracted from data collected up to the present time should be damped 

to increase their accuracy. So is there any evidence that forecasts based purely on statistical analysis of 

the available data can be improved by damping? Yes, there is. Gardner and McKenzie (1985) compared 

linear trend and damped trend versions of exponential smoothing forecasts for the 1001 real time series 

originally collected for the M1 forecasting competition (Makridakis, Anderson, Carbone, Fildes, Hibon, 

Lewandowski, Newton, Parzen, & Winkler, 1982). They found that damping the trend in series improved 

forecast quality for longer forecast horizons. In the later M3 forecasting competition (Makridakis & 

Hibon, 2000), a similar comparison for 3003 real series confirmed this finding. Furthermore, Collopy and 

Armstrong (1992) and Adya, Armstrong, Collopy and Kennedy (2000) found that including rules in their 
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expert system that damped trends improved the way it produced forecasts from real series. All these 

results demonstrate that, on average, trends observed when data are taken from a particular sampling 

period are steeper than they would have been if that sampling period had been extended.  In other words, 

natural time series are, on average, less accelerated than limited samples of them indicate. 

 

Gardner and McKenzie’s (1985) analysis also led them to conclude damping should be greater when 

series are noisier or when trends are erratic. Furthermore, Collopy & Armstrong’s (1992) found that 

forecasting by their expert system was improved if they included rules specifying that damping should be 

greater when series are noisier and trends are less clear. Thus, the greater damping with noisier series 

observed in judgmental forecasting experiments (Eggleton, 1982; Harvey & Bolger, 1996) can be 

explained within an ecological framework. These results suggest that, when uncertainty in the data is 

higher, greater weight should be given to ecological knowledge  

 

The growth rate in sigmoidal functions can vary. Increasing their growth rate parameters causes carrying 

capacity to be reached more quickly. Presumably, there is some growth rate that is broadly representative 

of the environment. As there will be deceleration whatever the growth rate, we can expect some damping 

of positively accelerated series. However, it is harder to predict the degree of damping without knowing 

what growth rate is representative of the environment.  

 

What should we expect for negatively accelerated series? These series correspond to that part of the 

growth period during which carrying capacity is being reached. If it is being reached quite slowly so that 

the series is failing to become asymptotic when people would expect it to do so from their experience of 

their natural environment, the adaptation account predicts that trend damping will occur and that this 

damping will be greater when series are noisier. On the other hand, if the asymptote is being reached 

more quickly than people expect from their experience of their natural environment, then this account 
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predicts that the opposite of damping will occur. In other words, when series are sufficiently negatively 

accelerated, people will make forecasts that are above upward sloping trend lines and below downward 

sloping ones. For convenience, we shall term such a phenomenon ‘anti-damping’. To date, it has not been 

demonstrated.  If it exists, we expect that, like damping (and for the same reasons), it will be greater when 

series are noisier.  

 

Experiment 1 

This experiment was designed to examine two key issues. First, we ask whether anti-damping can be 

observed for decelerating curves, a finding that would challenge the under-adjustment account of trend 

damping, and whether noise increases damping and anti-damping. The second issue concerns whether 

forecasts for a given function are affected by the acceleration of the other functions presented in the 

experiment. A finding that they are would provide support for the two context-sensitive models.  

 

The under-adjustment account would not be able to explain any anti-damping that we obtain. Any such 

effect would correspond to over-adjustment: it would arise because the adjustments away from the last 

data point (or away from the long-term mean of the series) that people make to take the series trend into 

account are too large.  

 

The context effect and adaptation models also predict that both damping and anti-damping will be greater 

when series are noisier. This is because, with higher uncertainty, more weight would be put on context, 

either from within the experiment (contextual account) or from the environment more generally 

(adaptation account). Thus, to test this prediction, we included high and low noise series among those 

from which participants made their forecasts. 
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The context effect account predicts that degree of damping for any given trend will depend on the average 

steepness of trends that people encounter within an experimental session. The adaptation account also 

makes this prediction. We have argued that ecological knowledge provides people with an a priori 

expectation of the degree of acceleration in data series from which they make forecasts. This knowledge 

must be derived from data series that they have experienced in their natural environment. However, given 

that environments change, it is likely to be mutable. If we assume that people sample their environment in 

a naïve (non-selective) way, they are likely to be as sensitive to the laboratory environment as to any 

other. Hence, by providing people with contexts comprising series that have either high or low 

acceleration, we should be able to change the characteristics of the ecological knowledge that people use 

when making their forecasts.  

 

This means that both the context effect account and the adaptation account predict that, for a given series, 

damping should be less after a context of high acceleration series than after a context of low acceleration 

series. In contrast, the under-adjustment account of the phenomenon would require further elaboration to 

explain any effect of context. Thus to examine whether such any effect occurs, we studied damping of 

two target series under two conditions. In one condition, all the series (including the target series) were 

positively accelerated. In the other, only the target series were positively accelerated; the other series were 

linear and negatively accelerated.  

 

Method 

Participants completed a set of 20 forecasting trials, with distribution of function accelerations 

manipulated between participants. The experiment was run online. 

 

Participants. A total of 793 sets of data were submitted. Of these, 451 participants indicated they were 

female, 321 indicated they were male, and 21 did not give their gender. Participants reached the 
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experiment through web searches, clicking links from our main testing site, or from a list of web-based 

psychology studies hosted by Hanover College http://psych.hanover.edu/Research/exponnet.html. 

 

Design. We constructed time series of 50 observations using power-law functions, of the general form: 

k
x

y 







+=

50
30050        Equation 1 

where y represents number of pixels above the x-axis, x has the dimension time, and k controls the 

acceleration of the function. For k < 1, the function has negative acceleration, for k = 1, the function is 

linear, and for k > 1 the function is positively accelerated. For all values of k > 0, functions have positive 

slope for all x. Constants ensured that the value of the function at the final observation, x = 50, was 

always at the same point on the screen – 350 pixels above the x-axis – irrespective of k, and that all pre-

noise observations were between 50 and 350 pixels above the x-axis.  

 

Using different values of k, we created a total of eight functions. However, a given participant would only 

see a subset of these functions, depending on the between-participants variable of context, which had two 

levels: low and high. The low-context and high-context conditions each contained five different 

functions, two of which were found in both conditions. In the low context condition, we used Equation 1 

with k = 0.2, 0.4, 1.0, 1.5, 2.0. In the high context condition, we had k = 1.25, 1.5, 1.75, 2.0, 2.25. Thus, 

low- and high- context conditions both contained two identical functions, with k = 1.5 and k = 2.0. 

However, in the low context condition, all of the other functions participants saw were less accelerated; in 

the high context condition, some of the other functions participants saw were more accelerated and others 

less accelerated. 

 

There was one within-participants variable of noise (low: Gaussian noise with M = 0, SD = 3 pixels; high: 

Gaussian noise with M = 0, SD = 10 pixels). There were 20 trials in total: two repetitions of each of the 

five functions crossed with the two levels of noise. Trial order was randomized for each participant. 

http://psych.hanover.edu/Research/exponnet.html
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 Figure 1 about here 

 

Procedure. The experiment was coded in Adobe Flash (see Reimers & Stewart, 2007, for an introduction 

to using Flash in experiments). Participants received instructions about the experiment, including an 

animation showing how the selections should be made. Introductory instructions for the task were:  

“In this experiment, you play the part of an advisor in a corporation. You'll see some sets of sales figures, and will 

have to make predictions about numbers of sales in the future, based on the trends you see. The closer you get to the 

actual outcome, the higher the score you get.  Overall you'll make 20 sets of predictions, and the whole test should last 

less than 10 minutes - you'll get feedback on your performance at the end.” 

As part of a short animation showing a sample trend and how to respond, the following instructions were 

given:  

You'll see a series of graphs like this one. Here you'll see how many sales the company has made in the past 50 

sessions. You have to estimate how many sales will be made in the next 8 sales sessions, each of which is indicated 

with a vertical line. You'll select how many sales you think will be made for the 8 sessions by clicking with the 

mouse. You'll then get feedback on how close you were to the actual outcome. For each of the predictions you make, 

you'll get a score between 20 (if you're spot on) and 0 (if you're quite a way out). These 8 scores will be added up and 

will give you a total score for that trial. Your job is to try to get as high a score as possible. But note that sometimes it 

will be relatively easy; sometimes it'll be quite hard. At the end of 20 trials you'll get an overall final score and some 

feedback on your performance. You can track how far you've got by looking at the progress bar that will be at the 

bottom of the screen. 

After reading the information, participants pressed a ‘NEXT’ button to continue. They then completed 

questions about their age, gender, and highest level of education. After this, they saw the first trend, 

presented in a similar way to Figure 1. Participants indicated their predictions by clicking somewhere on 

each of the eight vertical lines that followed the last data point. A red ‘x’ appeared where they clicked, 

and this could be moved by clicking elsewhere on the line. This was the 8-level ‘time horizon’ variable: 

The further from the last observation a forecast is, the more distant the time horizon.  
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After making a prediction on each of the eight lines, participants pressed a ‘SUBMIT’ button. If 

participants pressed the ‘SUBMIT’ button before making all eight predictions, they received a warning 

message asking them ensure they had made all the required predictions. Once the predictions were 

submitted, participants received feedback. Actual values from the noisy trend function were displayed on 

the vertical lines on which participants had made their prediction, along with a score for each of the eight 

predictions, ranging linearly from 20 (if prediction and actual outcome were identical) to zero (if 

prediction and actual outcome were 20 or more pixels apart). A total score for that trial – the sum of the 

scores for each of the eight predictions – was then displayed in the center of the screen, and added to a 

running total that remained on the screen throughout the experiment. Participants then clicked on a 

‘NEXT’ button to begin the next trial. A progress bar informed participants how many of the 20 trials 

remained. At the end of the experiment, data were transmitted to the server and feedback was given. 

 

Results 

We were conservative in our inclusion of datasets, because it was possible that some participants 

misunderstood the task – and they were not able to ask questions – or that they were responding randomly 

or mischievously. We first removed 20 participants who indicated they had completed the experiment 

already, leaving 773. Next, we took the average of each participant’s forecasts across the two exemplars 

of each trend line at each noise level, and ran an iterative procedure for each of the 160 cells in the design 

(8 time horizons x 5 function accelerations x 2 noise levels x 2 contexts), to identify any outlying 

forecasts that were more than two inter-quartile ranges above the upper quartile or below the lower 

quartile for a given cell. We excluded data from participants who made any outlying forecasts from 

subsequent analysis. This left 662 participants’ data in the analysis1. Average forecasts are given in 

Figure 2 (low context) and Figure 3 (high context).  

Tables 1 & 2 and Figures 2 & 3 about here 
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Trend damping and anti-damping. It is clear from the results that participants’ forecasts deviate 

systematically from the trend functions. Our first aim was to investigate in which of these conditions 

significant trend damping or anti-damping occurred. There are two distinct ways in which forecasts could 

deviate from a trend function. The first is in elevation, that is, participants’ predictions are consistently 

above or below the trend line, but that the difference is the same at all 8 levels of the time horizon. We 

argue that elevation errors may be interesting phenomena – with their own mechanisms – but are not the 

same as trend damping, which is what we are concerned with here.  

 

We therefore focus on the second, and to us more interesting, deviation: trend damping. This occurs when 

participants’ forecasts deviate further from a trend line with increasing time horizon2. (In a linear 

function, this would be equivalent to underestimating the gradient of a positive trend line.) Thus, we 

calculated the signed deviation from the trend line of each point that was forecast by a participant. For 

each function we ran a repeated-measures ANOVA with the dependent variable of signed deviation from 

the trend line, and independent variable of time horizon (eight levels). Significant effects, viewed in 

conjunction with Figures 2 and 3, indicate higher deviation for more distant levels of time horizon than 

for earlier levels, in other words, significant trend damping. In this analysis and in all of those that follow, 

we correct degrees of freedom for sphericity violations using the Huynh-Feldt method. Results are shown 

in Table 1. 

 

These analyses show that significant anti-damping was found for the two shallowest functions in the low 

context condition, and for the low noise / shallowest function of the high context condition. Traditional 

trend damping was found in most of the steeper functions in both contexts. 
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Effects of noise on forecasting. Having established the conditions under which trend damping was 

observed, we investigated the effect of noise. Using the same dependent variable – signed deviation from 

the trend line – as before, we ran a two-factor ANOVA (noise, time horizon) for each function. Results of 

these analyses are shown in Table 2. All interactions between noise and forecast horizon are significant. 

They show that damping and anti-damping effects were always greater when series contained more noise.  

Figure 4 and Table 3 about here 

 

Effects of context on forecasts. We examined whether the other functions that participants had recently 

seen affected their judgment by comparing forecasts for the same trend line in the two between-trials 

contexts: low (in which the accelerations of the other functions in the experiment were comparatively 

low) and high (in which the accelerations of the other functions in the experiment were comparatively 

high). The results can be seen in Figure 4. Forecasts are clearly numerically lower in the low context than 

in the high context. To test the significance of this effect, we examined the absolute vertical position of 

forecasts – rather than deviations from trend lines before – as a function of context and time horizon. We 

ran separate two-factor (context, time horizon) ANOVAs for each function and level of noise (Table 3). 

The results indicate that forecasts for both functions at both levels of noise were different in the two 

contexts, and that differences increased with increasing time horizon. 

 

Discussion 

We obtained anti-damping effects for the two negatively accelerated functions under both levels of noise 

in the low context condition and for the function with the lowest level of acceleration under low noise in 

the high context condition. Anti-damping has not previously been shown in forecasts from noisy series. It 

was predicted by the context effect and adaptation models but cannot be explained in terms of under-

adjustment. According to the latter approach, damping should decrease with a decrease in the slope of the 

presented series but it should not become negative.  
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As Figures 2 and 3 indicate, both damping and anti-damping were greater when displayed series were 

noisier. In the past, this has been shown for damping (e.g., Eggleton, 1982; Harvey & Bolger, 1996) but 

not for anti-damping. As we have seen, these effects of noise are fully consistent with both the context 

effect and adaptation accounts.  

 

We examined whether the other functions that participants had seen recently affected their judgment by 

comparing forecasts for two target trend lines in two different contexts: low (in which the level of 

acceleration in the other functions that participants saw was comparatively low) and high (in which the 

level of acceleration of the other functions that they saw was comparatively high). We found that 

forecasts were significantly lower in the low context than in the high context across the two function 

types and two levels of noise (Figure 4). As we have seen, this fits well with predictions from both the 

context effect model and the adaptation model of damping. However, it is not immediately explicable in 

terms of under-adjustment. This is because anchor values and degrees of adjustment are determined 

within series rather than across series. 

 

Experiment 2 

Having demonstrated anti-damping, noise effects, and trial-to-trial context effects using accelerated 

functions, we now examine generalization of our findings to a different function shape, specifically, noisy 

linear functions. As far as we are aware, the effects of this manipulation on the damping of point forecasts 

have not been investigated before. Indeed Thomson, Önkal-Atay, Pollock and Macaulay (2003, p. 242) 

point out that ‘despite the considerable attention devoted to trend as an efficacious time-series 

component, the potential influence of trend-strength on forecasting performance has been virtually 

ignored’. 
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In our natural environment, linear series do not continue indefinitely. Either they correspond to the central 

sections of sigmoidal growth functions or they are parts of long-term cycles between peaks and troughs. 

In either case, there is likely to be some slope that is representative of the environment. When people 

forecast from noisy linear series that are steeper than this, we should expect the damping that has been 

demonstrated in a number of studies in the past (e.g., Eggleton, 1982; Harvey & Bolger, 1996; Lawrence 

& Makridakis, 1989). However, when they forecast from noisy linear series that are less steep than the 

slope that is representative of linear sections of growth curves in the environment, we should expect anti-

damping. Thus, the adaptation account predicts that damping should change to anti-damping as the slope 

of a linear series is reduced. The account of damping in terms of a context effect makes the same 

prediction because judgments are assimilated towards the mean trend in the whole set of presented series. 

However, the account of the effect in terms of under-adjustment merely predicts less damping as the 

slope of linearly trended series is reduced.  

 

We made one other change in this study. Participants in Experiment 1 were not given financial incentives 

for good performance. Economists argue that, without such incentives, participants do not put sufficient 

cognitive effort into experimental tasks (Smith & Walker, 1993). If they are correct, it could be argued 

that the damping and context effects that we obtained in Experiment 1 arose because our participants 

followed a ‘cognitively lazy’ strategy of averaging previous trend lines. In other words, low incentives 

produced performance that was consistent with the context effect account. We therefore paid participants 

in Experiment 2, and offered additional payment for accurate performance.  

 

Method 

Participants. A total of 299 British participants were recruited using the ipoints scheme 

(www.ipoints.co.uk), which rewards participation with virtual ‘ipoints’, which are exchangeable for 

consumer goods, flights, and shopping vouchers. (The scheme has since been rebranded as maximiles: 

http://www.ipoints.co.uk/
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www.maximiles.co.uk) Participants were each paid 100 ipoints (approx USD1) for their time. Participants 

were informed that the most accurate 10% of participants would receive an additional 100 ipoints, and the 

participant whose performance was best overall would receive a bonus of 1000 ipoints.  

 

Design. A total of eight linear functions were generated, with gradients of 0.6, 1.4, 2.2, 3.0, 3.8, 4.6, 5.4, 

and 6.2 pixels per inter-observation interval. Functions were constrained such that the noiseless 50th 

observation was the same. There was one between-participants variable, function set (low: lines of 

gradient 0.6, 1.4, 2.2, 3.0, 3.8; high: lines of gradient 3.0, 3.8, 4.6, 5.4, 6.2). The within-participants 

variable was noise (low: Gaussian noise with M = 0, SD = 3; high: Gaussian noise with M = 0, SD = 10, 

as before). There were 20 trials in total: two repetitions of each of the five functions crossed with the two 

levels of noise. 

 

Procedure. Participants received an email sent by ipoints.co.uk inviting them to participate. The email 

described the experiment in a sentence, informed participants how many ipoints they would receive for 

participating, and included a link to the experiment, hosted on our servers. At the start of the experiment, 

participants entered their email address in order to allow payment and bonuses to be allocated. The 

procedure was in all other respects the same as in Experiment 1. 

 

Results 

As before, we were conservative in our exclusion of participants. We eliminated any participant whose 

average prediction (across the two exemplars for each cell) in any of the 10 within-participant cells at any 

of the eight levels of time horizon was more than two inter-quartile ranges above the upper quartile, or 

more than two inter-quartile ranges below the lower quartile. A total of 243 participants’ data (81%) 

remained in the analysis3. Mean participant responses, collapsing across noise, are given in Figure 5, for 

the low function set, and Figure 6, for the high function set. It should be noted that the two steepest trend 
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lines of Figure 5 are the same as the two shallowest trend lines of Figure 6. 

 

Our analytical approach for Experiment 2 differed slightly from that used in Experiment 1. As the 

functions were linear and participants’ responses were, on average, approximately linear, rather than 

using a repeated measures ANOVA design across the eight levels of time horizon, we instead took the 

simpler approach of fitting a linear regression function to each participant’s data, with time horizon (1 – 

8) as the x variable and participant prediction (in pixels) as the y variable. We then used slope of the 

regression lines as our dependent measure. An average slope across participants that was significantly 

shallower than the trend line would provide evidence of trend damping.  (In none of the conditions was 

there any significant evidence from the regression intercepts that participants’ predictions showed an 

absolute shift in y value. We therefore do not discuss the intercept analysis here.) 

Figures 5, 6 & 7 and Tables 4 & 5 about here  

 

We used planned one-sample t-tests to compare participants’ prediction gradients with actual trend line 

gradients. In the low noise condition (Table 4), participants in the low function set significantly 

overestimated trend gradients for Functions 1 and 2 (indicating anti-damping), and significantly 

underestimated trend gradients for Functions 4 and 5 (indicating damping). Participants in the high 

function set significantly underestimated trend gradients for Functions 6, 7, and 8 (indicating damping). 

Most importantly, prediction gradients for Functions 4 and 5 were significantly higher in the high 

function set than in the low function set, showing again that trend damping can be manipulated by context 

(Figure 7). 

 

Similar results are found in the high noise conditions (Table 5). Participants in the low function set 

significantly overestimated trend gradients for Functions 1 and 2 (indicating anti-damping), and 

significantly underestimated trend gradients for Function 5 (indicating damping). Participants in the high 
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function set significantly overestimated trend gradients for Function 4 (indicating anti-damping), and 

underestimated trend gradients for Functions 7 and 8 (indicating damping). Again, prediction gradients 

for Functions 4 and 5 were significantly higher in the high function set than in the low function set 

(Figure 7). Comparing the data in Tables 4 and 5, to examine the effect of noise, we found that in the low 

function context, participants overestimated the gradient of Function 1 significantly more in the high 

noise condition than in the low noise condition. Similarly, in the high function context, participants 

overestimated the gradient of Function 4 significantly more in the high noise condition than in the low 

noise condition and underestimated the gradient of Functions 7 and 8 significantly more in the high noise 

condition than in the low noise conditions. In other words, where noise had a significant effect it pushed 

participants’ estimates closer to the average gradient of the function set. 

 

Discussion 

Despite the fact that participants in this experiment were provided with financial incentives for good 

performance, damping and anti-damping effects were broadly similar in magnitude to those obtained in 

Experiment 1 and, when present, the effect of noise was the same as it was before. These results are again 

consistent with the context effect and adaptation accounts of damping but not consistent with the 

explanation in terms of under-adjustment from an anchor. They are also important because an increase in 

damping with an increase in the steepness of the trend of a linear series has not been previously 

demonstrated. 

 

Participants’ forecasts for the two target trend lines were higher when the other lines that participants saw 

were of steeper gradient than when the other lines participants saw were of shallower gradient. Again, this 

fits well both with the notion that damping represents a regression to the average trend presented in the 

experiment and with the idea that it is an adaptation to the forecaster’s environment, if that environment is 

taken to include the local context of the experiment as well as the environment outside the laboratory. 
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Experiment 3 

The results of Experiments 1 and 2 are consistent with the contextual account of damping. According to 

this explanation, both the presence of anti-damping and the effects of other series on damping in the 

target series arise because of the influence of series from which participants have previously made 

forecasts within the experiment. Regression towards the average trend seen during the session would 

produce damping for the steeper trends and anti-damping for the shallower ones. A change in the average 

trend would shift forecasts in the direction of the change. 

 

As far as we are aware, no experiments have been reported in which participants made predictions for just 

a single trended series. From the perspective of the context effect model, no damping should occur in a 

single-shot experiment. From the perspective of the adaptation model, it should occur and the degree of 

damping should reflect participants’ experience of the world prior to the experiment. In other words, it 

should allow us to assess their expectations of how series are trended within their natural ecology. Thus 

we designed Experiment 3 as a single-shot version of Experiment 1: series acceleration and variability 

were varied as before but between rather than within participants. 

 

Damping has been found to be greater for downward than for upward trended series. This asymmetry can 

be explained directly in terms of the adaptation model of damping. Thus, Harvey and Bolger (1996, p. 

130) suggested that it may occur because ‘people more frequently experience data series that are 

increasing than data series that are decreasing. As a result they develop expectations about how series 

typically change and these expectations influence their forecasts’. Alternatively, people may condition 

their expectations on series type. Most (but not all) experiments on trend damping have required people to 

forecast quantities for which higher values are better than lower ones (e.g., profits, sales). This could have 

led to greater damping for downward trended series for two reasons. First, people’s expectations for such 
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quantities may have been subject to an optimism bias (Weinstein, 1989). Second, they may have expected 

actions to be taken to reverse downward trends but not to reverse upward ones (O’Connor et al., 1997).  

 

These accounts of the damping asymmetry are not mutually exclusive: people may be simultaneously 

influenced by a greater expectation of upward series, by optimism, and by a higher expectation of actions 

to reverse downward trends. However, predictions of the first of these three accounts for the effects of 

whether the task is framed as one of forecasting gains or losses are different from the predictions of the 

second two. If, as the first account assumes, expectations are not conditioned on series type, then the 

asymmetry should not be affected by this manipulation: all that matters is the relative proportion of 

upward and downward trended series that participants have encountered before the experiment. However, 

if expectations are conditioned on series type in some way (via optimism or via anticipation of the effects 

of selective attempts to reverse the trend), the damping asymmetry should reverse when people forecast 

losses rather than gains. Hence, in Experiment 3, we also examined the effects of trend direction (up, 

down) and series type (gains, losses) to find out whether this reversal occurred. 

 

Method 

Participants. Participants were recruited using the ipoints scheme, as in Experiment 2 and were each paid 

25 ipoints (approx USD 0.25) for their time. Participants were informed that the 50 most accurate 

respondents would receive an additional 75 ipoints, and the participant whose performance was the best 

overall would receive a bonus of 1000 ipoints. 

 

Design. Each participant saw a single time series comprising 50 points (Figure 8). Three function shapes 

were examined and, for each function shape, three factors were varied across participants: slope (positive, 

negative), noise (low, high) and framing (profit, loss). Within each function type, participants were 

randomly allocated to one of the cells when the experiment initialized. Function shape was generated 
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using Equation 1, with k = 0.2, 1.0 and 1.5. Noise was generated as in Experiments 1 and 2. Negative 

slope was generated by reflecting a positive-sloped function in the horizontal line passing through the 

horizontal mid-point of the grey area that can be seen in Figure 8.4 

Figure 8 about here 

 

Procedure. Potential participants received an email from ipoints inviting them to take part by clicking on 

a link in the email. On clicking, participants opened a URL which hosted an Adobe Flash movie used to 

run the experiment. There were two versions of instructions. In the profit framing condition, participants 

received the following instructions: 

In this ultra-quick one-shot experiment, you'll take the role of an advisor to a successful company. Your job is to 

make predictions about how much profit the company will make in the next eight periods of trading, using trends 

from the previous 50 periods. The company is concerned to identify levels of profits over these periods because they 

will determine its future acquisitions policy. 

You'll see a graph of how much profit the company has made in the last 50 periods, and all you do is click on the 

graph to indicate how much profit it will make in each of the next eight periods. By using your judgement based on 

the existing trend, you should be able to make a fairly accurate prediction. There are no tricks here - the trend you see 

is based on real trends seen in business forecasting.  

In the loss framing condition, participants saw the following text: 

In this ultra-quick one-shot experiment, you'll take the role of an advisor to a loss-making company. Your job is to 

make predictions about how much money the company will lose in the next eight periods of trading, using trends 

from the previous 50 periods. The company is concerned to identify levels of losses over these periods because they 

will determine whether an attempt is made to sell the company.  

You'll see a graph of the losses the company has made in the last 50 periods, and all you do is click on the graph to 

indicate how much loss it will make in each of the next eight periods… 

 

The experimental procedure was in other respects the same as that described for previous experiments. 
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Results 

A total of 450 participants made forecasts for decelerating trends, 402 made forecasts for linear trends, 

and 413 made forecasts for accelerating trends. The data were, unsurprisingly, noisier than the previous 

within-participants experiments. We were therefore conservative in our exclusion of participants. For 

each of the 8 cells for each function type, we excluded participants who in any of their eight predictions 

made an estimate that was more than two interquartile ranges below the lower quartile or more than two 

inter-quartile ranges above the upper quartile. As before, we used an iterative procedure that updated 

interquartile ranges after each run and checked again whether any outliers remained. This left 339 

participants in the decelerating condition, 309 in the linear condition, and 317 in the accelerating 

condition5. Cells contained between 24 and 56 observations.  

 

Our first aim was to determine whether trend damping occurred in this single-shot experiment and 

whether it varied with type of series in a manner similar to that observed for Experiment 1. Thus, the 

dependent variable we used was deviation of forecasts towards the horizontal from the trend line. This 

means that for both positive and negative slopes, a positive value indicates trend damping. The analysis 

we conducted was similar to that for Experiment 1: For each function type (decelerating, linear, 

accelerating), we constructed a general linear model with repeated measure of time horizon (eight levels), 

and between-participants factors of slope (positive, negative), noise (low, high), and series label (profit, 

loss). Results of the analysis were as follows6. (For clarity, we discuss the influence of series label later.) 

 

Decelerating function. Data are shown in the top panel of Figure 9.  Anti-damping was evident as a main 

effect of time horizon on deviation away from the horizontal, F(4.0, 1316) = 3.60, p = .006. There was 

also an interaction between time horizon and noise, F(4.0, 1316) = 2.50, p = .04, suggesting that anti-

damping was larger in the high noise condition.  
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Linear function.  Data are shown in the middle panel of Figure 9. Trend damping is indicated by a 

significant effect of time horizon on deviation towards the horizontal F(3.1, 946) = 120.2, p < .001. There 

was also an effect of slope F(1, 301) = 6.93, p = .009, suggesting that trend damping was larger for 

positive slopes than for negative slopes, a finding which runs contrary to existing research.. 

 

Accelerating function. Trend damping was found again, as shown by a significant effect of time horizon 

on deviation towards the horizontal F(2.1, 656) = 391.7, p < .001. There was a main effect of noise F(1, 

309) = 11.2, p = .001, and an interaction between time horizon and noise F(2.1, 656) = 6.22, p = .002, 

which indicates that there was significantly more trend damping in the high noise condition than in the 

low noise condition.  

 

In summary, the analysis showed both trend damping and anti-damping to be present in our single-shot 

task. This effect is clear for the linear and accelerating series. Although somewhat weaker, evidence for 

anti-damping in the decelerating series was still clear and significant.  

Figures 9 & 10 about here 

 

The secondary aim of the experiment was to examine the effect of profit-loss series labeling on 

participants’ forecasts. To reveal the general effect of series labels independent of slope, we used absolute 

prediction as our dependent variable. (Deviation from the trend line towards the horizontal, the variable 

we used in the above analyses, would have canceled out framing effects when collapsed across slope). 

Our independent variables were time horizon (1-8) and series label (profit, loss). We also included slope 

and noise, but as we have reported their effects above, we do not discuss them here – the variables are 

only included to capture the variance that their manipulations introduced into predictions. Overall effects 

of series labels can be seen in Figure 10. Average predictions for trends framed as profits were higher 

(estimated marginal mean deviation = +0.36, SEM = 0.57) than those framed as losses (estimated 



Trend damping 25 

marginal mean deviation = -2.10, SEM = 0.59), F(1, 941) = 8.95, p = .003. There was also an interaction 

between series label and time horizon, F(2.9, 2705) = 3.53, p = .02, as can be seen in Figure 10, 

suggesting that the effect of series label gets larger for predictions further into the future. 

 

Discussion 

Trend damping effects were obtained despite participants completing only a single trial. This provides 

evidence that the phenomenon is not an experimental artifact related to the mixture of trends seen by 

participants. Although formal comparisons between the size of the damping effects here and in 

Experiment 1 are precluded because experiments differed in ways other than single versus multiple trials 

per participant (e.g., incentive conditions), informal comparison suggests that the damping effect is at 

least as large, if not larger, in the present study for linear and accelerating functions. Conversely, we also 

observed significant anti-damping for the decelerating function, suggesting that anti-damping is not 

merely an artifact of a multiple-trial experimental design.  

 

We also observed a clear labeling bias: When the axes were labeled as ‘profit’, forecasts were 

significantly higher than when they were labeled as ‘losses’. The finding suggests either the presence of 

an optimism bias (Weinstein, 1989), or that people expect actions to be taken to reverse upward trends of 

undesirable quantities and downward trends of desirable ones (O’Connor et al., 1997). Our experiment 

was not designed to distinguish between these two possibilities. However, it would be simple to do so by 

repeating the experiment using desirable and undesirable quantities that are recognized as uncontrollable 

(e.g., volcanic eruptions). Preservation of the asymmetry would favor an explanation in terms of 

optimism whereas its disappearance would favor one in terms of expectations of selective action to 

reverse undesirable trends.  Given that we have also demonstrated similarly elevated forecasts for ‘profit’-

labeled axes relative to ‘loss’-labeled axes in forecasts for untrended but autocorrelated series (Reimers & 

Harvey, 2011), we argue that the optimism-bias explanation currently has slightly more support. 
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General Discussion 

 

Although trend damping is a well-established phenomenon, reasons for its occurrence have been a matter 

of some debate. It can be considered, at a process level, as a bias that reflects the under-adjustment that 

characterizes use of the anchor-and-adjustment heuristic. Alternatively, it may be the product of a within-

experiment context effect. Finally, at a functional level it can be regarded as an adaptation that ensures 

that people’s forecasts are well-adjusted to the environment in which they are made.  

 

We obtained anti-damping for series with negative acceleration (Experiments 1 and 3) and for linear 

series with shallow slopes (Experiment 2). This phenomenon cannot be interpreted in terms of under-

adjustment either from the long-term mean of the series or from the last data point. It would have to be 

seen as over-adjustment. However, an anchor-and-adjustment model that permits both under-adjustment 

and over-adjustment would be of no predictive use without additional assumptions allowing us to specify 

the conditions under which each type of bias occurs.  

 

Experiment 3 demonstrated damping with positively accelerated series and anti-damping with negatively 

accelerated series in a single-shot between-participants experiment. This shows that the damping and anti-

damping phenomena that we observed in the earlier experiments cannot be attributed solely to the type of 

within-experiment context effects demonstrated in those studies. Damping and anti-damping may 

therefore arise from long-term adaptation to the natural environment (Experiment 3), a process that takes 

into account the immediate context of the experiment as well as longer-term representations of trends  

(Experiments 1 and 2). As such, our explanation of context effects and context-free judgments using a 

single, memory-based mechanism is similar to other recent models of judgment and decision making that 

emphasize the role of sampling both from the immediate experimental context and from long-term 

memory (Stewart, Chater and Brown, 2006). 
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The particular type of experience that produces trend damping and anti-damping is experience of trends.  

We have argued that the primary examples of trends that people come across in their natural environment 

are those of growth and decay and that it is primarily the sigmoidal and cyclical characteristics of growth 

and decay curves that explain why damping occurs and why it improves the quality of forecasts (Collopy 

& Armstrong, 1992; Gardner & McKenzie, 1985).  

 

Our suggestion that judgment is influenced by the fact that certain types of functions are more 

representative of our environment than others is not new. In cue learning tasks, people complete a series 

of trials in which they are presented with one or more cues (e.g., employee age), estimate a criterion value 

(e.g. employee salary), and receive information about the correct criterion value. Learning is faster when 

the relation between the cue(s) and criterion is positively linear than when it is negatively linear and faster 

in both these cases than when it is U-shaped. Brehmer (1974) argued that this was because that ordering 

reflected the relative likelihood of those functional forms in natural environment and people used that 

ranking to determine the order in which they would attempt to fit those functional forms to the 

information they received when performing their task. Karelaia and Hogarth (2008) argue from data 

collected since Brehmer (1974) made his claim that environmental relations between cues and criterion 

are indeed well fitted by linear models.  

 

Cue learning tasks are static: the environmental relations discussed by Brehmer (1974) were not time-

dependent. Have there been comparable suggestions for dynamic tasks? For example, is there evidence, 

other than that documented above, that people make use of their ecological knowledge of the way 

information is patterned over time when making forecasts? It is known that forecasts for an untrended 

series of independent points lie between the last data point and the mean of the series rather than on the 

mean (Bolger & Harvey, 1993; Eggleton, 1982). Reimers and Harvey’s (2011) experiments indicated that 
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this failure to regress to the mean (Kahneman & Tversky, 1973) arose because people made use of their 

ecological knowledge that natural time series tend to be positively autocorrelated. 

 

Remaining questions 

First, how does integration of ecological knowledge with information in presented series occur? People 

may first extract pattern information from the data they are given. Because the series are noisy, this 

information is uncertain. As a result, they may represent it as a range of possibilities that hold at some 

level of confidence. Ecological knowledge is then used in some way to select from this range. An 

alternative possibility is that people use their ecological knowledge as a priori hypotheses for the 

temporal pattern characteristics that are most likely to be present in any series that they encounter.  When 

they do encounter a series, they use the evidence in it to modify those a priori hypotheses in some 

Bayesian manner. Because series are limited in length and noisy, their a posteriori hypotheses about the 

temporal characteristics in the series still show a residual influence of their ecological knowledge7.     

 

Another issue concerns whether integration of newly encountered temporal patterns into ecological 

knowledge depends on the format in which those patterns are received. We argued above that the context 

effects in Experiments 1 and 2 occurred because previously encountered temporal patterns presented as 

graphs were integrated into ecological knowledge about temporal patterns and that this change in 

ecological knowledge affected how forecasts were made from later graphs. But would the effects have 

been the same if the temporal patterns providing the context had been presented as tables of numbers or 

as sequences of events experienced in real time?    

     

Keren’s (1983) study of cultural differences in trend damping suggests that they would. He asked 

participants in Canada and in Israel to make forecasts for food prices on the basis of a tabular display of 

prices for each product over the previous four years. The simulated prices in this display increased 
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exponentially. Trend damping was observed for both groups of participants but was much less for Israeli 

participants. Keren (1983) argued that it arose because they had experienced higher levels of food-price 

inflation than their Canadian counterparts. In other words, experience of a temporal pattern in a sequence 

of events in real time was integrated into ecological knowledge that then later influenced how forecasts 

were made from time series presented in a tabular format. Thus, Keren’s (1983) study provides evidence 

that ecological knowledge is not format-dependent.  

 

A final issue concerns whether the ecological knowledge that people retrieve to use in their forecasting 

depends solely on the broad pattern in the presented data (e.g., upward versus downward trend) or 

whether it also depends on the content domain from which those data are drawn. One way of resolving 

the issue would be to ask one group of people to make forecasts from context series containing steep 

trends and another group would make forecasts from context series containing shallow trends. 

Afterwards, both groups would make forecasts for a target series containing a medium trend. For half the 

participants in each group, context and target series would refer to the same domain; for the other half, 

they would refer to different domains.  A finding that context effects are larger when context and target 

series refer to the same content domain than when they refer to different domains would imply that 

ecological knowledge is domain dependent. 

 

Implications 

Forecasting practitioners often make predictions from a sequence of separate time series. For example, 

sales forecasters make forecasts for a succession of consumer products on the basis of the sales history of 

each one. Our findings suggest that the forecasts they make for a given product will be influenced by 

trends in the sales history of products that they have previously forecast.  

  

Summary 
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When people use their judgment to make forecasts from time series data, they do not merely extrapolate 

from the pattern present in that series. Instead, they deviate systematically from it. In the past, these 

deviations have been characterized as biases that are diagnostic of the heuristics that are used to make the 

forecasts. However, the research reported here demonstrates that this approach is inadequate: the new 

findings cannot be explained in terms of the heuristics that have been used to account for the earlier ones.   

 

To account for the whole data set, we advocate an alternative approach. People’s forecasts deviate 

systematically from the pattern in the presented series because they take account of the fact that that 

pattern is just a part of a larger pattern that is present in their environment. The nature of the deviations of 

their forecasts from an extrapolation of the pattern in the presented series can be predicted from the way 

the pattern in the presented series differs from the larger ecologically representative pattern of which it 

forms a part.  

 

Trend damping has been found when people forecast from artificial simulated series in which trends in 

the presented series persist. However, in real series, trends that are initially present in a series do not 

persist: they mutate into different ones.  Growth may be initially exponential but later we see that this 

initial trend is merely the first part of a logistic growth curve. People’s forecasts take this into account. 

Furthermore, taking into account the fact that current trends in real data will become damped as we move 

into the future is a sensible strategy. We know this because the accuracy of statistical forecasts produced 

from currently available data is increased by introducing ad hoc damping terms (Gardner & McKenzie, 

1985). 
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Footnotes 

1 The exact cut-off point does not affect results a great deal.  Specifically, in an analysis that does not 

exclude outliers, all significant effects and interactions in Tables 1, 2 and 3 remain significant.   

2 To be precise, trend damping clearly also requires that average forecasts all lie on the same side of the 

trend function, to exclude forecasts which intersect the trend line at one of the time horizons. We 

therefore tested this, and found, as is clear from Figures 2 and 3, that mean forecasts all lay on the 

appropriate side of the trend line for trend damping 

3 To check the effect of outlier removal, we ran the same analyses on the full dataset. All significant 

comparisons in Tables 4 and 5 remain significant with the exception of difference between contexts for 

line 4 in the low noise condition, where in this analysis p = .06. 

4 There was inadvertently also a small vertical shift of 10 pixels to the whole function in the flipping 

process. 

5 Here, outlier removal is more important than in Experiments 1 and 2, as some participants made very 

extreme predictions. For the decelerating trends, keeping all outliers in the analysis (n = 450) leads to no 

significant antidamping. Using the same procedure as described in the main text to remove only very 

extreme outliers (4 IQR above upper or below lower quartile, n = 406) gives a trend towards antidamping, 

but not a significant effect (p = .12). Excluding only extreme outliers (3 IQR above upper or below lower 

quartile, n = 386) gives a significant antidamping effect (p = .048). For the linear and accelerating 

functions, a main effect of horizon remains when outliers are not removed, suggesting damping is robust 

across outlier removal strategies. 

6 We completed an alternative analysis by fitting a linear regression to each participant’s data and taking 

from it a slope and intercept. Findings were very similar: main effects in the GLM were largely the same 

as effects found in the analysis of intercepts, and interactions between time horizon and other variables in 

the GLM were largely the same as the effects found in the analysis of slopes. We prefer the GLM in this 

case because it does not assume a linear relationship between time horizon and prediction. Given that two 
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of the three functions in Experiment 3 were non-linear, this appears more appropriate, even though we 

found little evidence that participants made non-linear predictions at the group level. 

7 In this second case, ecological knowledge can be regarded as a mental anchor. Adjustment away from it 

is made on the basis of newly presented evidence. However, because this evidence is subject to 

uncertainty, adjustment is (and should be) only partial. Thus, in this case, under-adjustment is a sensible 

strategy. Harvey (2011) has considered anchoring-and-adjustment as an automatically implemented but 

broadly adaptive strategy that nevertheless produces characteristic errors when over-generalized.
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Table 1. Experiment 1: Damping effect assessed in terms of the main effect of time horizon on signed 

deviation from the trend line, given for each function type in each condition. 

 

Condition Exponent (k) Noise level      Type of damping effect 

Low context 0.2 Low − F(2.8, 911) = 68.3, p < .01 

  High − F(5.4, 1787) = 133.1, p < .001 

 

 0.4 Low − F(2.1, 679) = 3.22, p = .04 

  High − F(4.2, 1389) = 88.5, p < .001 

 

 1.0 Low 0 F(1.9, 643) = 3.01, p > .05 

  High  F(3.9, 1297) = 4.52, p = .001* 

     

 1.5 Low + F(1.4, 473) = 114.5, p < .001 

  High + F(3.2, 1073) = 211.5, p < .001 

     

 2.0 Low + F(1.2, 406) = 245.7, p < .001 

  High + F(2.0, 652) = 692.9, p < .001 

     

High context 1.25 Low − F(1.7, 546) = 13.9, p < .001 

  High 0 F(3.4, 1111) = 2.33, p = .06 

 

 1.5 Low + F(1.5, 495) = 10.2, p < .001 

  High + F(3.1, 1013) = 30.5, p < .001 

 

 1.75 Low + F(1.5, 487) = 70.3, p < .001 

  High + F(2.6, 851) = 177.9, p < .001 

 

 2.0 Low + F(1.3, 441) = 163.2, p < .001 

  High + F(2.2, 721) = 301.6, p < .001 

 

 2.25 Low + F(1.2, 407) = 281.0, p < .001 

  High + F(2.3, 758) = 641.8, p < .001 

Negative damping effects refer to anti-damping. 

*In this case, damping did not meet the criterion that all mean forecasts should lie on the same side of the 

trend line. 
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Table 2. Experiment 1: Results of two-way ANOVAs on signed error for each function type in each 

condition. 

 

Condition Exponent (k) Noise Horizon Interaction 

Low context 0.2 F(1, 331) = 104.1 

p < .001 

F(4.3, 1410) = 176.0 

p < .001 

F(5.5, 1805) = 49.5 

p < .001 

 

 0.4 F(1, 331) = 100.0 

p < .001 

F(2.9, 968) = 71.2 

p < .001 

F(4.6, 1518) = 66.2 

p < .001 

 

 1.0 F(1, 331) = 5.16 

p = .02 

F(3.1, 1013) = 3.73 

p = .01 

F(3.6, 1183) = 4.66 

p = .002 

 

 1.5 F(1, 331) = 40.2 

p < .001 

F(2.2, 714) = 282.4 

p < .001 

F(2.8, 921) = 35.6 

p < .001 

 

 2.0 F(1, 331) = 119.5 

p < .001 

F(1.4, 472) = 702.3 

p < .001 

F(2.0, 646) = 126.5 

p < .001 

     

High context 1.25 F(1, 329) = 0.25 

NS 

F(2.6, 842) = 5.97 

p = .001 

F(3.2, 1040) = 4.39 

p = .004 

 

 1.5 F(1, 329) = 8.32 

p = .004 

F(2.2, 728) = 34.4 

p < .001  

F(2.8, 914) = 10.1 

p < .001 

 

 1.75 F(1, 329) = 6.50 

p < .001 

F(2.0, 667) = 3.73 

p < .001 

F(2.4, 789) = 52.4 

p < .001 

 

 2.0 F(1, 329) = 119.6 

p < .001 

F(1.7, 561) = 366.8 

p < .001 

F(2.2, 731) = 66.3 

p < .001 

 

 2.25 F(1, 329) = 155.0 

p < .001 

F(1.6, 515) = 684.3 

p < .001 

F(2.2, 728) = 108.3 

p < .001 
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Table 3. Experiment 1: Results of two-way ANOVAs on vertical positions of forecasts showing effects of 

context for two target functions in low and high noise conditions. 

 

Noise Target Context Horizon Interaction 

Low  k = 1.5 F(1, 660) = 36.1 

p < .001 

F(1.5, 967) = 11985 

p < .001 

F(1.5, 967) = 31.3 

p < .001 

 

 k = 2.0 F(1, 660) = 23.8 

p < .001 

F(1.3, 841) = 10233 

p < .001 

F(1.3, 841) = 13.6 

p < .001 

     

High  k = 1.5 F(1, 660) = 41.0 

p <.001 

F(3.2, 2110) = 5005 

p < .001 

F(3.2, 2110) = 31.3 

p < .001 

 

 k = 2.0 F(1, 660) = 13.3 

p < .001 

F(2.1, 1402) = 4540 

p < .001 

F(2.1, 1402) = 13.7 

p < .001 
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Table 4. Experiment 2: Trend line gradients and mean gradients of regression lines fitted to individual 

participant predictions. Low noise condition. 

 

Trend line 

number 

Trend line 

gradient 

Low context 

prediction 

gradient 

High context 

prediction 

gradient 

Difference 

between 

contexts 

 

1 

 

 

0.6 

 

    0.89** 

  

2 

 

1.4     1.77**   

3 

 

2.2 2.32   

4 

 

3.0   2.80* 3.03 0.23§ 

5 

 

3.8     3.34** 3.68 0.34§ 

6 

 

4.6     4.15**  

7 

 

5.4     4.95**  

8 6.2     5.42**  

 

 

* Significantly different from trend line gradient, p<.01 

** Significantly different from trend line gradient, p<.001 

§ Significant difference between low and high context prediction gradients, p<.05 
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Table 5. Experiment 2: Trend line gradients and mean gradients of regression lines fitted to individual 

participant predictions. High noise condition. 

 

Trend line 

number 

Trend line 

gradient 

Low context 

prediction 

gradient 

High context 

prediction 

gradient 

Difference 

between 

contexts 

 

1 

 

 

0.6 

 

    1.20**† 

  

2 

 

1.4    1.87**   

3 

 

2.2 2.28   

4 

 

3.0 2.78      3.51**† 0.73§ 

5 

 

3.8    3.15** 3.90 0.75§ 

6 

 

4.6  4.39  

7 

 

5.4       4.53**†  

8 6.2       4.89**†  

 

 

** Significantly different from line trend gradient, p < .001 

§ Significant difference between low and high context prediction gradients, p < .001 

† Significantly different from within-participants low-noise gradient (see Table 4), p < .01
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Figure Captions 

Figure 1. Screenshot showing basic experimental setup for Experiment 1 and 2. Participants made their 

predictions by clicking on each of the eight closely spaced vertical lines, which are indicated to the right 

of the data series. In the experiment, participants’ predictions appeared as red crosses whereas the data 

series was displayed using black crosses. 

Figure 2. Trend lines and actual participant estimates for Experiment 1, low function context condition. 

For clarity, only some of the trend line is shown. The panels, going from left to right and then top to 

bottom, show power-law functions with exponents of 0.2, 0.4, 1.0, 1.5, 2.0.  

Figure 3. Trend lines and actual participant estimates for Experiment 1, high function context condition. 

For clarity, only some of the trend line is shown. The panels, going from left to right and then top to 

bottom, show power-law functions with exponents of 1.25, 1.5, 1.75, 2.0, 2.25.  

Figure 4. Comparison of forecasts for the two trend lines that appeared in both low and high contexts. 

The upper two panels show the function with an exponent of 1.5; the lower two panels show the function 

with an exponent of 2.0. Left panels show the low noise condition; right panels the high noise condition. 

Figure 5. Trend lines and actual participant estimates for Experiment 2, low function context condition. 

For clarity, only some of the trend line is shown. The panels, going from left to right and then top to 

bottom, show functions with gradients of 0.6, 1.4, 2.2, 3.0, and 3.8 pixels per sales period. Note that the 

last two panels have the same trend lines as the first two panels of Figure 6. 

Figure 6. Trend lines and actual participant estimates for Experiment 2, high function context condition. 

For clarity, only some of the trend line is shown. The panels, going from left to right and then top to 

bottom, show functions with gradients of 3.0, 3.8, 4.6, 5.4, and 6.2 pixels per sales period. Note that the 

first two panels have the same trend lines as the last two panels of Figure 5. 

Figure 7. Comparison of forecasts for the two trend lines that appeared in both low and high contexts. 

The upper two panels show the function with a gradient of 3.0; the lower two panels show the function 

with a gradient of 3.8. Left panels show the low noise condition; right panels the high noise condition. 
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Figure 8. Screenshot from Experiment 3. In this case, axes were labeled ‘profits’ or ‘losses’ on both left 

and right side, to maximize salience. Note the absence of feedback. 

Figure 9. Trend lines and mean predictions for decelerating (top panel), linear (middle panel), and 

accelerating (bottom panel) trends, collapsed across label and slope.  

Figure 10. Series label effects in Experiment 3 as a whole. On average, participants’ predictions for 

trends framed as ‘profits’ were higher than for trends framed as ‘losses’. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 

300

310

320

330

340

350

360

370

380

390

400

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

Time

F
o

re
c
a
s
t 

(p
ix

e
ls

)

300

310

320

330

340

350

360

370

380

390

400

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

Time

F
o

re
c
a
s
t 

(p
ix

e
ls

)

300

310

320

330

340

350

360

370

380

390

400

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

Time

F
o

re
c
a
s
t 

(p
ix

e
ls

)

300

310

320

330

340

350

360

370

380

390

400

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

Time

F
o

re
c
a
s
t 

(p
ix

e
ls

)

300

310

320

330

340

350

360

370

380

390

400

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

Time

F
o

re
c
a
s
t 

(p
ix

e
ls

)



Trend damping 51 

Figure 6 

300

310

320

330

340

350

360

370

380

390

400

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

Time

F
o

re
c
a
s
t 

(p
ix

e
ls

)

300

310

320

330

340

350

360

370

380

390

400

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

Time

F
o

re
c
a
s
t 

(p
ix

e
ls

)

300

310

320

330

340

350

360

370

380

390

400

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

Time

F
o

re
c
a
s
t 

(p
ix

e
ls

)

300

310

320

330

340

350

360

370

380

390

400

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

Time

F
o

re
c
a
s
t 

(p
ix

e
ls

)

300

310

320

330

340

350

360

370

380

390

400

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

Time

F
o

re
c
a
s
t 

(p
ix

e
ls

)



Trend damping 52 

Figure 7 
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Figure 8 
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Figure 9 
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