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Abstract: Despite the progress of surgery, radiotherapy, and neoadjuvant chemotherapy, the prog-
nosis for advanced sinonasal cancers (SNCs) remains poor. In the era of precision medicine, more
research has been conducted on the molecular pathways and recurrent mutations of SNCs, with the
aim of understanding carcinogenesis, helping with diagnosis, identifying prognostic factors, and
finding potentially targetable mutations. In the treatment of SNC, immunotherapy is rarely used, and
no targeted therapies have been approved, partly because these tumors are usually excluded from
major clinical trials. Data on the efficacy of targeted agents and immune checkpoint inhibitors are
scarce. Despite those issues, a tumor-agnostic treatment approach based on targeted drugs against
a detected genetic mutation is growing in several settings and cancer subtypes, and could also be
proposed for SNCs. Our work aims to provide an overview of the main molecular pathways altered
in the different epithelial subtypes of sinonasal and skull base tumors, focusing on the possible
actionable mutations for which potential target therapies are already approved in other cancer types.

Keywords: molecular; immunotherapy; target therapy; sinonasal cancers; biomarkers

1. Introduction

Sinonasal cancers (SNCs) include different tumors of the nasal cavities, maxillary,
sphenoidal, ethmoidal, and frontal sinuses. They are rare, with an annual incidence of
approximately one case per 100,000 inhabitants worldwide [1]. In Italy, more than 300 SNCs
are registered every year [2].

Epithelial SNCs include different histological subtypes: the most common is squa-
mous cell carcinoma (SCC), either keratinizing or non-keratinizing, followed by adeno-
carcinoma (intestinal-type or non-intestinal type), sinonasal undifferentiated carcinoma
(SNUC), sinonasal neuroendocrine carcinoma (SNEC), NUT carcinoma, lymphoepithelial
carcinoma, teratocarcinosarcoma, and minor salivary gland tumors.

There are difficulties in diagnosing and treating these tumors because oftheir rarity,
histological diversity, and proximity to vital structures (such as orbit, skull base, and brain).
The standard of care for advanced SNCs remains a multimodal approach based on radical
surgery followed by adjuvant radiotherapy. Advances in imaging techniques, surgical
and endoscopic approaches [3], radiotherapy modalities [4] (intensity-modulated radiation
therapy, volumetric modulated arc therapy and heavy-ion radiations) and neoadjuvant
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chemotherapy-containing strategies have shown promising results in improving outcomes.
However, the prognosis remains poor [3].

No targeted therapies or immunotherapies are approved for SNCs. These drugs are
uncommonly administered in curative and palliative settings unless it’s in clinical trials or
expanded biomarker-based use. Data on their use are limited and usually derived from
case reports. Recently, efforts have been made to perform gene sequencing on SNCs and to
find actionable target mutations. Different studies have shown the potential advantages
and clinical implications of this approach [5,6]. Basket trials may represent a useful tool
for tumor-agnostic drug development, but no definitive outcomes have been published
for SNCs.

The present work aims to summarize the main potentially actionable altered molec-
ular pathways for each epithelial subtype of SNC and to critically examine the data on
the clinical application of target drugs/immunotherapies in SNCs. We performed an
overview of the literature via PubMed, analyzing those English-written papers in which
data on genomic alterations and chromosomal aberrations of each epithelial SNCs were
reported. Single-case reports were also included. The research was conducted till July 2022,
with the following keywords: “sinonasal cancer”, “sinonasal squamous cell carcinoma”,
“sinonasal intestinal-type adenocarcinoma”, “sinonasal non intestinal-type adenocarcinoma,
“sinonasal neuroendocrine carcinoma”, “sinonasal undifferentiated carcinoma”, “NUT
carcinoma”, “teratocarcinosarcoma”, “sinonasal lymphoepithelial carcinoma”, “molecu-
lar alterations”, “targeted therapies”, and “immune biomarkers”. Then, we analyzed if
the reported alterations were actionable using two different tools: OncoKb (OncoKB™—
Memorial Sloan-Kettering’s Precision Oncology Knowledge Base) and My Cancer Genome
(www.mycancergenome.org, accessed on 31 July 2022). We focused on approved drugs by
at least one regulatory agency until July 2022.

2. Squamous Cell Carcinoma

Sinonasal SCC (SNSCC) is the most common histological subtype (60–75%) of the
skull base, with an incidence of 35–58% [7] and a 5-year mortality rate of ~40% [8].

The genetic characterization of SNSCC is showing promising results. In 2015,
Udager et al. [9] analyzed the presence of pathogenic somatic mutations in SNSCC. This
study showed a high prevalence of EGFR alterations (88%) in the inverted papillomas (IPs)
and IP-associated SNSCC cases (77%). In contrast, no EGFR alterations were observed in
the non-IP-associated SNSCC and in other papillomas. The most common EGFR alteration
identified was exon 20-insertion (ins), involving residues located between A767 and V774.
Other less common EGFR alterations were deletion-insertion in exon 19 and single nu-
cleotide substitution in exon 19. In addition, in de novo SNSCC EGFR gene amplifications
have been documented in about 30% of cases [9,10].

Since several therapies are approved for treating EGFR-mutant non small-cell lung
cancer (NSCLC), unique treatment opportunities may open. The potential utility of first-
generation EGFR-inhibitors (gefitinib and erlotinib) and second-generation EGFR-inhibitors
(neratinib, afatinib, dacomitinib) in the context of SNSCC has been investigated and has
shown limited results [9]. This could be explained by the high prevalence of EGFR exon
20-ins, which are resistant to these drugs [9], but are more susceptible to new target thera-
pies, including amivantamab [11] and mobocertinib [12], recently studied and approved in
NSCLC. Trials with these molecules in SNSCC are desirable. Even poziotinib (HM781–36B),
an irreversible EGFR inhibitor, has been studied in different clinical trials, showing efficacy
in NSCLC [13] and in recurrent and/or metastatic head and neck SCC (R/M-HNSCC) [14].

ERBB2 copy number gain is another genetic alteration found in SNSCC with an
incidence of 21% and elevated protein expression levels of 7%. The ERBB2 amplification
and overexpression correlated with higher tumor stage (T4), intracranial dissemination,
and worse outcomes [15]. Several agents have been to treatHER2-overexpressing breast
cancer and metastatic gastric or gastroesophageal junction adenocarcinoma. The efficacy of
anti-HER2 agents might also be tested in SNSCC.

www.mycancergenome.org
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Schrock et al. [16] examined the FGFR1 gene copy number status in patients with
SNSCC. FGFR1 amplification was found in 20% of the SNSCC and 33% of the IP-associated
carcinomas. The FGFR1 amplification could represent a potential molecular target for
specific FGFR1 inhibitors therapy. Studies have shown that inhibition of FGFR1 significantly
reduces tumor cell numbers in FGFR1-amplified NSCLC [17]. In addition, erdafitinib [18]
and pemigatinib [19] are being studied in phase I basket trials showing promising results.
Both of these drugs are approved for FGFR2 fusion. However, no specific drug for FGFR1
amplifications has been approved at present.

Muñoz-Cordero et al. [20] found the loss of the PTEN expression in 61% of cases, the
overexpression of the AKT in 35% and the overexpression of mTOR in 15% of SNSCC.
Those alterations lead to the activation of the PI3K/AKT/mTOR pathway, which could be
a potentially actionable target. However, no specific drugs are actually approved for AKT
and mTOR overexpression or for PTEN loss. Still two AKT inhibitor drugs, capivasertib and
ipatasertib, are investigated in metastatic triple-negative breast cancer [21,22] and metastatic
prostate cancer [23,24]. In addition, a pre-clinical study with capivasertib/saracatinib (anti-
SRC) for HNSCC was published with promising results [25]. Currently, no trials on these
two molecules enroll patients with SNC.

Over the years, other SNSCC mutations have been detected, but none of these can be
used as therapeutic targets. Udager et al. [26] identified KRAS mutation in 100% of the
oncocytic papillomas (OPs) and 100% of the OP-associated SNSCCs (4–17% of SNSCC) [27].
In particular, the main KRAS mutations detected in the OP-associated SNSCCs were the
G12V (60%) and G12D (40%). In contrast, KRAS mutations were found in 5% of the SNSCC
without known previous papilloma and in 77% of IP-associated SNSCC [28]. Novel target
therapies are under investigation for targeting KRAS (e.g., sotorasib and adagrasib in KRAS
G12C mutation), but no drug is currently approved for other common alterations [29].

Further non-actionable genomic alterations were found in SNSCC. A higher frequency
of p53 expression in SNSCC was reported by several studies, ranging from 33.3% to
100% [30]. Brown et al. [29] identified CDKN2A inactivation in 72.4% of the SNSCC,
through mutation and subsequent loss of heterozygosity or focal ‘deep deletion’ of the
gene locus. At the same time, it was not detected in sinonasal papillomas. Overexpression
of TrkB [31] was identified in 70.4% of SNSCC analyzed and was associated with poor
prognosis. SOX2 amplifications were identified in 35% of SNSCC [32]. Other SNSCC
minor molecular alterations are TERT copy number gains (27.6%) without TERT promoter
mutations, NFE2L2 mutation, CCND1 and MYC copy number gain [29] and CARD11
mutation [32]. Finally, 3.2% of sinonasal tumors showed a deficiency of mismatch repair
proteins and/or high microsatellite instability (dMMR/MSI-H), which may confer clinical
benefit to immune checkpoint inhibitors (ICIs) treatment [33].

To conclude, the DEK::AFF2 fusion-associated carcinoma was recently detected as a
distinct variant of SNSCC [34,35]. In a patient with DEK::AFF2 fusion-associated carcinoma,
an exceptional response to ICIs was identified [34,36].

In addition, HPV-related sinonasal carcinoma could be considered a distinctive carci-
noma type [27]. In 2020, Svajdler et al. found transcriptionally active HPV infections in
25% of the SNSCC studied, and confirmed the cancerogenic role of HPV infection in these
tumors [37]. In several studies HPV-related SNSCC showed a favorable prognosis and
better overall survival (OS) and disease-free survival [27].

Actionable genetic alterations of SNSCC are summarized in Table 1.
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Table 1. SNSCC’s potentially actionable mutations.

Gene Findings References Types of
Alterations

Variant
Classification of

Alterations

Target Drugs
(Approved at Least
by One Regulatory

Agency in Other
Cancer Settings)

Principal
Treatment

Indications

EGFR

≈14% de novo
SNSCCC

(9/63)
≈77% of

ISP-associated
SNSCC
(17/22)

Udager et al.
2015 [9] Sasaki et al.

2018
[10]

Exon 20ins Insertion In frame Amivantamab
Mobocertinib NSCLC

ERBB2 21%
(8/38)

Lòpez et al.
2011 [15] CNG Amplification

Trastuzumab,
Lapatinib,

Pertuzumab,
Ado-trastuzumab

emtansine,
Fam-trastuzumab

deruxtecan,
Margetuximab,

Neratinib

Breast cancer,
gastric cancer

3. Intestinal-Type Adenocarcinoma (ITAC)

Intestinal-type adenocarcinoma (ITAC) is the most frequent adenocarcinoma of the skull
base and occurs predominantly in the ethmoid sinuses (40–85%) [38,39]. Franchi et al. [40]
suggested that ITAC could arise from premalignant intestinal metaplasia of respiratory and/or
glandular epithelium.

ITACs are named for their histologic resemblance to adenocarcinoma of the intestinal
tract. Since the late 1990s and early 2000s, researchers have considered ITAC and colorectal
adenocarcinoma molecular pathways to overlap in different studies [41,42].

In recent years, authors pioneered different gene expression profiling studies of ITAC
to better understand the molecular events involved in carcinogenesis and to identify poten-
tially novel markers. The heterogeneous mutational profile of ITAC comprises alterations
in different genes.

TP53 is the most frequently mutated gene (40–50%, up to 86%) and no target drugs
are available. However, there are ongoing trials on the potential role of WEE1 inhibitors
(such as adavosertib [43]) in p53-mutated or deficient cancer cells. p53 status may be used
to predict response to chemotherapy [44,45].

KRAS and HRAS mutations have been found in one of 12 (8%) and in five of 31 (16%)
ITACs, respectively [46,47]. The frequency of KRAS mutations in sinonasal carcinomas is
lower than the 30–45% reported in colorectal cancer [48]. The KRAS mutations primarily
consist of base pair changes in three hotspots, corresponding to codons 12 and 13 in
exon 1 and codon 61 in exon 2 [49]. No specific target agents are available for these
types of KRAS mutations. Pérez et al. [50] analyzed 31 ITACs for the presence of HRAS
mutations: G12V alteration appears to be the most frequent in the HRAS gene (16%). HRAS
mutations were related to a worse prognosis. In another study, no HRAS mutations were
found [51]. Tipifarnib, a farnesyltransferase inhibitor that disrupts HRAS function, has been
investigated in metastatic HNSCC with high mHRAS variant allele frequency, showing
promising efficacy [52]. NRAS mutations have been infrequently described in ITAC [53].

EGFR amplifications and/or overexpression are present in a substantial subset of
ITACs with a colonic differentiation pattern [54]. EGFR gene copy number gains occur
in 38–55% of the cases, mostly in the context of a whole chromosome 7 gain. High-level
amplification is reported to be rather infrequent, between 2% and 16%. The frequency
of EGFR alterations observed in ITAC is lower than in colorectal cancer, lung cancer, or
HNSCC [55] and SNSCC. EGFR overexpressed ITAC could be potentially treated with
EGFR inhibitors.
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Most ITACs carry genetic alterations in four different pathways: Wnt/b catenin, DNA
damage response (ATM, BRCA 1 and 2), MAPK and PI3K pathways. This means many
ITACs might be treated with specific inhibitors of these pathways. Promising specific
therapies targeting the Wnt pathway are currently under investigation in phase I clinical tri-
als [56,57]. Treatment with PARP inhibitors may be considered for ATM, BRCA1 or BRCA2-
mutant ITACs. PIK3CA mutations may be susceptible to PIK3CA inhibitors (alpelisib),
mTOR inhibitors or new molecules such as AKT inhibitors (capivartesib and ipatasertib).

Although emphasis is placed on these four signaling pathways, other potentially ac-
tionable mutations have been found. BRAF mutations have been rarely seen in a subset of
ITAC. MET inhibitors represent another interesting treatment option since MET-activating
mutation can be found in up to 64% of ITACs 49; other possible opportunities could be
trametinib or cobimetinib in NF1-mutated, anti-HER2 (such as trastuzumab, trastuzumab-
deruxtecan and trastuzumab-emtansine) in ERBB2-mutated [58], anti-IDH1 in IDH1- mu-
tated ITAC [53]. However, at the moment, no efficacy data are present in the literature
about targeted agents agnostically used in ITAC treatment. Results are shown in Table 2.

Table 2. ITAC’s potentially actionable mutations. CNG = copy number gain.

Gene Findings References Types of
Alterations

Variant
Classification of

Alterations

Target Drugs
(Approved at Least
by One Regulatory

Agency in Other
Cancer Settings)

Principal
Treatment
Indication

(Tumors for
Which Are
Approved)

MET
0–64%
(46/72)

Projetti et al. 2015.
[48]

20 CNG Amplification Capmatinib
NSCLC

(S156L) (Missense) (No drugs)

EGFR 2–63%
(27/43)

Szablewski et al.,
2013 [54] 5 CNG Amplification Afatinib NSCLC

PIK3CA
10–22%

(5/48; 11/50)

Sánchez-
Fernández et al.,

2021 [5];
Riobello et al.,

2021 [53]

Q546R, H1047R,
K111E Missense Alpelisib

Breast cancer(D939G), (E726K),
(V1534M),
(D454G)

(Missense) (No drugs)

NRAS 8% (4/48)
Sánchez-

Fernández et al.,
2021 [5]

G12T Missense Bimetinib
Melanoma

(6-10CNG) (Amplification) (No drugs)

BRCA 1 and
BRCA 2

8–14%
(4/48)
(7/50)

Sánchez-
Fernández et al.,

2021 [5].
Riobello et al.,

2021 [53]

R1347G Missense
Olaparib, talazoparib,

niraparib Breast cancer,
ovarian cancer,
prostatic cancer

L3326*, K3226* Nonsense

5 CNG Amplification

(P1603Rfs*13),
(Q1111Nfs*5) (Frameshift) (No drugs)

(V1534M) (Missense) (No drugs)

ATM 8–16%
(4/48) (8/50)

Sánchez-
Fernández et al.,
2021 [5]. Riobello

et al., 2021 [53]

Q684P, P1054R,
D1853V, V410A Missense Olaparib Prostatic cancer

AR
0–20%
(10/50)

Riobello et al.,
2021 [53]

Q79–Q80 dupl., Inframe
duplication

Bicalutamide,
leuprolina Salivary glands

cancer(Q77–Q80 del.),
(Q79–Q80 del.,) (Deletion) (No drugs)

ERBB2 0–6%
(3/50)

Riobello et al.,
2021 [53] S310F Missense

Trastuzumab,
Pertuzumab,

Ado-trastuzumab
emtansine,

Fam-trastuzumab
deruxtecan,

Margetuximab,
Neratinib, Lapatinib

Breast cancer,
Gastric cancer
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Table 2. Cont.

Gene Findings References Types of
Alterations

Variant
Classification of

Alterations

Target Drugs
(Approved at Least
by One Regulatory

Agency in Other
Cancer Settings)

Principal
Treatment
Indication

(Tumors for
Which Are
Approved)

BRAF
0–6%
(1/18)

Franchi et al.,
2014 [40]

V600E Missense
Dabrafenib,
cobimetinib

+MEK inhibitors Melanoma

(D594N) (Missense) (No drugs)

IDH1 sporadic Riobello et al.,
2021 [53] R132C Missense Ivosidenib Ductal bile

carcinoma

4. Non-Intestinal Type Adenocarcinomas (N-ITAC)

Sinonasal non-intestinal type adenocarcinoma (N-ITAC) is an extremely rare ade-
nocarcinoma, which morphologically presents neither intestinal-type nor salivary-type
adenocarcinoma aspects [59]. According to immunohistochemistry, this type of tumor
shows respiratory-type features.

Different variants of N-ITAC are commonly divided into two categories: low grade
(with a particular subset of seromucinous adenocarcinoma) and high grade (blastoma-
tous, oncocytic/mucinous, apocrine, poorly differentiated and undifferentiated types) [60].
There is also a very rare distinct form of N-ITAC, the renal cell-like adenocarcinoma [61].
Differences between these histological subtypes are related to the expression of different
biomarkers detected using IHC [62].

Few studies have analyzed the mutational landscape of N-ITAC. Yom et al. [49] noted
a small subset of N-ITAC cases showing p53 overexpression, whereas other cases did not
show any genetic abnormalities in KRAS, APC, CTNNB1, DNA mismatch repair genes, or
TP53. Another study by Franchi et al. [63] reported that two cases contained a BRAF V600E
mutation detected by direct sequencing. BRAF inhibitors may be a therapeutic option for a
small quote of N-ITAC with EGFR overexpression and BRAF mutations.

Furthermore, in two studies, Andreasen et al. described three low-grade non-ITAC
cases showing ETV6 gene rearrangements, including two cases with ETV6-NTRK3 fu-
sion [64] and one with ETV6-RET fusion [65]. ETV6-rearranged low-grade sinonasal adeno-
carcinomas can be considered morphologically distinct entities [66]. NTRK inhibitors (such
as larotrectinib and entrectinib) may be a therapeutic option for N-ITAC with ETV6-NTRK3
fusion, while anti-RET (selpercatinib and pralsetinib) may be a possible therapeutic option
for N-ITAC with ETV6-RET fusion. With further molecular investigations, other tumors
falling into the category of N-ITAC will likely be separated into more specific entities.

Results are summarized in Table 3.

Table 3. N-ITAC’s potentially actionable mutations.

Gene Findings References Type of
Alterations

Variant
Classification of

Alterations

Target Drugs
(Approved at Least
by One Regulatory

Agency in Other
Cancer Settings)

Principal
Treatment

Indications

BRAF 16% (2/12) Franchi et al.,
2013 [63] V600E Missense Dabrafenib +

trametinib Melanoma

NTRK3 Case report
(1 patient.)

Andreasen et al.,
2017 [64]

ETV6-NTRK3
fusions Translocation Entrectenib,

larotrectinib

All NTRK
rearranged

cancers

RET Case report
(1 patient.)

Andreasen et al.,
2018 [65]

ETV6-RET
fusions Translocation Selpercatinib,

pralsetinib

All RET
rearranged

cancers
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5. Sinonasal Neuroendocrine Carcinoma (SNEC)

SNECsare rare poorly differentiated carcinoma with neuroendocrine differentiation,
characterized by poor prognosis and a high tendency to relapse. According to the new
WHO classification, the diagnostic term of neuroendocrine carcinoma can be applied only
to poorly differentiated epithelial neuroendocrine neoplasms [67]. Actually, the SNEC
standard of care management is represented by the combination of surgical resection,
systemic chemotherapy and radiation therapy. However, the treatment efficacy remains
sub-optimal; therefore, the molecular landscape should be explored to increase survival
rates by discovering new potential therapeutic targets [68].

Mutations of IDH2 have been identified in SNEC. Different studies (Riobello et al. [69],
Gloss et al. [70] and Dogan et al. [71]), analyzing a cohort of several IDH2-mutated sinonasal
tumor samples, showed that 11% (1/9), 20.5% (8/39), and 83% (5/6) was diagnosed as
SNEC, respectively. Gloss et al. [70] evaluated the frequency of IDH2 variants (n = 27), of
which the most frequent were R172S (70.4%), followed by R172T (14.8%), R172G (11.1%) and
lastly R172M (3.7%). IDH2 mutations represent a possible therapeutic target: enasidenib,
an anti-IDH2 agent, has recently been approved by FDA for patients with relapsed or
refractory acute myeloid leukemia [72].

IDH2 wild-type SNECs are characterized by ARID1A mutations [71], TP53 mutations
(33%, 3/9), and (56%, 5/9) alterations in Wnt pathway genes including CTNNB1 (33%,
3/9), AMER1 (22%, 2/9) and APC (11%, 1/9). Among these mutations mentioned, since
ARID1A is a subunit of the SWI/SNF chromatin-remodelling complex, it may be a potential
target of EZH2 inhibitors [73].

SMARCB1-deficient carcinomas have also been described among SNEC. They repre-
sent an aggressive and poor-prognosis subgroup of sinonasal tumors, characterized by INI1
loss mostly due to homozygous SMARCB1 deletion [74]. SMARCB1/INI-1 (also known
as BAF47) is a core subunit of the SWI/SNF complex, and acts as a tumor suppressor by
regulating gene transcription and cell proliferation. SWI/SNF tumor suppressor proteins
act as antagonists of the polycomb enhancer gene of zeste homolog 2 (EZH2), whereby
the EZH2 oncogene is constitutively activated in INI-1-deficient tumors and regulates
histone methylation resulting in tumor-suppressor gene silencing, oncogenic transforma-
tion, metastasis development, and drug resistance [75–77]. Recently, in a phase II basket
trial [78], a selective inhibitor of EZH2, tazemetostat, showed clinical activity in patients
with advanced epithelioid sarcoma with loss of INI-1/SMARCB1.

Results are shown in Table 4.

Table 4. SNEC’s potentially actionable mutations.

Gene Findings References Types of
Alterations

Variant
Classification of

Alterations

Target Drugs
(Approved at Least
by One Regulatory

Agency in Other
Cancer Settings)

Principal
Treatment
Indication

(Tumors for
Which Are
Approved)

SMARCB1 14% (2/14) Libera et al.
2021. [77]

Deletions,
Nonsense Tazemetostat Epithelioid

Sarcoma

IDH2 11–83%
(1/9; 8/39; 5/6) *

Gloss et al.
2021. [70]

Riobello et al.
2019 [69].

Dogan et al.
2019. [71]

R172S, R172G,
R172M, (R127T),

(CNG).

Insertions,
deletions Enasidenib Acute myeloid

leukemia

* Evaluated as SNEC in a cohort of IDH2-mutated sinonasal tumor samples (as numerator number of SNEC and
as denominator total number of samples).

6. Sinonasal Undifferentiated Carcinomas (SNUC)

Sinonasal Undifferentiated Carcinomas (SNUC) are highly aggressive epithelial tu-
mors with uncertain histogenesis, lacking squamous or glandular differentiation; diagnosis
is often challenging and is usually made by exclusion [79]. Because of their aggressive clini-
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cal behaviour, they are usually diagnosed as locally advanced, mainly from dural and/or
orbital invasion [80,81]. Owing to their chemosensitivity the standard approach is based
on neoadjuvant chemotherapy followed by either chemoradiation or surgery followed by
postoperative radiotherapy [82]. However, the prognosis remains poor, with a median OS
of 22 months [83].

IDH2 mutations are the most frequent genetic alterations in SNUC. The positivity of
IDH2 11C8B1 on IHC in sinonasal carcinomas would be highly predictive of the presence
of IDH2 R172S/T mutations in around 70% of cases [84]. In a study [71], 88% (14 of 16)
of SNUCs hadIDH2 R172X mutations, a global methylation phenotype. and an increase
in repressive trimethylation of H3K27. These epigenetic alterations severely reduce gene
expression, thus preventing cellular differentiation [85]. In another study [86], authors
performed an NGS on 11 cases of SNUCs, identifying IDH2 R172X mutations in 55%
of cases, R172S, R172T, and R172M. Several concomitant oncogenic alterations, such as
PIK3CA, mTOR, SOX2, and SOX9 were also identified. Using both IHC and NGS, other
authors [68] demonstrated the presence of mutations in IDH2 in SNUCs with 11/36 (31%)
cases affected, with R172S and R172G as sequence variants. The most important copy
number alterations in the IDH2-mutated tumors were gains on chromosome arm 1q and
combined loss of 17p and gain of 17q and loss of 22q. To note, these IDH2 mutations act
both as positive prognostic and potentially predictive biomarkers. IDH2 is an interesting
potential target for IDH inhibitors [72].

A reduced/loss of SMARCB1 expression has also been documented in SNUC [87–90].
Saleh et al. [91] reported a case of a 45-year-old patient with a locoregional relapse 14 years
after diagnosis of an advanced SNUC treated with tazemetostat. The patient received
tazemetostat 800 mg twice daily (after first-line etoposide-carboplatin) by maintaining a
stable disease for 13 months.

More studies have been conducted on the molecular landscape of SNUC in recent
years. Chernock et al. [92] identified the expression of EGFR, c-KIT (CD117), and HER2/neu
in SNUC. By IHC, nine of 11 cases (81.8%) were diffusely positive for c-KIT (the samples
were analyzed by PCR with appropriate c-kit exon 9, 11, 13, or 17 primers), three of
11 cases (27.3%) were positive for EGFR, and none of the cases were positive for HER2/neu.
Neither activating mutation nor gene amplification of c-KIT was detected in these analyzed
cases. The lack of activating mutations in c-KIT was confirmed in another study [93], thus
limiting the possibility of tackling c-KIT overexpressing SNUCs with targeted agents.

A preclinical study [94] suggests that conventional HER2 immunohistochemical stain-
ing is not the best way to investigate the status of HER2 in SNUC specimens, showing a
negative result for HER2 staining by IHC versus a strong expression with Western blotting.
Since several anti-HER2 treatments are approved for other cancers, authors demonstrated
the activity of Lapatinib and Trastuzumab in cell lines and animal models. In the absence
of SNUC included in anti-HER2 basket trials, this opportunity deserves to be studied in
such trials.

Results are summarized in Table 5.

Table 5. SNUC’s potentially actionable mutations.

Gene Findings
(%) References Types of

Alterations

Variant
Classification of

Alterations

Target Drugs
(Approved at Least
by One Regulatory

Agency in Other
Cancer Settings)

Principal
Treatment
Indication

(Tumors for
Which Are
Approved)

IDH2 31–88% (11/36,
14/16)

Dogan et al. 2019,
Riobello et al.
2019 [69,71]

R172S,
R172G, R172T,
R172M, copy
number gains

Insertions
Deletions Enasidenib Acute myeloid

leukemia

SMARCB1/INI 1 43% (6/14), case
report (1 patient)

Chitguppi et al.
2020 [90], Saleh
et al. 2022 [91]

Deletions Tazemetostat Epithelioid
Sarcoma
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Table 5. Cont.

Gene Findings
(%) References Types of

Alterations

Variant
Classification
of Alterations

Target Drugs
(Approved at Least
by One Regulatory

Agency in Other
Cancer Settings)

Principal
Treatment
Indication

(Tumors for
Which Are
Approved)

ERBB2 Highly Takahashi et al.
2016 [94]

Overexpression
(by Western

blot)

Trastuzumab-
emtansine,

Trastuzumab-
deruxtecan,

Trastuzumab,
pertuzumab,

lapatinib,
margetuximab,

Neratinib,

Breast cancer,
Adenocarcinoma

of
gastroesophageal

junction

EGFR 27%
(3/11)

Chernock et al.
2009 [92] Overexpression Cetuximab,

Panitumumab

NSCLC,
colorectal cancer,
Head and neck

SCC

7. NUT Carcinoma (NC)

NC is a rare and aggressive subtype of poorly differentiated squamous carcinoma,
genetically defined by the rearrangement of the NUT (recently renamed NUTM1) gene.
In approximately 70% of cases, NUTM1 is involved in a balanced translocation with the
BET family gene BRD4 on chromosome 19p13.1 [t (15; 19) (q14; p13.1)], forming the BRD4-
NUT fusion oncogene. In the remaining 30% of cases, the NUTM1 gene is fused with
BRD3 (25%) on chromosome 9 [t (9; 15) (q34.2; q14)], the histone methyltransferase NSD3
on chromosome 8 [t (8; 15) (p11.23; q14)] or ZNF532 on chromosome 18 [t (15; 18) (q14;
q23)] [95]. The outcome of the patients with NC is often dismal, with a median survival
of only 6.7 months [96]. Unfortunately, all the chemotherapeutic agents tested, including
doxorubicin-based regimens, have not shown improved outcomes [97]. Based on these
data, there is a clear need to find new therapeutic strategies for this aggressive cancer.
Recently, several studies evaluated the efficacy of the BET inhibitors (BETi), drugs with
acetyl-histone mimetics compounds that target BRD4-NUT by competitively inhibiting its
binding to chromatin. The first proof of the clinical activity of a BETi in NCwas presented by
OTX015/MK-8628 [95,98,99]. Other phase I trials are currently evaluating BETi in NC [95],
like Birabresib [100] and Molibresib [101]. Despite these promising results, not all patients
with NC respond to the BETi. Liao et al. [102] identified six potential pathways that could
mediate treatment resistance to BET inhibitors, like MYC and MYC-related genes, RTK and
GPCR/cAMP/PKA signaling pathway, TGF-β, Kruppel-like factor 4 (KLF4) and cyclin
D1/3. In particular, the cyclin-dependent kinase 4/6 inhibitors appear to have a synergistic
effect with BETis on NC, suggesting the rationale for combining therapies in NC [102].

The histone deacetylase inhibitors (HDACi) represent another therapeutic approach
for NC. Schwartz et al. [103] identified that the expression of BRD4-NUT is associated
with globally decreased histone acetylation and transcriptional repression, which could
be restored by treating the NC with histone deacetylase inhibitors (HDACi). A child was
treated with the histone deacetylase inhibitors Vorinostat, showing an objective response
after 5 weeks of therapy [104]. Also, Maher et al. [105] presented a case of metastatic NC
with a partial response to Vorinostat. Based on this evidence, other histone deacetylase
inhibitors, like Romidepsin [106] and Belinostat [107], could be considered for the NC
treatment. Currently, there is an ongoing phase I trial for CUDC-907, an orally bioavailable
HDAC and PI3K inhibitor, in patients with NC and a clinical trial for patients affected by
NC resistant to bromodomain inhibitors (NCT02307240).
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8. Teratocarcinosarcoma (TCS)

TCS are aggressive tumors arising primarily in the sinonasal area and anterior cranial
base. They are extremely rare, with less than 100 cases ever reported in the literature. They
have different features of malignant teratoma, epithelial cells, neural cells, and mesenchy-
mal elements [108]. Little information is available on TCS biology and tumorigenesis and
few clinical data can be derived from case reports.

Rooper et al. found a loss of SMARCA4 expression in 18 cases of 22 sinonasal TCS (82%)
and variable positivity for Claudin-4 [109]. Complete loss of SMARCA4 expression in 68%
of TCS by IHC, with NGS confirmation of biallelic SMARCA4 inactivation in three cases.
These results provide important information about the emerging role of SMARCA4 in
SNCs. They particularly suggest that TCS is on a spectrum with SMARCA4-deficient
sinonasal carcinomas which show overlapping morphology and molecular characteristics,
further readjusting the classification of high-grade sinonasal tumors [108]. In SMARCA4-
loss ovarian cancer cells [110], tazemetostat (EZH2 inhibitor) showed a potential benefit.
There are also in vitro and in vivo data on susceptibility to CDK4/6 inhibitors and ICIs in
SMARCA4-loss ovarian cancer [111].

In a case report, authors [112] found the presence of the p.H1047L activating mutation
in the PIK3CA gene, suggesting a potential driving role of the PI3K/AKT/mTOR pathway
in tumorigenesis. In the same patient, authors also found a germline alteration in the
DDR2 gene (p. Pro476Leu) whose oncogenic function is still considered unknown. The
potential involvement of Wnt/β-catenin and PI3K/AKT/mTOR pathways could lead to
the application of target therapies for this tumor.

9. Sinonasal Lymphoepithelial Carcinoma (SLEC)

Lymphoepithelial carcinoma (LEC) was described for the first time in literature by
Schminke [113] and Regaud [114] in 1921. Sinonasal lymphoepithelial carcinoma (SLEC)
is an extremely rare neoplasm with approximately 40 cases recognized in the literature.
It can be considered an SCC morphologically similar to nonkeratinizing nasopharyngeal
carcinoma, an undifferentiated subtype, with a reactive intermixed lymphoplasmacytic
infiltrate [115].

There are no data in the literature on altered molecular pathways in this very rare type
of sinonasal tumor and there is no evidence of potential molecular targets. However, the
neoplastic microenvironment is characterized by an important nonneoplastic lymphoplas-
macytic infiltrate cells (including CD8+T lymphocytes) between and around tumor nests
and high expression of PD-1/PD-L1. Even though data from studies on LEC of other head
and neck sites show that MSI and loss of expression of the DNA mismatch repair proteins
are not common, there is a potential role for immunotherapy in SLEC [116,117].

10. Immune-Check Point Inhibitors: Rationale and Clinical Applications

ICIs are now the standard of care alone or in combination with chemotherapy in
PD-L1 positive recurrent and/or metastatic HNSCC. Although this is still subject to further
investigations, predictors of the clinical efficacy of ICIs appear to include high membranous
PD-L1 levels of expression, high tumor mutational burden, mismatch repair proteins defi-
ciency, microsatellite instability, and infiltrating leukocyte cells. However, the prognostic
and therapeutic role of these biomarkers in SNCs is still poorly known and data on the
efficacy of immunotherapy in SNCs are lacking. A summary of the published studies is
presented in Table 6.

Table 6. Immuno-markers in SNC.

Immune-Markers in SNC Findings References

d-MMR/MSI 2% ITAC
2–21% SNSCC

Martínez et al. 2009.
Uryu et al. 2006, Hongo et al. 2021,

Hermsen et al. 2009 [118–121]
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Table 6. Cont.

Immune-Markers in SNC Findings References

PD-L1 expression by IHC > 5% 34% (18/53) SNSCC
17% (22/126) ITAC Riobello et al. 2018 [122]

PD-L1 expression by IHC > 50% 26% (14/53) SNSCC
3% (4/126) ITAC Riobello et al. 2018 [122]

PD-L1 expression by CPS ≥ 1 67.2% (88/131) SNSCC Hongo et al. 2021 [120]

CD8high/PD-L1pos 6% (8/133) ITAC
19% (11/57) SNSCC Garca-Marín et al. 2020 and 2021 [123,124]

10.1. Immuno-Markers in Sinonasal Cancers
10.1.1. Deficient Mismatch Repair Proteins (d-MMR) and Microsatellite Instability (MSI)

Only a few studies have addressed the MSI/MMR status in sinonasal carcinomas, with
a resulting frequency of MSI for ITACs of 2% [118] and between 2–21% in d-MMR/MSI for
SNSCCs [119–121]

In a study [33], authors analyzed the presence of d-MMR/MSI sinonasal tumors by
testing MMR protein expression using immunohistochemistry (IHC) in 174 SNCs’ samples,
including SNSCC, adenocarcinoma, SNEC, and SNUC. Only SNSCC were characterized
by the presence of d-MMR/MSI with a frequency of 3.2% (4/125), while all analyzed
sinonasal adenocarcinoma types as well as SNUC and SNEC displayed intact MMR protein
expression patterns. Although d-MMR/MSI SNSCCs are a small subgroup of SNSCC, they
are clearly molecularly defined and may be most likely sensitive to ICIs.

In a recent study [120] just three of 131 (2.3%) SNSCC showed d-MMR expression,
whereas the other 128 (97.7%) cases showed intact expression of all four MMR proteins. All
three d-MMR cases showed concurrent loss of MLH1 and PMS2 expression. The authors
also tried to analyze themutual relationship with other cancer and/or subject characteristics.
In particular, these three tumors did not have a synchronous or metachronous inverted
sinonasal papilloma component, nor did they display HPV positivity, EGFR mutation, and
EGFR copy number gain.

10.1.2. PD-L1 Expression

Riobello et al. [122] analyzed the expression of PD-L1 in 53 SNSCC and 126 ITAC
samples. Membranous PD-L1 staining in at least 5% of tumor cells was observed in
34% (18/53) of SNSCC and 17% (22/126) of ITAC. Expression in >50% of tumor cells was
frequent in SNSCC (14/53; 26%) in contrast to ITAC (4/126; 3%). Surprisingly, the nuclear
expression of PD-L1 was exclusively observed in papillary/colonic-type ITAC; both SNSCC
and ITAC with >5% PD-L1 expression had significantly worse disease-free survival, when
treated with standard therapeutic options.

Quan et al. [125] evaluated PD-L1 expression in 96 SNSCC cases. Membranous PD-L1
expression in >5% of tumor cells was observed in 29 patients (30.2%). PD-L1-positive
SNSCC cases tended to have a higher lymph node metastasis rate than PD-L1—negative
SNSCC (20.7% vs. 10.4%). The Chinese group also found that PD-L1 expression was
strongly associated with CD8+ and Foxp3+ T-cell infiltration levels in SNSCC, indicating
that the PD-1/PD-L1 pathway might be a promising target.

In a recent analysis [120] of a total of 131 SNSCC, 60 showed PD-L1 expression in ≥1%
(tumor proportion score, TPS). The TPSs were subdivided into low (1−19%; n = 43, 32.8%),
high (20−49%; n = 12, 9.2%) and very high (≥50%; n = 5, 3.8%). Using combined positive
score (CPS), the same authors found a PD-L1 expression with CPS ≥ 1 in 88 (67.2%) cases,
including cases with low (1−19; n = 67, 51.2%), high (20−49; n = 13, 9.9%) and very high
(≥50; n = 8, 6.1%) CPSs.

10.1.3. Tumor Microenvironment: Cytokines and Tumor Infiltrating Leucocytes (TILs)

In recent years, the prognostic and predictive role of tumor-infiltrating leucocytes
(TILs) and cytokines levels of expression has been a topic of further interest.
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In a study [125], authors studied different populations of TILs in SNSCC and found out
that level of CD8+ cell infiltration was a significant and independent favorable prognostic
factor. However, high Foxp3+ Treg infiltration was also associated with favorable OS and
DFS in SNSCC.

In a series of SNCs [126], the authors analyzed different high-grade tumors. Among
them, 16 were SNUCs, four SMARCB1-deficient sinonasal carcinomas, one SMARCA4-
deficient carcinoma, five high-grade neuroendocrine carcinomas, one NC, one TCS, and
two sinonasal N-ITAC. They focused on the expression of major histocompatibility complex
molecules, the leukocyte infiltrates, and chemokines expression, finding that chemokines
CXCL8 and CXCL5 were upregulated in high-grade sinonasal carcinomas, influencing
leukocyte activation and trafficking, angiogenesis, metastasis, and cancer cells proliferation.
On the other hand, several chemokines such as CCL28 and CCL14 were downregulated
in SNUCs and high-grade neuroendocrine carcinomas compared with normal tissue. Tar-
geting migration-related chemokines and their receptors in sinonasal tumors might be
beneficial for immunotherapy.

A Spanish study [123] analyzed the tumor microenvironment immunotypes (TMIT),
deriving from the combination of tumor-infiltrating lymphocyte density and PD-L1 expres-
sion, such as a biomarker for immunotherapy in 133 ITAC. The authors identified four
immunotypes: type I (TILhigh/PD-L1pos), type II (TILlow/PD-L1neg), type III (TILlow/PD-
L1pos) and type IV (TILhigh/PD-L1neg). They considered CD8+ cells as TILs. They found
that intratumoral TILs are present in up to 65% of ITAC, while tumoral PD-L1 positivity
was observed in 26% of cases. Furthermore, many TILs and TMIT types I and IV were
associated with longer OS only. TMIT classification did not have additional prognostic
value over TILs alone. Just 6% of cases were TMIT type I (CD8high/PD-L1pos), indicating
that ITAC is a poorly immunogenic tumor type.

The Spanish [124] group also analyzed TMIT in a series of 57 SNSCCs. Approxi-
mately 88% of the cases displayed the presence of CD8+ TILs (19%—high; 69%—low)
in the intratumoral compartment. From their analysis, 19% of cases were TMIT type I
(CD8high/PD-L1pos). This result suggests that SNSCCs are immunogenic tumors, and that
a subgroup might benefit from therapy with ICIs. This proportion is lower than in highly
immunogenic tumors such as melanomas, renal cell and bladder cancers, HNSCCs or lung
SCC (40–50% of the cases belong to TMIT I) [127], but still higher than in other SNCs, such
as ITACs.

10.2. Clinical Data on the Efficacy of ICIs in Sinonasal Cancers

Most of the data on the potential efficacy of ICIs in various histological subtypes of
sinonasal tumors come from case reports. Interestingly, the responses observed are not
strictly related to PD-L1 expression, d-MMR phenotype, MSI or the presence of TILs.

A case report [128] presented two immunotherapy applications in SNCs and their
relationship with other therapeutic strategies. The first patient was a 23-year-old man,
treated with pembrolizumab in the second line for relapsing NC. After four cycles the
patient underwent a partial response, but then a local progression of the disease was
registered. He was offered hypofractionated stereotactic radiotherapy, and pembrolizumab
was continued until a local complete response. The other patient was a 29-year-old man
with a late local relapse of an SNSCC. Treatment with nivolumab and reirradiation was
able to obtain a response, thus supporting the activity of this combination.

An Italian case report [129] described an impressive complete response to nivolumab
in a 19-year-old man with metastatic SNUC. Interestingly, PD-L1 expression on tumor cells
was 10% and no TILs were detected.

Hongo et al. [120] analyzed nine ICI-treated cases. They were characterized by max-
illary sinus location, high clinical stage (IVa or IVb), negativity for high-risk HPV, and
proficient MMR. Three out of nine (33.3%) patients obtained a response (two had a high
score at TPS and CPS, while one of them had a score of 0).
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In a retrospective analysis of SNSCC [130], five patients received ICIs as first-line
therapy and six received ICIs as second- or beyond-line therapy. PD-L1 expression was
observed in three cases (27.3%) with a median CPS of 0.2 (0–16). The median progression-
free survival (PFS) was 4.2 months (95% CI, 0.3–8.1). Both PD-L1 status and treatment line
(first line) showed a trend toward longer PFS. PFS and disease control rates at 6 months were
36.4% and 36.4%, respectively. The 6-month OS rate was 63.6%. Three patients achieved
partial response (27.2%) with two responses lasting over 6 months. One responder had
prior platinum and cetuximab therapy. Responses were observed regardless of PD-L1
expression (two responses in CPS 0 and one in CPS 16).

In limited and possibly biased case series, it is impossible to draw any conclusions
about the clinical activity of ICIs in SNCs and prognostic or predictive markers. This should
prompt the investigation of these treatments in specific cohorts of SNC with translational
correlative studies.

To our knowledge, there is only one trial limited to SNC (specifically SNSCC) exploring
the activity of pembrolizumab added to cisplatin and docetaxel chemotherapy, to increase
the response rate to systemic induction therapy (NCT05027633). In other trials including
ICI, SNCs are included with other histologies.

A phase II study with pembrolizumab and cetuximab is ongoing to treat R/M HN-
SCC, including SNSCC (NCT03082534). Another large phase II trial with nivolumab and
ipilimumab is ongoing in patients with rare tumors, including SCC and adenocarcinoma
of nasal and sinonasal sites (NCT02834013); similarly, in rare cancers, a phase II trial with
nivolumab (AcSé trial) is ongoing, including SNCs (NCT03012581).

11. Conclusions

Few data exist on the efficacy and agnostic use of targeted agents in treating SNCs.
Clinical trials performed so far with new molecules in R/M HNSCC have almost always
excluded SNCs, thus leaving uncertainty about the transposability of the results in the
setting of this rare cancer. There is a need for international collaboration to start clinical
trials of these rare cancers, to investigate new drugs and combinations, leveraging tumor
molecular profiles to define the most active therapeutic strategies.
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