UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

The metabolic effects of intermittent versus continuous feeding in critically ill patients

Wilkinson, D; Gallagher, IJ; McNelly, A; Bear, DE; Hart, N; Montgomery, HE; Le Guennec, A; ... Puthucheary, ZA; + view all (2023) The metabolic effects of intermittent versus continuous feeding in critically ill patients. Scientific Reports , 13 (1) , Article 19508. 10.1038/s41598-023-46490-5. Green open access

[thumbnail of s41598-023-46490-5.pdf]
Preview
Text
s41598-023-46490-5.pdf - Published Version

Download (2MB) | Preview

Abstract

Intermittent (or bolus) feeding regimens in critically ill patients have been of increasing interest to clinicians and scientists. Changes in amino acid, fat and carbohydrate metabolites over time might yet deliver other benefits (e.g. modulation of the circadian rhythm and sleep, and impacts on ghrelin secretion, insulin resistance and autophagy). We set out to characterise these changes in metabolite concentration. The Intermittent versus Continuous Feeding in Critically Ill paitents study (NCT02358512) was an eight-centre single-blinded randomised controlled trial. Patients were randomised to received a continuous (control arm) or intermittent (6x/day, intervention arm) enteral feeding regimen. Blood samples were taken on trial days 1, 7 and 10 immediately before and 30 min after intermittent feeds, and at equivalent timepoints in the control arm. A pre-planned targeted metabolomic analysis was performend using Nuclear Resonance Spectroscopy. Five hundred and ninety four samples were analysed from 75 patients. A total of 24 amino acid-, 19 lipid based-, and 44 small molecule metabolite features. Across the main two axes of variation (40–60% and 6–8% of variance), no broad patterns distinguished between intermittent or continuous feeding arms, across intra-day sampling times or over the 10 days from initial ICU admission. Logfold decreases in abundance were seen in metabolites related to amino acids (Glutamine − 0.682; Alanine − 0.594), ketone body metabolism (Acetone − 0.64; 3-Hydroxybutyric Acid − 0.632; Acetonacetic Acid − 0.586), fatty acid (carnitine − 0.509) and carbohydrate metabolism (Maltose − 0.510; Citric Acid − 0.485). 2–3 Butanediol, a by-product of sugar-fermenting microbial metabolism also decreased (− 0.489). No correlation was seen with change in quadriceps muscle mass for any of the 20 metabolites varying with time (all p > 0.05). Increasing severity of organ failure was related to increasing ketone body metabolism (3 Hydroxybutyric Acid-1 and − 3; p = 0.056 and p = 0.014), carnitine deficiency (p = 0.002) and alanine abundancy (p − 0.005). A 6-times a day intermittent feeding regimen did not alter metabolite patterns across time compared to continuous feeding in critically ill patients, either within a 24 h period or across 10 days of intervention. Future research on intermittent feeding regimens should focus on clinical process benefits, or extended gut rest and fasting.

Type: Article
Title: The metabolic effects of intermittent versus continuous feeding in critically ill patients
Location: England
Open access status: An open access version is available from UCL Discovery
DOI: 10.1038/s41598-023-46490-5
Publisher version: https://doi.org/10.1038/s41598-023-46490-5
Language: English
Additional information: Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Keywords: Humans, Critical Illness, Amino Acids, Alanine, Carnitine, Ketones
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Div of Medicine > Experimental and Translational Medicine
URI: https://discovery.ucl.ac.uk/id/eprint/10181835
Downloads since deposit
2Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item