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Multi‑class glioma segmentation 
on real‑world data with missing 
MRI sequences: comparison 
of three deep learning algorithms
Hugh G. Pemberton 1,2,23, Jiaming Wu 1,23, Ivar Kommers 3, Domenique M. J. Müller 3, 
Yipeng Hu 1, Olivia Goodkin 1,2, Sjoerd B. Vos 1,2, Sotirios Bisdas 2, Pierre A. Robe 4, 
Hilko Ardon 5, Lorenzo Bello 6, Marco Rossi 6, Tommaso Sciortino 6, Marco Conti Nibali 6, 
Mitchel S. Berger 7, Shawn L. Hervey‑Jumper 7, Wim Bouwknegt 8, Wimar A. Van den Brink 9, 
Julia Furtner 10, Seunggu J. Han 11, Albert J. S. Idema 12, Barbara Kiesel 13, Georg Widhalm 13, 
Alfred Kloet 14, Michiel Wagemakers 15, Aeilko H. Zwinderman 16, Sandro M. Krieg 17,18, 
Emmanuel Mandonnet 19, Ferran Prados 1,20,21, Philip de Witt Hamer 3, Frederik Barkhof 1,2,22 & 
Roelant S. Eijgelaar 3*

This study tests the generalisability of three Brain Tumor Segmentation (BraTS) challenge models 
using a multi‑center dataset of varying image quality and incomplete MRI datasets. In this 
retrospective study, DeepMedic, no‑new‑Unet (nn‑Unet), and NVIDIA‑net (nv‑Net) were trained and 
tested using manual segmentations from preoperative MRI of glioblastoma (GBM) and low‑grade 
gliomas (LGG) from the BraTS 2021 dataset (1251 in total), in addition to 275 GBM and 205 LGG 
acquired clinically across 12 hospitals worldwide. Data was split into 80% training, 5% validation, and 
15% internal test data. An additional external test‑set of 158 GBM and 69 LGG was used to assess 
generalisability to other hospitals’ data. All models’ median Dice similarity coefficient (DSC) for both 
test sets were within, or higher than, previously reported human inter‑rater agreement (range of 
0.74–0.85). For both test sets, nn‑Unet achieved the highest DSC (internal = 0.86, external = 0.93) 
and the lowest Hausdorff distances (10.07, 13.87 mm, respectively) for all tumor classes (p < 0.001). 
By applying Sparsified training, missing MRI sequences did not statistically affect the performance. 
nn‑Unet achieves accurate segmentations in clinical settings even in the presence of incomplete MRI 
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datasets. This facilitates future clinical adoption of automated glioma segmentation, which could help 
inform treatment planning and glioma monitoring.

Abbreviations
BraTS  Multimodal brain tumor segmentation
DM  DeepMedic
DSC  Dice similarity coefficient
ET  Enhancing tumor
FLAIR  Fluid-attenuated inversion recovery
GBM  Glioblastoma
HD  Hausdorff distance
IQR  Interquartile range
LGG  Low grade glioma
TC  Tumor core
VASARI  Visually AccesSAble Rembrandt Images criteria VASARI Research Project (https:// wiki. cance 

rimag ingar chive. net/ displ ay/ Public/ VASARI+ Resea rch+ Proje ct)
WT  Whole tumor

Clinically accurate segmentation and longitudinal volumetric analysis of glioma are helpful in treatment planning 
and response  monitoring1,2. Volumetric analyses are not commonly used in clinical practice and are generally 
limited to crude 2D measurements in clinical trials. While this is the current standard for treatment response 
evaluation in  trials3, poor prognosis and heterogeneous treatment response encourage quantitative analysis of 
tumors, especially for glioma due to their varied morphometry and infiltrative  nature4–7. It is these two charac-
teristics of glioma, along with heterogenous contrast enhancement, that complicate their manual delineation and 
further highlight the need for automated segmentation protocols in the clinical  setting8–10. Indeed, baseline imag-
ing and volumetric measurements are of particular importance to neurosurgeons and radiotherapists because 
tumor volume and functional anatomy are key factors for both risk and prognostic assessment of  patients11,12.

The VASARI features have illustrated the importance of extracting such quantitative measures, but automa-
tion of segmentation and subsequent feature extraction is needed to enable widespread  application13,14. Auto-
mated quantification could provide improvements in reporting time, treatment response monitoring, and overall 
efficiency across a neuroradiological service, but is dependent upon technical and clinical validation of the 
 methods15–17. Deep learning has emerged as the preferred method for automated tumor  segmentation6,18–21. 
Ideally, the clinical environment requires a fast algorithm that is robust to scanner variation and missing MRI 
sequences.

Since 2012, the annual Brain Tumor Segmentation (BraTS) Challenge has compared the performance of 
numerous AI-driven glioma segmentation  algorithms18,22. However, these algorithms are trained and assessed 
on a highly curated dataset optimised for quality: each subject has a complete dataset of high-quality pre- and 
post-contrast T1-weighted (T1w and T1c, respectively), T2-weighted (T2w), and T2-weighted fluid-attenuated 
inversion recovery (FLAIR) images, which does not accurately reflect the realities of clinically-acquired MRI 
data. For example, a recent study using a model (DeepMedic) trained exclusively on BraTS data, achieved a 
median Dice similarity coefficient (DSC) of 0.81 on BraTS test data but only 0.49 on external clinical data 23.

The aim of the current study was to determine the performance and generalisability of three of the highest-
performing models at recent BraTS  challenges24–26 on real-world clinical data. Models have been trained with 
both BraTS data and another multi-centre dataset obtained from 12 different hospitals worldwide: the PICTURE 
project (www. pictu repro ject. nl)27–31. An external test set comprised of PICTURE data from hospitals not used 
in the training and validation phases was employed to assess the clinical applicability and determine the need 
for retraining models on a hospital’s own data. Furthermore, we use sparsified training, to account for missing 
 sequences23, and assessed performance in patients with incomplete MRI datasets.

Materials and methods
All patients provided informed consent and data were obtained and anonymized according to the General Data 
Protection Regulation and Health Insurance Portability and Accountability Act. Local Institutional Review Board 
approval was obtained for all primary studies. For the the VU medical center Amsterdam the institutional review 
board approved of the experiments in this study under case nr. 2014.336. Of the patients involved in the cur-
rent study, 40 were previously studied in an inter-rater agreement study by Visser et al.29. The 275 Glioblastoma 
patients from the PICTURE dataset were previously used in a study focused on robust tumor core segmenta-
tion in glioblastoma patients Eijgelaar et al.23. The study was carried out in concordance with the Checklist for 
Artificial Intelligence in Medical Imaging (CLAIM) guidelines 32.

BraTS and PICTURE Datasets
We used manual segmentations of preoperative imaging of 1251 gliomas (unspecified mix of GBM and LGG) 
from the BraTS 2021 dataset and 275 GBM and 205 LGG (median age, 63.7 IQR [54.3–72.0] years; median sur-
vival, 323 [142–609] days; surgery extent: 348 resections, 83 biopsies, 49 unknown) from the PICTURE project. 
The PICTURE dataset was collected across 12 hospitals worldwide, all patients of at least 18 years old with a 
newly-diagnosed LGG, or GBM at first-time surgery between 1/1/2012 and 12/31/2013 were included. Since the 
PICTURE data was collected in 2012 and 2013, the classification of GBM and LGG was in line with WHO 2007 
criteria. Demographics for the PICTURE dataset are documented in Appendix 1 of the supplementary material.

https://wiki.cancerimagingarchive.net/display/Public/VASARI+Research+Project
https://wiki.cancerimagingarchive.net/display/Public/VASARI+Research+Project
http://www.pictureproject.nl
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Missing scans
Both datasets contain pre-operative T1w, T1c, T2w, and FLAIR images. However, in the PICTURE dataset some 
patients had missing sequences, see Table 1 for a breakdown and Fig. 1 for examples of subjects with a missing 
FLAIR or T2. Only patients with at least T1c and either T2w or FLAIR were included to be able to manually 
segment all tissue classes. Out of 1731 total cases, there were 204 missing pre-contrast T1w, 186 missing T2w, 
and 19 missing FLAIR, see “Model training and testing” for details of the sparsified training used to account for 
missing sequences.

Pre‑processing
T1w, T2w, and FLAIR images were rigidly registered to the T1c image. Subsequently, the T1c was registered to 
the SRI24 atlas (https:// www. nitrc. org/ proje cts/ sri24/)33 using an affine transformation. The same transform 
was applied to the other MR sequences (T2w, FLAIR, T1w). All modalities were resampled to 1mm isotropic 
voxels in the SRI24 atlas space, the rigid and affine registrations were applied using a single interpolation step. 
All registrations and resampling were conducted using the Advanced Normalization Tools (ANTs)34. N4 bias 
field  correction35 was used and skull stripping was performed with the “HD-bet” algorithm (https:// github. com/ 
MIC- DKFZ/ HD- BET) 36.

Manual segmentations
For the PICTURE data, 275 GBM and 205 LGG cases were manually segmented into 3 classes consistent with the 
BraTS challenges – whole tumor (WT), tumor core (TC), and enhancing tumor (ET), see Fig. 1. The WT defines 
the full extent of the tumor, including the tumor core and oedema, indicated by hyperintensity on FLAIR and 
T2w. The TC is the main body of the tumor and most likely area of resection. The TC includes the enhancing 
tumor (ET) and necrosis.

Table 1.  Breakdown of data used in this study from the BraTS and PICTURE datasets (https:// www. pictu 
repro ject. nl), and missing data totals from each hospital, as well as a breakdown of the train, validation, test, 
and external test sets.

Data source Tumor type Dataset type Group Total T1w missing T2w missing FLAIR missing

BraTS GBM + LGG
n = 1251

Train
n = 1000 BraTS 1000 0 0 0

Validation
n = 63 BraTS 63 0 0 0

Test
n = 188 BraTS 188 0 0 0

PICTURE

GBM
n = 275

Train
n = 95

Hospital 1 52 6 0 3

Hospital 2 43 1 1 0

Validation
n = 7

Hospital 1 3 0 0 0

Hospital 2 4 0 1 0

Test
n = 15

Hospital 1 8 0 0 0

Hospital 2 7 1 0 0

External test set
n = 158

Hospital 3 4 3 1 2

Hospital 4 15 1 12 0

Hospital 5 1 0 0 0

Hospital 6 1 0 0 0

Hospital 7 1 0 0 0

Hospital 8 23 13 0 0

Hospital 9 19 3 0 7

Hospital 10 8 0 2 3

Hospital 11 86 2 1 0

LGG
n = 205

Train
n = 107

Hospital 2 83 78 78 0

Hospital 12 14 3 2 0

Hospital 3 10 10 10 0

Validation
n = 6

Hospital 2 4 4 4 0

Hospital 3 2 2 2 0

Test
n = 23

Hospital 2 17 17 17 0

Hospital 12 4 3 2 1

Hospital 3 2 2 2 0

External test set
n = 69

Hospital 9 13 0 0 0

Hospital 11 56 55 51 3

Total 1731 204 186 19

https://www.nitrc.org/projects/sri24/)
https://github.com/MIC-DKFZ/HD-BET
https://github.com/MIC-DKFZ/HD-BET
https://www.pictureproject.nl
https://www.pictureproject.nl
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Manual segmentations were carried out according to the VASARI Research Project (https:// wiki. cance rimag 
ingar chive. net/ displ ay/ Public/ VASARI+ Resea rch+ Proje ct). One rater (HP) with 9 years of brain MRI manual 
segmentation experience performed segmentations under the supervision and approval of an expert neurora-
diologist (FB), using the semiautomatic SmartBrush tool (BrainLab, Feldkirchen, Germany). The rater’s per-
formance was in line with  experts29. All segmentations were exported on the T1c image. The segmentation was 
resampled to SRI24 atlas space using the same transform from the T1c to SRI24 registration.

Quality control
Visual quality control checks were carried out for incomplete coverage, skull stripping, registration errors, and 
incomplete segmentations. Overview images were generated to facilitate quality control. The images show the 
same axial, sagittal, and coronal view for all patients to assess the registration quality, as well as an axial view of 
the center of the tumor to verify the segmentation. Seven scans were not included due to poor image quality and 
five due to severe registration errors (as illustrated in Appendix 2).

Deep learning segmentation models
Three algorithms were selected for this study based on high performance in recent BraTS  challenges18,22,37, 
availability of a user-friendly and reproducible implementation online, and the uniqueness of the algorithm, 
see Table 2.

Figure 1.  Sample images of PICTURE dataset. Ground truth manual segmentation for a GBM patient with 
missing FLAIR scan (top row) and one with missing T2w (bottom row), see “Model training and testing” for 
details of sparsified training which is used to account for missing sequences. Whole Tumor (WT) in green. The 
WT defines the full extent of the tumor, including the tumor core and oedema, indicated by hyperintensity 
on FLAIR and T2w. Tumor Core (TC) in red. The TC is the main body of the tumor and most likely area of 
resection. The TC includes the enhancing tumor (ET) and necrosis. The ET is shown in yellow.

Table 2.  Summary of the deep learning algorithms tested in this study.

Name Description References

nvNet A 3D U-net-based architecture using skip-connections, group normaliza-
tion and variational autoencoder based regularization

26,51 (https:// ngc. nvidia. com/ catal og/ resou rces/ nvidia: clara: clara_ ai_ brain_ 
tumor_ pipel ine/ files? versi on=0. 7.1- 2008.1)

DeepMedic
A multi-scale, 3D patch-based fully convolutional classification network. In 
contrast to U-net, DeepMedic does not have an up-sampling ‘side’. It pre-
dicts 1 × 1x1 voxels based on a high- and low-res input of 17 × 17x17 voxel, 
the low-res input uses a down sampled version of the image

25,52 (https:// github. com/ deepm edic/ deepm edic)

nn-Unet (‘no-new-Net’)
A U-net network architecture using a 2D, 3D and a cascaded U-net. Three 
U-net structures are trained simultaneously, and the best trained model is 
automatically selected

24 (https:// github. com/ MIC- DKFZ/ nnUNet)

https://wiki.cancerimagingarchive.net/display/Public/VASARI+Research+Project
https://wiki.cancerimagingarchive.net/display/Public/VASARI+Research+Project
https://ngc.nvidia.com/catalog/resources/nvidia:clara:clara_ai_brain_tumor_pipeline/files?version=0.7.1-2008.1
https://ngc.nvidia.com/catalog/resources/nvidia:clara:clara_ai_brain_tumor_pipeline/files?version=0.7.1-2008.1
https://github.com/deepmedic/deepmedic
https://github.com/MIC-DKFZ/nnUNet
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Model training and testing
Models were trained with three-class segmentations (WT, TC, ET) for each tumor. The scans were randomly split 
in 80% training, 5% validation, and 15% internal test data, see Table 1. Test data was used to assess the perfor-
mance of each model. Alongside the 15% internal test data, models were further assessed using an external test 
set of 158 GBM and 69 LGG patients from PICTURE hospitals not included in the training data, herein referred 
to as the external test set. This helped to gauge the generalisability and determine the future need for retraining 
algorithms on a new hospital’s unseen data.

In order to address missing sequences in the training data (Table 1), sparsified training was applied for all 
 algorithms23. This study showed that performance drops substantially if not all sequences are available. This 
could be solved by inserting empty (zero-filled) scans in place of missing sequences, see the first column of 
Fig. 1. During training, the T1w, T2w, and FLAIR were additionally set to zero with independent probabilities 
of 20%, in line with the estimated frequency of missing sequences in the clinical  setting23. We used the valida-
tion data to confirm convergence, the hyperparameters of all models were kept at the default values, as reported 
in the associated papers, or as used in the published code repositories (Table 2). All model training and testing 
was carried out using a machine equipped with an AMD Ryzen 9 3900X 12 core processor, 64GB RAM, and 1 
NVIDIA RTX3090 (24GB) graphics processing unit (GPU).

Model performance assessment
In line with the BraTS challenges, tumor segmentations for each algorithm were assessed using median and 
inter-quartile range Dice similarity coefficient (DSC)38 and Hausdorff distance (HD)39 for all experiments. Results 
were generated using methods described by Taha and  Hanbury40 and associated software.

Experiments and statistical analyses
Four separate experiments were performed. In experiment 1, DSC and HD from the internal and external test 
sets were analyzed separately for each model/tumor class using a paired two-tailed t-test to assess differences 
between each model. DSC and HD were also compared in the following experiments using independent samples 
(Welch’s) t-tests: experiment 2—GBMs vs LGGs on the internal and external test set to assess differences in per-
formance on the differing tumor grades; experiment 3—GBMs and LGGs from the internal vs external test sets 
to assess the change in performance when segmenting external hospital data not previously seen by the models; 
and experiment 4—GBM and LGG patients with incomplete vs complete imaging datasets in the external test set 
to assess the change in performance when segmenting patients with incomplete imaging datasets from external 
hospital data not yet seen by the models. A single Bonferroni correction was applied for each  experiment41. 
Outliers in box plots and overall outlier rates for each model and segmentation class were calculated using the 
IQR × 1.5 rule, i.e. outside [Q1 − 1.5 × IQR; Q3 + 1.5 ×  IQR]42,43.

Results
PICTURE dataset segmentations
See Fig. 2 for ground truth manual segmentation and automated segmentation examples from all three models. 
See Appendix 3 and 4 for GBM and LGG segmentation contours on a 4 T T1c scan along with two human experts’ 
manual segmentation, for all tumor classes.

Experiment 1—Segmentation performance on both test sets—which model achieved the best 
metrics?
Box plots showing median DSC and HD for all models and tumor classes on the internal and external test sets 
are presented in Fig. 3. nn-Unet achieved significantly higher DSCs than nvNet and lower HDs than both nvNet 
and DeepMedic for all tumor classes on both the internal and external test sets (p values < 0.0027). The raw 
metrics are displayed in Table 3.

Experiment 2—Segmentation performance on GBM vs LGG
Comparing performance between GBM and LGG, nn-Unet continued to provide the best quality results for both 
tumor grades, statistical comparisons are reported in Table 4. However, overall segmentation performance on 
the LGG was notably weaker than for GBM across all models, see Fig. 4 for box plots. DeepMedic showed the 
largest decrease in performance across all tumor classes.

Experiment 3—GBM segmentation performance on an external test set—do models need to 
be retrained for new hospital data?
As shown in experiment 1, nn-Unet produced the most favourable results when compared to the other models on 
both test sets. Table 3 shows the DSC and HD results for the internal test set (15 GBM, 23 LGG) and the external 
test set (158 GBM, 69 LGG) comprised of cases from hospitals not included in the training data, see Fig. 5 for 
box plots. nn-Unet showed the smallest absolute decrease and increase in respectively DSC and HD from the 
internal to the external test set for GBM WT, (DSC internal: 0.97, external: 0.95, p < 0.001*, HD internal: 7.34, 
external: 9.11, p = 0.958). All models’ DSC were slightly reduced on WT and TC for both HGG and LGG but 
remained within clinically-acceptable  range18,22,44. However, the segmentation performance of ET improved in 
the external dataset for all models.
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Experiment 4—Effect of missing MRI sequences on segmentation performance
Box plots showing DSC and HD of GBM and LGG patients with incomplete (44GBM, 55LGG) versus complete 
(114GBM, 14LGG) scans in the external test set are presented in Fig. 6 and Table 5 separately. For GBM, nn-
Unet achieved the highest DSCs and lowest HD for all tumor classes on both incomplete and complete scans, 
with the exception of nvNet reaching a slightly lower HD on TC for incomplete scans. There were no statistically 
significant differences between the two groups for all models.

Outlier rates
For outliers according to DSC, based the IQR × 1.5  rule42,43, nn-Unet had the lowest outlier rate of all the models 
on the external test set (158 GBMs and 69 LGGs) at 3.65% of segmentations, for DeepMedic it was 8.75% and 
nvNet 10.28%. Outlier rates across the tumor classes were equally low for nn-Unet at 4.78% WT, 2.53% TC and 
3.48% ET; DeepMedic recorded outliers at 7.88% WT, 7.24% TC, and 8.45% ET; and for nvNet 11.23% WT, 
9.13% TC and 10.21% ET. A similar pattern was observed for outliers according to HD: 2.65% for nn-Unet, 
36.21% for DeepMedic, and 6.78% for nvNet. Outlier rates across the tumor classes for nn-Unet at 3.58% WT, 
2.56% TC and 1.37% ET. Rates for DeepMedic were 36.22% WT, 39.98% TC and 21.25% ET; and for nvNet were 
8.98% WT, 8.02% TC and 5.58% ET.

Discussion
In this study, we compared the performance of three of the top performing BraTS challenge deep learning models 
for automated brain tumor segmentation in an external multi-centre hospital dataset (https:// www. pictu repro 
ject. nl). We extended the valuable work of the BraTS challenge by increasing the number of training cases and 
using a less strictly curated, and therefore more clinically-relevant,  dataset27–31. Subsequently, we tested the 
generalisability of the three models on an external test set comprised of data from hospitals not used in model 
training. Akin to the realities of clinical assessment, we further show the utility of these models when segmenting 
incomplete MRI datasets, due to acquisition protocols or patient-specific circumstances, sparsified training was 
applied to account for missing pulse-sequences23. Our results demonstrate that nn-Unet, when supplemented 
sparsified training, produces high DSC and low HD for glioma segmentations in real-world hospital data.

Figure 2.  GBM patient from the PICTURE dataset with missing FLAIR scan. Whole Tumor (WT—green) 
is the full extent of the tumor, including the tumor core, non-enhancing tumor and oedema, indicated by 
hyperintensity on FLAIR and T2w. Tumor Core (TC—red) is the main body of the tumor and most likely area 
of resection. The TC includes the enhancing tumor (ET—yellow) and necrosis. DSCs in this case for nn-Unet 
were WT = 0.93, TC = 0.94, ET = 0.83; nvNet WT = 0.89, TC = 0.92, ET = 0.80; and DeepMedic WT = 0.81, 
TC = 0.85, ET = 0.81.

https://www.pictureproject.nl
https://www.pictureproject.nl
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Clinical implications
Manual segmentations are the current gold standard in clinical practice, where an inter-rater variability of 
0.74–0.85 DSC has been previously reported in the BraTS  challenge18,22,44. All models’ median DSCs for both 
test sets were within this “clinically acceptable” inter-rater agreement range. However, manual segmentations are 
not a time-efficient process. Semi-automatic multi-class glioma segmentation using BrainVoyagerTM QX, ITK-
Snap and 3D Slicer is reported to take an average of 18–41 min per  patient45. On the whole, automated inference 
times in the current study were considerably lower than these reported semi-automated segmentation times, see 
Appendix 5 for all results. nn-Unet takes approximately 37 min of computer time to produce a segmentation 
using a CPU or only 4.5 min when a GPU is available, versus 18–41 min of human rater time.

The majority of median DSCs were within this clinically-acceptable range of 0.74–0.8518,22,44 when testing on 
an external test set with missing pulse-sequences, but there was a decrease in DSC for all models on the WT and 
TC, but not for the ET. The TC yielded the most accurate segmentations for both DSC and HD across models. 
Since the TC is the main body of the tumor and the most likely area of resection, our findings suggest that using 

Figure 3.  Box plots showing DSC and HD in internal- and external-test sets for all models and tumor classes. 
Left plots show the test set performance (n = 226) and the right plots show the performance in the external test 
set (n = 277).
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nn-Unet with sparsified training may be an optimal combination for pre-surgical applications, with acceptable 
results in 97.47% of patients, based on the outlier rate of 2.53% for nn-Unet.

nn-Unet yielded the fewest outliers in all categories across all models. Furthermore, it showed the smallest 
reductions in segmentation performance on the external test set. There were also no statistically significant 
changes in segmentation quality when comparing complete versus incomplete imaging datasets. In line with 

Table 3.  Median DSC and HD for all models and tumor classes on the internal test set GBMs (n = 15) and 
external GBMs test set (n = 158). Bold font indicates most favourable score in each scenario. Bonferroni 
adjusted p values at < 0.0027 comparing the performance of models on test set vs external test set were 
considered significant and are denoted by asterisk, *

Model DSC (IQR) HD (IQR)

Internal test set External test set t-test, p Internal test set External test set t-test, p

Whole tumor (GBM)

 DeepMedic 0.82 (0.10) 0.84 (0.13)  < 0.001* 58.11 (27.16) 45.08 (44.10) 0.018

 nn-Unet 0.97 (0.09) 0.95 (0.10)  < 0.001* 7.34 (10.21) 9.11 (10.30) 0.958

 nvNet 0.94 (0.11) 0.92 (0.15)  < 0.001* 8.06 (6.93) 12.83 (14.56) 0.087

Tumor core (GBM)

 DeepMedic 0.88 (0.09) 0.91 (0.14) 0.013 28.93 (37.26) 13.48 (48.96)  < 0.001*

 nn-Unet 0.97 (0.07) 0.96 (0.06) 0.478 4.12 (7.41) 4.47 (6.47) 0.374

 nvNet 0.96 (0.09) 0.94 (0.14) 0.052 5.00 (4.65) 5.38 (6.48) 0.099

Enhancing tumor (GBM)

 DeepMedic 0.76 (0.11) 0.84 (0.10)  < 0.001* 12.53 (16.27) 8.03 (40.38) 0.028

 nn-Unet 0.83 (0.06) 0.86 (0.10)  < 0.001* 5.14 (4.98) 6.44 (5.54) 0.536

 nvNet 0.77 (0.11) 0.84 (0.15)  < 0.001* 6.70 (4.35) 7.03 (5.17) 0.926

Whole tumor (LGG)

 DeepMedic 0.88 (0.15) 0.82 (0.18) 0.409 79.11 (75.16) 49.98 (61.10) 0.458

 nn-Unet 0.89 (0.08) 0.87 (0.11) 0.023 10.68 (5.18) 9.82 (7.30) 0.944

 nvNet 0.88 (0.12) 0.85 (0.13) 0.036 17.54 (8.93) 11.83 (7.86) 0.771

Tumor core (LGG)

 DeepMedic 0.86 (0.15) 0.80 (0.23) 0.095 32.52 (64.88) 42.48 (60.96) 0.731

 nn-Unet 0.89 (0.07) 0.86 (0.11) 0.029 10.70 (5.81) 9.71 (9.54) 0.277

 nvNet 0.86 (0.11) 0.82 (0.21) 0.049 11.19 (7.65) 15.38 (10.66) 0.240

Enhancing tumor (LGG)

 DeepMedic

N/A nn-Unet

 nvNet

Table 4.  DSC and HD for all models and tumor classes on all GBM’s (n = 173) and all LGGs (n = 92) in the 
internal test set plus external test set combined. Bold font indicates best score in each scenario. Bonferroni 
adjusted P values < 0.0027 comparing the performance of models were considered significant and are denoted 
by asterisk, *

Model DSC (IQR) HD(IQR)

GBMs LGGs t-test, p GBMs LGGs t-test, p

Whole tumor

 DeepMedic 0.84 (0.11) 0.83 (0.13)  < 0.001* 45.88 (40.27) 54.83 (53.28)  < 0.001*

 nn-Unet 0.95 (0.09) 0.95 (0.12) 0.054 8.94 (10.25) 8.39 (11.39) 0.415

 nvNet 0.92 (0.10) 0.93 (0.13) 0.189 12.56 (14.56) 10.44 (11.89) 0.226

Tumor core

 DeepMedic 0.91 (0.07) 0.82 (0.28)  < 0.001* 15.30 (35.47) 43.39 (58.78) 0.025

 nn-Unet 0.96 (0.07) 0.95 (0.24)  < 0.001* 4.47 (6.74) 5.15 (12.98) 0.156

 nvNet 0.94 (0.08) 0.93 (0.19)  < 0.001* 5.38 (11.12) 7.28 (15.83) 0.012

Enhancing tumor

 DeepMedic 0.84 (0.09) N/A N/A 8.09 (15.36) N/A N/A

 nn-Unet 0.86 (0.06) N/A N/A 6.40 (5.98) N/A N/A

 nvNet 0.84 (0.10) N/A N/A 6.96 (7.85) N/A N/A
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other recent work, this suggests not all of the MRI sequences are necessary when models are augmented using 
sparsified training, or similar  methods23,46,47. However, the lower WT DSCs indicate a heavier reliance on a full 
set of MRI sequences for WT segmentation, which is plausible given the hyperintensity of oedema on FLAIR and 
T2w. Previous studies have also used generative adversarial networks (GAN) to synthesise missing sequences 
with very promising  results48, therefore direct comparison of this approach and the sparsified trained used in 
the current study is encouraged.

Figure 4.  Box plots showing DSC and HD in LGG and HGG patients for all models and tumor classes. upper 
row shows DSC and the bottom row shows HD for all models and tumor classes on GBM (n = 15 test + 158 
external test, on the right) vs LGG (n = 23 internal test + 69 external test, on the left) patients.
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Interestingly, the nn-Unet original model used in this study came third and second in the 2017 and 2018 
BraTS challenges, respectively. NvNet won the 2018 BraTS challenge but generated the lower DSCs in the current 

Figure 5.  Box plots showing DSC and HD for all models and tumor classes on the internal test set. (a) shows 
GBMs (n = 15 internal test set cases plus 23 BraTS test set GBM cases, upper left plots) and external test set 
GBMs (n = 158, upper right plots). (b) shows LGG (n = 23 internal test, lower left plots + 69 external test, lower 
right plots).
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study. NvNet’s underwhelming results on incomplete datasets (Table 5) could be due to reduced effectiveness 
of the auto-encoder regularization in combination with sparsified training. DeepMedic won the 2017 BraTS 
challenge but generated the weakest HD in the current study, especially when predicting the LGG scans. The 

Figure 6.  Box plots showing DSC and HD for patients with missing pulse-sequences, and subjects with 
complete scans. For all models and tumor classes (HGG in panel a, LGG in panel b) on patients in the external 
test set with missing pulse-sequences in orange (n = 44GBM + 55LGG) and subjects with complete scans in blue 
(n = 114GBM + 14LGG).
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discrepancy in these findings demonstrates the value and relevance of testing models on unseen hospital-quality 
data with missing sequences, as we have in the current study.

Limitations
We performed segmentations in line with the same definitions of the BraTS challenge in order to facilitate 
comparison, see Fig. 1. However, these definitions may not be those used in the clinical setting. In the BraTS 
challenge, the WT includes oedema and associated infiltrations but in reality neurosurgeons and neuroradiolo-
gists would more often classify the edge of the “tumor core” as the clinical definition of the “whole tumor”, i.e. 
the enhancing and non-enhancing part of the core and its associated necrosis, not including oedema. While 
this definition might be a better representation of the truth, current MRI techniques make it very difficult to 
distinguish between oedema and non-enhancing infiltrative tumor. Further research is needed to accurately 
distinguish between non-enhancing tumor and oedema. Depending on the intended use case for automated 
glioma segmentations, having a less subjective, more consistent measurement may generate a more accurate 
representation of true tumor infiltration, and the associated increased (inter-rater) variability. The WHO glioma 
classification have been updated in 2021: WHO CNS5 has some variations by further advancing the role of 
molecular diagnostics in the classification of CNS tumors, but remains rooted in its established methods of 
histology and immunohistochemistry in tumor  characterisation49. The classification of GBM and LGG is very 
relevant to a model trained on combined LGG and GBM data, especially when it works on all gliomas.

Furthermore, we did not target hyperparameter optimisation for the sparsified training, nor did we make spe-
cific architecture optimisations for training and testing these models on a much larger dataset. Peak performance 
may be improved by doing so, but we chose not to tweak hyperparameters in order to promote generalisability.

Future work
In our study, we have only used pre-operative scans, while post-operative and longitudinal scans are also clinically 
relevant for radiotherapy planning, quantitative follow-up, and automatic growth detection; however, pre-oper-
ative baseline measurements are required for these assessments. Future work should follow the BraTS challenge 
latest aims and include disease progression monitoring and overall survival prediction. Furthermore, the current 
approach relied on having at least the T1c scan available. While this is a safe assumption for most retrospective 
cohorts, this may be different for future cohorts due to ongoing efforts to reduce gadolinium  use50. To support 
these sequences new models would have to be trained, however we have shown that sparsified training provides 
a simple solution to train models that are flexible to the available sequences.

The tested networks all use very different implementations, making it difficult to pinpoint which differences 
between the models best explain the observed performance differences. To gain a better understanding of which 
properties most affect performance, future development should focus on consolidating different models within 
a single framework and applying and testing changes gradually.

We have shown that sparsified training offers a simple solution to missing sequences that is easy to implement 
for different network architectures and frameworks. While dealing with missing sequences is important, and 
allows for the inclusion of larger (retrospective) cohorts, improving the availability of all sequences for future 
patients would tackle the problem at the root.

Table 5.  Median DSC and HD for all models and tumor classes on patients in the external test set with 
missing sequences (n = 44GBM + 55LGG) and subjects with complete scans (n = 114GBM + 14LGG). Bold font 
indicates best score in each scenario.

Model DSC (IQR) HD (IQR)

Incomplete Complete p Incomplete Complete p

GBM LGG GBM LGG GBM LGG GBM LGG GBM LGG GBM LGG

Whole tumor

 DeepMedic 0.80 (0.13) 0.82 (0.35) 0.85 (0.08) 0.87 (0.19) 0.27 0.23 46.69 (62.60) 48.22 (70.09) 43.945 (44.70) 77.06 (68.75) 0.47 0.4

 nn-Unet 0.96 (0.10) 0.95 (0.08) 0.94 (0.07) 0.93 (0.09) 0.58 0.53 9.11 (11.39) 7.81 (7.61) 9.16 (9.21) 10.15 (9.05) 0.68 0.58

 nvNet 0.92 (0.10) 0.93 (0.07) 0.92 (0.08) 0.89 (0.09) 0.52 0.49 12.77 (11.89) 9.27 (22.87) 13.13 (14.32) 10.44 (8.25) 0.16 0.16

Tumor core

 DeepMedic 0.90 (0.15) 0.82 (0.31) 0.92 (0.10) 0.71 (0.39) 0.27 0.21 30.80 (50.54) 48.22 (67.97) 9.59 (37.01) 30.53 (44.67) 0.33 0.23

 nn-Unet 0.96 (0.06) 0.95 (0.09) 0.96 (0.05) 0.93 (0.05) 0.94 0.86 4.06 (8.73) 6.00 (8.56) 4.58 (5.44) 7.63 (38.76) 0.77 0.65

 nvNet 0.94 (0.08) 0.93 (0.11) 0.94 (0.07) 0.90 (0.07) 0.86 0.78 5.29 (8.71) 8.54 (11.97) 5.39 (6.69) 7.74 (31.82) 0.75 0.61

Enhancing tumor

 DeepMedic 0.81 (0.14) N/A 0.85 (0.10) N/A 0.92 N/A 10.55 (23.10) N/A 7.51 (8.01) N/A 0.72 N/A

 nn-Unet 0.84 (0.10) N/A 0.87 (0.08) N/A 0.77 N/A 6.48 (8.21) N/A 6.40 (6.85) N/A 0.8 N/A

 nvNet 0.79 (0.15) N/A 0.85 (0.10) N/A 0.83 N/A 8.12 (6.22) N/A 6.56 (5.70) N/A 0.39 N/A
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Conclusions
In this study, we have shown the feasibility of using sparsified training alongside three top-performing BraTS 
challenge models to produce high-quality glioma segmentations of real-world hospital data with missing 
sequences. When segmenting scans with incomplete MRI sequences there was no statistically significant decrease 
in performance. While performance was slightly reduced in an external test set, the segmentations remained 
within clinically acceptable ranges. nn-Unet was the most consistent performer with highest DSCs, lowest HDs, 
tightest IQRs, and smallest outlier rates across the vast majority of experiments.

Data availability
The BraTS data used in this study is available through http:// brain tumor segme ntati on. org. The PICTURE data 
is available from the corresponding author, upon reasonable request.

Code availability
See Table 2 for links to all software availability and https:// gitlab. com/ pictu re- produ ction/ pictu re- qni- robust- 
glioma- segme ntati on/ for code used in this study. The nn-Unet model has also been integrated in the picture-
nnunet python package https:// gitlab. com/ pictu re- produ ction/ pictu re- nnunet- packa ge .
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