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Abstract

Energy and climate crises both require engineering solutions to the dependence on fossil fuels.
Bio-fuels can be a good alternative, because these fuels do not require significant change in
the automotive design and can be used in poorer countries, where electricity production is
fossil fuels based and electrical vehicles are not yet affordable.

This research was done to demonstrate applications of machine learning and chemical
informatics in fuel research in order to accelerate the development of the future renewable
fuels. At the moment these applications are limited to regression models of fuels physical
and chemical properties, which are tested and compared on different sets of test molecules.
This is contradictory to chemical informatics research, where models compared use the same
train and test sets of molecules.

Three major research directions were undertaken including interpretation of octane
quantitative structure activity model, establishing fuel properties applicability domain and the
inverse structure generative model. The aim of the first direction is to show that more insights
apart from predictions can be taken from the fuel structure activity models. Literature review
was taken to find suitable interpretation method. It was found that model and input agnostic
method is best suited since it does not introduce bias from particular algorithm type and is
chemically intuitive. The developed interpretation showed agreement with 6 known structure
knock ignition relationships.

The goal of the second direction goal was to find limitations on what fuel structure
properties can be predicted given the available data-sets. This was achieved by finding a
relationship between test compounds properties prediction errors and four similarity measures
to the training set of compounds. The outlier detection algorithms successfully found such a
trend, while the distance based approaches did not.

Lastly, the generative modelling goal was to suggest new fuel like structures, which
can not be found by intuition. Two models were investigated, a general adversarial (GAN)
network and auto-regressive LSTM model. The later model generated structures which were
not present in either of the generative modelling training set or the octane database, and
showed some traits of highly knock resistant compounds.





Impact Statement

This research focused on exploring applications of machine learning and chemical
informatics in the future renewable fuels for spark ignition engines. Throughout the research,
valuable scientific insights were gained. These included what fuel chemical structures
can be predicted given their properties datasets, interpretations behind fuels quantitative
structure activity models by methods used in drug discovery and the prototype fuels structure
generation by generative machine learning models. These results can benefit the academic
community and industrial companies as follows.

In academic research, the common methods in studying fuels properties are experiments
and molecular dynamics. Experimental work requires expertise, funding and time to con-
duct a study. Molecular dynamics methods despite being rigorous in terms of physics are
computationally expensive and require the knowledge of intermediate combustion reactions.
Future renewable fuels might come from sources not previously known. Consequently there
could be too many potential structures to make experiments. This research helps to evaluate
compounds before an experiment takes place, by finding their physical properties and the
research octane number. In addition this allows confidence in predictions to be found and
suggest new structures.

From an economic perspective, this research helps to reduce development and the cost
of exploring new fuels. The developed methodology can be applied to fuel development
in other sectors, such as aviation and shipping. Economic impact can be obtained with the
new fuels in areas where there is a lot of agricultural waste. From a societal perspective
development of new fuels can make environment-friendly transport affordable, since old
cars can be potentially retrofitted to use new bio-fuels. Additionally new bio-fuels do not
require substantial upgrade in the existing infrastructure, such as storage and transportation
for existing cars. In addition, retrofitting is positive for the environment since reduces the
need to spend energy and materials on new cars. On the other hand developed methodology
in this research can be applied to finding other biochemical materials. Lastly new bio-fuels
will reduce carbon dioxide emissions, which will help environment.

The research outcomes can be used as a basis of subsequent academic studies. For
example modification of current fuel structures by graph based generative models. Further
practical experiments can validate developed models and evaluate new structures by an
experiment.

Outputs of this work are also achieve impact in the fuels industry. In this regard, a
presentation of the results was made to expert technologies involved in developing new
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sustainable fuels for the transport industry at BP with follow-up meetings. Academic
dissemination will be achieved by journal publications for example a manuscript based on
chapter 5 and 6, which are in preparation.
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Chapter 1

Introduction

1.1 Motivation

The use of fossil fuels has been acknowledged by the wider academic community to contribute
to global warming [68]. The effects of global warming have become evident not only to
scientists but also the general public who have noticed weather pattern change over a 10 to
20-year period. In addition, fossil fuel sources are not evenly distributed around the world.
Such distribution leads to conflicts and economic dependence on fossil fuel suppliers.

Bio-fuels can be an alternative fuel source, which is any fuel derived from biomass. The
most common types of fuels are ethanol and bio-diesel. Bio-fuels can derived from vegetable
oils, animal fat and even algae and other organic materials. The choice of materials from
which to make bio-fuels and resultant fuels them-self is very large.

Despite the wide use of electric cars, these remain expensive and most parts of the
world, especially poorer countries, can not afford them yet. So the impact to climate
change by electric cars is very limited at the moment, since most parts of the world produce
electricity not by renewable sources. Furthermore bio-fuels do not require drastic change
in the automotive design process. That means poorer countries can use bio-fuels before the
electric car technology becomes more economic sufficient and the production of electricity
production becomes carbon neutral there. Additionally bio-fuels use was already trialled in
the aircraft industry, where the weight power ratio is critical and flying with electric motors
still requires substantial development.

Successfully designing and making effective of use of the next generation of liquid fuels,
which will be derived from a range of biomass and fossil sources, requires an understanding
of the interactions between structurally similar and dissimilar fuel components when utilised
in current engine technology [65]. Interactions between fuel components can influence the
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release of energy and production of harmful emissions in compression ignition combustion
through determination of the auto-ignition behavior of the fuel.

Such a relationship between fuel molecular structure and its properties is complex and
there are no analytical methods, which can guide the development of the future fuels. As a
result fuel development requires iterative experiments, which are costly and time consuming.
In addition there are too many potential combinations of fuel structures to test.

So the question arises of how to maximise the utilisation of the available fuels structure
property data. Machine learning algorithms become more widely used to model complex
empirical data. Chemical informatics is a branch of science, which studies the application
of machine learning methods in chemical structure property applications. Recent advances
in chemical informatics can therefore potentially provide better utilisation of fuel structure
property data. Therefore this research is focused on developing methodology to find better
alternative fuels.

1.2 Thesis aim

The aim of this thesis is to introduce modern chemical informatics and machine learning
applications to accelerate the development of future renewable fuels.At present applications
of these techniques are limited to octane number and other fuel properties regression models,
and where the accuracy models is compared on different sets of test compounds. This is
contradictory to practices in chemical informatics research, where the train and test set of
compounds are specified and model performance is compared on the same set of molecules.
However there are many research problems remain to be addressed in application of these
techniques to fuels research.

The first research aim is to get interpretations behind octane number model. Since such
interpretations can help to deliver insights of the relationship between fuels chemical structure
and ignition properties.

The second research aim is to find applicability domain of the fuel properties given
available data. This will ensure confidence in predictions. A model with high accuracy on
the test set does not guarantee that any compound can be predict confidently. Therefore
achieving this aim can define a line between what can be predicted and what needs to be
tested in experiment. Misleading predictions can result in experiment costs.

The last research aim is to generate new fuel like molecules, because the combustion
process is very complex and future fuels might have unexpected structures and consequently
biomass sources. Generative modelling of potential fuel structures can help to overcome
limitation in intuition and current knowledge of highly knock resistant fuel structures.
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1.3 Thesis plan

The overarching aim of this thesis plan includes a literature review, methodology, consequent
results chapters, and conclusion. The literature review starts with evidence of relationship
between octane number and fuels chemical structure. Subsequently, current experimental
methods in fuel combustion studies are presented. From there on the literature review
builds the link between limitations in experimental approach and modern practices in drug
development, where experiments have limitations due to a combinatorial explosion of possible
drugs to test. Later literature review finds the gaps in applications of drug design practices in
the fuel research. These include models interpretations, applicability domains and inverse
QSAR models.

The methodology chapter starts by summarising the modelling involved in this research,
including property predictions and inverse QSAR models with molecular representations
used. Later machine learning algorithms used in this research are explained. Thereafter the
methodology explains how models variable selection and validation were undertaken.

The next four chapters show the research results. The interpreting octane number
predictions chapter shows results of interpretation behind a classification model, which
predicts if a given compound has octane number higher or lower than of standard gasoline,
which is 95. The interpretations are later verified by known combustion mechanisms.

The fuel properties models applicability domain chapter shows the development of fuels
properties regression models including octane number, auto-ignition temperature, density,
viscosity, and heat of combustion. To establish these models applicability domain relationship
was found between models predictions errors on the test set compounds and their similarity
to the training set compounds.

The following chapter on generative modelling introduces concept of molecular structure
generation. The chapter aim is to develop generative model, which can alter chemical
structure for a given reward function. Here the model was tested by analytical chemical
properties such as logP value and the presence of a ketone group. This was done to verify
models structure targeted generation. Later the developed methodology will be used in the
next chapter to generate higly knock resistant chemical structures.

The last results chapter targeted generation of fuel molecular structures, with high
knock resistance , and demonstrates generated molecules with the octane number as the
reward function. Consequently the molecules were assessed in terms of their similarity
to data-sets used to train the generative model and the reward function. Lastly the unique
molecules, which were not present in both data-sets are evaluated in terms of known structural
characteristics of high octane value compounds.
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The conclusion chapter makes a summary of the literature review, than gives conclusion
to the main research findings. In addition it includes further work, which gives future research
directions based on the results obtained and the limitations in methodology used.



Chapter 2

Literature review

2.1 The chemical structure and octane number

The primary fuel property is the octane number (ON), which is a rating scheme representing
the resistance of a fuel to premature ignition when exposed to heat and pressure in the
combustion chamber of an internal-combustion engine. Higher the octane number higher the
resistance of a fuel to premature ignition, which is known as engine knock.

When engine knock takes place, there is an extremely rapid release of much of the
chemical energy in the end-gas, causing very high local pressures and the propagation of
pressure of substantial amplitude across the combustion chamber [171], which can result in
engine damage. The efficiency of the ideal Otto cycle, which describes spark ignition engine
thermodynamics is a function of the compression ratio (CR), but increasing compression
ratio is limited by the onset of the engine knock, which can be prevented by increasing fuel
octane number. Hence, in an ideal case, there is a direct connection between engine efficiency
and fuel octane number. In the real world, other factors also contribute to the relationship
and spark timing is the primary control variable that affects both knock and efficiency [44].

The octane number is measured against a prescribed binary mixture of isooctane (2,2,4-
trimethylpentane, ON = 100) and n-heptane (ON = 0) under standard conditions [125]. Two
octane numbers are routinely used to simulate engine performance: the RON simulates
fuel performance under low severity (at 600 rpm and 49°C air temperature) , whereas the
motor octane number (MON) reflects more severe conditions (at 900 rpm and 149°C air
temperature). Figure 2.3 adopted from [19] shows RON and MON measurements for various
paraffin’s.

The first observation in relationship between fuels chemical structure and tendency to
knock was done by [100]. Relationships were shown between different methods of engine
testing, between structure and knock for various chemical classes of compounds, between
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Fig. 2.1 Impact of the main carbon chain (highlighted in red) length on RON

Fig. 2.2 Relationship between the number of methyl groups and RON

the knock behavior of hydrocarbons straight and in solution, and between the nature of the
hydrocarbon and the extent to which tetraethyllead is effective in changing its antiknock
value. The observation was based on data for 325 hydrocarbons. Hydrocarbons tendency to
knock depends on main carbon chain length, branching and presence of cyclic groups. Figure
2.1 demonstrates that the longer the main carbon chain length the lower is fuel resistance to
knock.Figure 2.2 shows that with increased branching higher the fuels resistance to knock.
Rings are superior to unbranched chains, and unsaturation in a straight carbon atom chain is
advantageous, especially if the double bond is near the centre of the molecule [100].

In addition the octane number increases, as the branching point moves toward the centre
of a long chain in the alkane molecule [66]. The number of adjacent CH2 groups has the
highest but sigmoid influence, ON decreases with the separation between branches, ON
increases with the bulkiness of the branched structure. [125] .Highly unsaturated cyclic
compounds are the preferred octane boosters for modern SI engines [19]. Additional side
chains of any variety will dilute this strong performance. Multi-branched paraffin’s come in
distant second place, owing to their negligible sensitivity. Depending on the type and location
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Fig. 2.3 Impact of carbon number and double bond site on olefin reactivity [19]

of functional oxygen groups, oxygenates can have a beneficial, neutral or detrimental impact
on anti-knock quality [110].

These empirical observations indicate a complex relationship between fuels molecular
structure and the octane number. The following parts of the literature review explore
modelling techniques to establish an empirical relationship between fuels chemical structure
a respective octane number.

2.2 Current fuel methodology

Fuel ignition properties are either investigated experimentally or by kinetics modelling. This
chapter provides an introduction to these methods so their advantages and disadvantages can
be deduced.

Experiment

To compare fuels tendencies to knock experimentally, in-cylinder pressure readings versus
crank angle degrees are taken and analysed, because of the direct connection between knock
and pressure oscillations [25]. Figure 2.4 shows in-cylinder pressure readings taken during
normal combustion, with slight and strong knock.

These pressure readings are then processed by the pass-band filter utilising two cut of
frequencies low and high to isolate knock specific pressure oscillations from other sources
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Fig. 2.4 Cylinder Pressure versus Crank Angle (CA) [10]

of oscillation in the pressure measurements obtained, for example from electrical noises
[73]. The obtained pressure signal is then used to compute knocking index that is then be
compared to the knock threshold level [36]. Many kinds of indices exist. However there
is no single index that can be used as standard knock detection index. This is because of
complexity of the knock phenomena and difficulty setting predefined thresh hold. Maximum
amplitude of pressure oscillation (MAPO), is the most widely used knock index [51], which
is illustrated in Figure 2.5.

Integral of modulus of pressure oscillations (IMPO) is another knock index derived
from the filtered pressure signal (Figure 2.5). It represents the energy contained in the high
frequency oscillations of the cylinder pressure signal, which occurs due to knock [24]. It’s
worth noting that MAPO and IMPO values can be different for the same pressure cycle
depending on pass-band filter low and high cut off frequencies. These frequencies can be
found by applying fast Fourier transform (FFT) to the cylinder pressure signal. In addition,
the value for the cut of frequencies depends on engine operating conditions. Other knock
detection methods based on in-cylinder pressure signals are summarised in Table 2.1.

However knock indices strongly depend on engines operation conditions. Critical MAPO
values for different engine operating conditions, including engine speed and air to fuel ratio
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Fig. 2.5 Pressure and band-bass filtered signal for knock detection and knock intensity
definition. [121]

Object of analysis Knock onset indicator

Raw pressure signal Crank angle at max. amplitude
Band-pass filtered pressure signal Crank angle at max. amplitude or ampli-

tude exceeding a threshold value
1st derivative of filtered pressure signal Crank angle at max.
3d derivative of filtered pressure signal Crank angle at max. negative amplitude
Heat release rate (calculated from in-
cylinder pressure)

Crank angle at abrupt rise of heat release
or at change to high frequent signal com-
ponents

Table 2.1 Knock detection methods based on in-cylinder pressure measurement [92]
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Fig. 2.6 MAPO values vs engine speed and air to fuel ratio [92]

are shown in Figure 2.6. Apparent in Figure 2.6 is an increase in MAPO with engine speed
increase and λ mixture richness.

Since engine operating conditions influence knock indices, researches attempted to model
this factors. The influence of exhaust gas recirculating system (EGR) on knock was modelled
by [33]. Alternatively, to in-cylinder pressure trace band-pass filtering and computing knock
index from it, principal component analysis was applied to raw in-cylinder pressure trace in
[122]. The rational behind the proposed eigen decomposition of pressure signal lies in fact
that a given pressure profile p(θ) can be described as a liner combination of basis functions
in equation 2.1.

p(θ) =
l

∑
i=1

γi p̄i(θ) (2.1)

Where l is (θmax −θmin)/∆θ = 720 is the length of pressure trace vector and p̄i(θ) are
basis functions found by singular value decomposition (SVD) on knock pressure data and
γi are scalar coefficients. Figure 2.7 demonstrates first this decomposition of in cylinder
pressure trace by first three basis functions with the largest singular values.
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Fig. 2.7 Singular value decomposition of in cylinder pressure trace [122]

Kinetic modelling

Chemical kinetic modeling is an important tool in the analysis of many combustion systems.
Its a branch of physical chemistry that is concerned with understanding the rates of chemical
reactions. Each fuel molecule combustion has its own reaction mechanism, which is the step
by step sequence of elementary reactions by which overall chemical change occurs [104].
The following Figure 2.8 demonstrates general scheme of low temperature fuel oxidation.

Chemical kinetic reaction mechanisms are strongly hierarchical in that mechanisms for
the combustion of more complex fuels contain within them sub mechanisms for simpler fuel
molecules [35]. These reaction mechanisms can be substantially complex. For example,
the combustion mechanism for alkylbenzenes [11] at engine relevant conditions consist of
150 species and 759 reactions. Additionally combustion mechanism for small molecule as
ethanol at engine relevant conditions includes 67 species and 1016 reactions [138].To verify
kinetic modelling experimentally shock tubes are used (Figure 2.9).

As shown in Fig. 2.9, a gas-driven shock tube consists of a long tube with a driver section
and a driven section separated by a diaphragm. The driven section is filled with test gas, i.e
fuel air mixture,whereas the driver section is filled with inert gas. The pressure difference
between the two chambers causes the diaphragm to move to cause compression in the test
gas mixture. This makes the test gas mixture temperature rise. Therefore the pressure and
temperature can be controlled for the test gas. Consequently, conditions similar to internal
engines can be created.
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Fig. 2.8 General schematic mechanism for fuel oxidation [38]

Fig. 2.9 Schematic of the shock tube apparatus [155]
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To conclude chemical kinetic modelling involves finding complex reaction mechanisms,
which are verified by the shock tube. However, each new fuel molecule requires finding
its own unique reaction mechanism. In addition despite the shock tube giving flexibility in
terms of pressure and temperature it still can’t replicate engines conditions completely.

2.3 QSAR in pharmaceutical industry

This chapter will draw insights from pharmaceuticals to fuel research. The common theme
is the chemical structure to property relationship, where the properties are bio-activity and
ignition qualities respectively. In both fields, there is no analytical solution, which can
provide an exact answer for these properties given chemical structure. Therefore trial and
error process is common in both fields. However advances in modelling these relationships
were made in the pharmaceutical industry, whereas fuel research lugs with this respect.

The drug development process is a major challenge in the pharmaceutical industry since
it takes a substantial amount of time and money to move through all the phases of developing
a new drug. In the past, the discovery of new drugs was made through random screening
and empirical observations of the effects of natural products for known diseases. This
random screening process, although inefficient, led to the identification of several important
compounds until the 1980s [102]. However the number of potential drug-like molecules was
estimated to be in order 1033, between 1018 and 10200 , 1060 by [128], [43], [132]. These
results highlight theoretical limitations in the random screening process.

Currently, this process is improved by quantitative structure activity modelling (QSAR).The
structure-activity models utilise a paradigm that similar compounds exhibit similar properties
[81]. QSAR models are built by training machine learning models with chemical data-sets.
The drug development process starts with the identification of bioactive compounds followed
by lead optimization and then by clinical trials with regulatory approval.QSAR modeling
helps to prioritize a large number of chemicals in terms of their desired biological activities
as an in silico methodology and, as a result, significantly reduces the number of candidate
chemicals to be tested with in vivo experiments [91].Vast libraries of “drug-like” chemicals
[116] were created by QSAR models. The lead optimization process involves altering se-
lected biocative compounds to improve their physio-chemical properties. The QSAR models
help to guide lead optimization by predicting altered compound physico-chemical properties.
Figure 2.10 illustrates the schematics of the computer aided drug development process.

Advances in application of structure activity modelling includes finding novel antimalarial
compounds [169]. Schistosomal is another tropical decease, whose treatment relies on one
drug at the moment. Discovery of potential candidates to treat this disease were found by
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Fig. 2.10 The role of computational modelling in the early-stage drug-discovery process
[149].

QSAR models [117]. Additionally model to find compounds suitable to treat Mycobacterium
tuberculosis was developed by [3]. In response to the ongoing COVID-19 pandemic, there is
a worldwide effort being made to identify potential anti-SARS-CoV-2 therapeutics. QSAR
model was developed to identify novel drug candidates by [74]. QSAR models are regulated
in phramaceutical industry. OECD states the main principles in QSAR validation [2]:

1. a defined endpoint

2. an unambiguous algorithm

3. a defined domain of applicability

4. appropriate measures of goodness-of–fit, robustness and predictivity

5. a mechanistic interpretation, if possible

The intent of principle 1 (defined endpoint) is to ensure clarity of what is being predicted
by a given model. If the training set endpoint values were obtained by experiment, the
experiment protocol must be stated. The second principle insures transparency in the model
development and that the model results are reproducible.Since QSAR modeling assumes that
new molecules to be predicted will have some structural features in common with the training
set that they are based on. If the new molecule is sufficiently different, one will obtain
an unreliable (or even meaningless) prediction [60].Therefore the third principle ensures
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that model applicability domain is defined and molecules predicted fall within it. The forth
principle states robustness in model validation and the model productivity’s is established
by external validation with detailed guidance in validation procedure. The last principle
recognises that is not always possible to give interpretations to QSAR model from scientific
point view. However the intent of principle 5 is to give some consideration to the possibility
of a mechanistic association between chemical structure descriptors used in model and the
end point values being predicted and to ensure that this association is documented.

2.4 Algorithms

Algorithms with potential for use in fuel QSAR and molecular generative modelling are
introduced in this sub-chapter. These include support vector machines, tree-based models
and neural networks.

2.4.1 Support vector machine

Support vector machine models can be used for regression and classification tasks , such
as predicting fuel properties and assigning probabilities of a given compound exceeding
an octane number threshold. The description of SVM will start with the classification
formulation and the regression modification will be given later. Such an order is chosen for
convenience in describing algorithm principles.

Given a set of samples (x1,y1),(x2,y2), ...,(xn,yn) where y ∈ (1,−1), SVM classification
model aims to find a hyper-plane, which separates the two classes of points by maximum
margin. Figure 2.11 shows blue and red data points, which correspond to two different
classes. SVM finds a hyperplane, the green line shown in Figure 2.11, which separates the
two classes of points by a maximum margin, shown by two black lines in Figure 2.11. The
algorithm then assigns class yi

pred to point xi by signed distance between the point and the
hyper-plane as shown in Equation 2.2

yi
pred = sign(W⊺xi +b) (2.2)

Where W is a vector normal to the hyper-plane and b is the distance between the origin
and the hyper-plane. These parameters are found by solving constraint optimization problem
2.3. Where the first statement refers to maximizing the margin width equal to 2

∥W∥2
, by

minimizing its denominator. The constraints in 2.3 are attributed by the correct classification
of points, which are checked by multiplying predicted class with the true label yi.
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Fig. 2.11 SVM algorithm diagram

 min
W,b

W⊺W

yi(W⊺xi +b)≥ 1 ∀i
(2.3)

This optimization problem is solved by quadratic programming [67], where solutions for
W and b depend on finding the support vectors, shown by bold crosses in Figure 2.11. These
support vectors are actually data points, which provide the maximum margin. Therefore it
is important to emphasize that these data points determine the SVM algorithm predictions.
For example, it becomes obvious that SVM is highly sensitive to outliers in data, which can
happen to be the support vectors. On the other hand, SVM has the advantage of not assuming
the data distribution form, since its predictions are based on few data points [105].

In addition the data points might not be linearly separable as in Figure 2.11. This leads to
two options. The first option is to relax constraints in 2.3 to allow some miss classification
illustrated by equation 2.4. 

min
W,b

W⊺W +C
n

∑
i=1

εi

yi(W⊺xi +b)≥ 1− εi ∀ i
(2.4)

Where εi is slack variable assigned to data point i, with value 0 if the data point was
classified correctly and |yi

pred −yi| otherwise. Parameter C trades off weight to put onto each
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of two criteria, small C means more weight to large margin over small errors, while the effect
of large C is opposite. While slack variables ε allow for overlapping class distributions, this
framework is still sensitive to outliers because the penalty for misclassification increases
linearly with ε .

The second option to deal with overlapping classes is to transform data points into higher
dimensions, where the data points are linearly separable. Many techniques exist for such
transformation, but they are common with the fact that SVM requires computation of the
inner product only, as can be seen by W⊺W term in equations 2.3 and 2.4. Therefore instead
of mapping data points into higher dimension and then computing the inner products in two
steps, inner products can be modified directly, without explicitly finding data-points higher
dimensional representations. Modified inner products are called kernels. Any symmetric
function that is positive definite can be used as kernel. Equation 2.5 illustrates polynomial
kernel as example.

K(x,y) = (1+ x⊺y)s (2.5)

To apply SVM to regression problems only slight modifications in its formulation are
needed, which result in the optimization problem described by equation 2.6

min
W,b

{W⊺W +C
n

∑
i=1

(ξi +ξi)}

yi ⩽ yi
pred + ε +ξi ∀ i

yi ⩾ yi
pred − ε −ξi ∀ i

(2.6)

Where the objective in 2.6 is to maximize the margin width and minimize the sum of slack
variables ξi and ξi, which are assigned to each data point, based on accuracy of predictions.
The second and third lines in 2.6 correspond to slack variables conditions, which penalize
predictions with absolute difference between predicted and real values |ypred

i − yi|> ε .
To conclude, tuning a support vector machine algorithm requires finding an appropriate

kernel function, which acts as a parameterized feature transformation. For example, s variable
in polynomial kernel (2.5) controls the complexity of feature transformation. Where one of
the main goals of feature transformation is to make data linearly separable. Tuning parameter
C (2.6) trades of between correct data points location with respect to the margin (Fig 2.11) and
its width to prevent over-fitting, since only the support vectors close on the margin are used
for predictions. In SVM regression problems parameter ε controls data points contribution to
the total cost function (summation in 2.6).Therefore ε value affects the number of support
vectors selected. Larger ε values will result in smaller number of support vectors and vice
versa. Hence, both C and ε values affect model complexity, but in a different way.
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2.4.2 Tree based models

Decision tree-based models, random forest Breiman [26] and gradient boosting machines
[50] have a variety of potential use in fuel QSAR modelling. Both algorithms have decision
tree subroutines, which differ in how they combine multiple decision trees.

At the beginning of this sub-chapter, the decision tree subroutine will be explained.
Consequently, ensemble methods of the decision trees will be described. The sub-chapter
will conclude with a random forest and gradient boosting algorithms summary of parameters,
derived from the decision tree subroutine and the ensemble methods.

Decision tree

Given data samples (x1,y1),(x2,y2), ...,(xn,yn), decision tree is a model, which partitions
the input space in X domain into regions and assigns them a constant value in Y co domain.
Fig 2.13 shows the example of a decision tree with the tree depth td = 2 applied to sinus
data, where the decision tree model is shown by 4 red lines and the sinus data by blue points.
Decision trees grow recursively by splitting each region in the X domain into left and right
regions,where the final number of regions is equal to 2td . Fig 2.12 shows example of a
decision tree growth applied to the sinus data. The first split was at x = 2.76. The obtained
left and right regions, which are (x < 2.76) and (x > 2.76) were partitioned again at x equal
to 0.3 and 6.22 respectively. Each decision tree split location was found by solving the
following optimization problem

minx j {∑xi∈{x|x<x j} (yi − c1)
2 +∑xi∈{x|x>x j} (yi − c2)

2}

c1 = ave(yi|x < x j)

c2 = ave(yi|x > x j)

(2.7)

Where the minimization objective is the sum of mean squared errors between data point
values in right and left regions with constants c1 and c2 [77]. The second and third lines in
optimization 2.7 show that c1 and c2 are means of the data points Y values in the left and
right regions. In Figure 2.12 vertical dashed lines show the locations of the splits, while the
horizontal lines show the regions means.

The question arises of how large should the tree grow. Clearly, a very large tree might
over-fit the data, while a small tree might not capture the important structure. Therefore
decision tree parameters are mostly concerned with when to stop the tree growth. The first
parameter is the tree depth td. Alternatively, the tree growth can be stopped by the minimum
number of samples nmin in decision tree leafs. The number of samples in decision tree leafs
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Fig. 2.12 Decision tree prediction

are 3,11,17 and 19 in Figure 2.13. In regression problems with more then one input variable,
decision trees are controlled by the maximum number of parameters considered for split
[77].

Combining decision trees

Random forest algorithm uses a bagging aggregation method to combine the decision trees.
This technique is used to reduce variance of predictions made by decision trees. Given
a standard data-set D of size n, bagging generates B new training sets of size m each, by
sampling from D uniformly and with replacement. This sampling technique is known as
bootstrapping. Thereafter B decision trees Tb are fitted into the generated data-sets and the
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Fig. 2.13 Decision tree with 4 leafs fitted to sinusoidal data

final prediction of a random forest algorithm is given by the predictions average shown by
equation 2.8

ypred(x) =
1
B

B

∑
b=1

Tb(x) (2.8)

A gradient boosting machine builds an additive model sequentially in forwarding stage
manner with boosting method. The idea behind boosting is to combine many weak predictors
to make a good one. Compared to the random forest (2.8), the gradient boosting machine
uses a weighted average (2.9), whose terms are found by the Ada-boost algorithm [49].

ypred(x) =
B

∑
b=1

γbTb(x)+ γ0 (2.9)

Algorithm 1 Ada boost
Input: training data (x1,y1),(x2,y2), ...,(xn,yn)

1: γ0 = minγ ∑
n
i=1 L(yi,γ)

2: F0(x) = γ0
3: for b = 1,2, . . . ,B do
4: for i = 1,2, . . . ,n do
5: rib =−[

∂L(yi,Fb−1(xi))
∂Fb−1(xi)

]

6: end for
7: Fit decision tree Tb on data (x1,r1b),(x2,r2b), ...,(xn,rnb)
8: γb = minγ ∑

n
i=1 L(yi,Fb−1(xi)+ γTb(xi))

9: Fb(x) = Fb−1(x)+ lrγbTb(x)
10: end for

The first line in Algorithm 1 computes the γ0 constant in equation 2.9 by finding such γ

that gives the minimum mean squared error between data point targets y1, ...,yn and itself.
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Parameter APIs input
Tree based parameters

Tree depth max_depth
Minimum leaf samples min_samples_leaf
Number parameters for split min_samples_split
Number of trees n_estimators

Random forest specific
Number of data points in bootstrapped samples max_samples

Gradient boosting machine specific
Learning rate learning_rate

Table 2.2 Random forest and Gradient boosting machine parameters

The next line assigns first predictor F0 constant value γ0.For loop 3-10 runs B times and
updates predictor function Fb recursively by adding one decision tree in each loop [77]. B is a
parameter to tune. Line 4 for starts inner loop which creates each decision tree its own targets
y1b, ...,ynb by transforming the data targets y1, ...,yn by equation in Line 5. This equation
finds gradient of mean squared error between the data targets and the predictions made by
composition of already fitted decision trees Fb−1 with respect to their predictions. Line 7 fits
a decision tree to the created targets y1b, ...,ynb. This tree is later added to composition of
decision trees Fb−1 in Line 9 with learning rate lr times the coefficient γb found by solving
optimization task in Line 8. The task in line 8 means fining such γ that adding tree Tb

to composition of previous b−1 tree reduces the error prediction. The learning rate lr is
regularization parameter, which prevents over fitting by partially minimising contribution of
new tree.

It is important to note the differences between random forest and gradient boosting
algorithms when increasing the number of decision trees B. With increased B a random forest
will increase its accuracy on train data, however, after a certain tree number that accuracy will
converge. This is because increasing the number of trees will make bootstrapped samples
similar and hence the trees and therefore their average will not change much [99]. On the
other hand, gradient boosting machines will try to extract as much accuracy as possible on
each added decision tree and therefore can over-fit. However larger than a necessary number
of trees in the random forest will lead to increased computational costs without accuracy
gains [120]. These algorithms were implemented with scikit-learn library Buitinck et al. [29].
Parameters which were considered for tuning are listed in Table 2.2
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2.4.3 Neural Networks

Three types of neural networks are described in this section, including feed forward, recurrent
and graph neural networks, which were applied to molecules represented by descriptors,
smiles strings and graphs respectively. The feed forward, recurrent and graph convolution
functions sub chapters describe these networks forward propagation. These networks were
trained iteratively with gradient-based optimizers. Back-propagation and optimizers subchap-
ters describe the principles behind neural networks training and introduce parameters, which
control the training process. A central problem in machine learning is how an algorithm
performs on unseen data. The strategies used to reduce the test error in neural networks
training are explained in the regularization sub-chapter. Heuristics used to speed up neural
networks training are given in the convergence acceleration sub-chapter.

2.4.3.1 Feed forward functions

Feedforward neural networks can be described as a series of functional transformations
(2.10). Where f (n) is called nth layer and the total number of transformations n is the model
depth. The inputs to the model are vectors, matrices and tensors, while the outputs can be the
same type as inputs and scalars additionally.

f (x) = f (n)( f (n−1)...( f 0(x))) (2.10)

Each functional transformation in a feed forward network consist of linear transformation
parametirised by weight matrix Wn ∈ RN×M and bias vector bn ∈ RM×1, followed by non
linear activation function h (2.11). Where N is the input vector size and M is the output
vector size. Commonly M refers to the number of layer neurons. The neural network learning
goal is to find such weighs and biases (Wn,bn),(Wn−1,bn−1), ...,(W0,b0) that function 2.10
gives good approximation of the data [71].

f (n)(x) = hn(W T
n x+bn) (2.11)

Figure 2.14 illustrates flexibility of neural network to approximate 4 data sets generated
by parabola, sinus, heavy side and modules functions with noise added. The neural network
had only 2 layers, with 3 neurons each, with hyperbolic tan activation function in the first
layer and identity in the last. Mathematically such description means that the model depth
n = 2, W0 ∈ R1×3,b0 ∈ R3×1 and W1 ∈ R3×1,b1 ∈ R, while h0(x) = tanh(x),h1(x) = x
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Fig. 2.14 Neural network with 2 layers with 3 neurons each fitted to synthetic data with
Gaussian noise

2.4.3.2 Recurrent functions

Recurrent neural networks, or RNNs are a family of neural networks for processing se-
quential data, which includes smiles string molecular representation. RNNs keep hidden
state compared to regular feedforward neural networks, which allows tracking on previously
seen symbols. This feature leads to learning chemical rules in smiles strings by the model
[13]. RNN take sequence of vectors X = (x1, . . . ,xn) and hidden state vector h0 as input and
outputs sequence of vectors Y = (y1, . . . ,yn). These computations are done recursivelyht = R(ht−1,xt)

yt = O(ht)
(2.12)

The recursive computation leads to parameters being shared between different steps in
sequential input X and output Y . Parameter sharing allows for application of the model to
sequences of different length and generalize across them. Consequently such property makes
possible to model molecules with different number of atoms. Where each tth smiles symbol
represents input xt . Recurrent neural networks configurations differ in terms of functions R
and O.

RNNs with LSTM cells [69] can be used to compute hidden state ht , where function R
(2.12) is described by series of transformations (2.13) applied to current input xt , previous
hidden and cell states ht−1, ct−1. The memory cell ct encodes the information about inputs
that were observed before step t.
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it = σ(W T
ii xt +bii +W T

hi ht−1 +bhi)

ft = σ(W T
i f xt +bi f +W T

h f ht−1 +bh f )

ot = σ(W T
io xt +bio +W T

hoht−1 +bho)

gt = σ(W T
ig xt +big +W T

hght−1 +bhg)

ct = ft ⊙ ct−1 + it ⊙gt

ht = ot ⊙ tanh(ct)

(2.13)

The symbols σ and ⊙ indicate sigmoid function and the Hadamard product. Where
it , ft ,ot are input, forget and output gates. The input gate controls the extent to which new
input influences the cell state and the forget gate controls what to keep from previous cell
state. While the output gate controls to what extend updated cell state influences computation
of new hidden state.

2.4.3.3 Graph convolution functions

The advent of deep learning has led to extensive improvements in the technology used to
recognize and utilize patterns in data, particularly convolutions neural networks (CNNs) [93]
successfully leverage properties in the euclidean domain, such as text, images. These CNNs
consists of convolution and pooling layers, which exploit the shift-invariance property and
compositionality of grid structured data. As a result, CNN’s perform well with a smaller
number of parameters compared to dense only (2.11).

Graph neural networks (GNNs) were developed by replicating (CNNs) properties to
graphs [140]. This section introduces graph neural networks (GNNs), which operate on
graph-structured data, such as molecular graphs. Graph neural network configuration depends
on analytical tasks, which are classified as node, edge and graph level [162]. Graph level
tasks are those where the main goal is to find a function by utilising GNNs, which maps a
graph to corresponding scalar or vectors. Where the first case refers to GNNs predicting fuel
properties, while the second to the molecular generative model.

GNNs architecture for graph level tasks is similar to CNNs, where convolution and
downsampling pooling layers pair is repeated several times, then followed by readout pooling
layer, which in turn is followed by a sequence of dense layers (2.11) This subchapter will
explain graph convolution and pooling layers. Figure 2.15 illustrates an architecture of a
typical graph convolution neural network. Graph neural networks architectures are differ in
terms of choice of graph convolution and pooling layers [172].



2.4 Algorithms 25

Fig. 2.15 Graph classification [162]

Convolution

Graph convolutions work by aggregating neighboring nodes information. Convolution layers
take graphs adjacency matrix A, with node feature matrix Xm as input and output the graph
with the same A and updated node feature matrix Xm+1. The goal is to find each node vector
representation, i.e rows of Xm+1 , which are derived from the each node’s features in its
neighborhood [170]. Given node i, its neighborhood N(i) is defined as set of neighboring
nodes, which can be reached by any edge coming from the node i. From chemistry perspective
it is a set of atoms, which can be reached by single chemical bond from atom indexed i [131].

N(i) = { j ∈V |(i, j) ∈ E} (2.14)

Whereas V and E are sets of vertices and edges in graph, where node i is located. In this
research V and E were atoms and edges of molecules. Let xi be nodes i vector representation
and ei j is the edge between nodes i and j, then graph convolution can be defined as

xi = γ(□ j∈N(i)(φ(xi,x j,ei, j))) (2.15)

Where □ denotes a differential and permutation invariant function, such as sum,mean or
max, φ and γ are differential functions, usually feed forward dense neural network (2.10).
Graph convolution functions are different in terms of □, φ and γ formulations [47].

In addition convolutions layers are categorized into spectral and spatial approaches.Spectral
approaches have mathematical foundation from graph signal processing. Node features are
treated as signals over graph vertices. The goal of spectral approaches is to find spectral filer
function over these signals in Fourier domain [89].
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Fig. 2.16 Example of relational GCN applied to 2-methylpentane-1,3 diene

Learned spectral convolution filter depends on graph Laplacian eigenvalues, which make
them inappropriate for inductive learning tasks since the laplacian graph matrix depends on
graph topology. Therefore learned spectral convolution filter function may not be applicable
to graphs with different typologies [28]. This can be a problem for processing molecular
structure data since molecules have different structural topology. On the other hand spatial
convolution filters do not utilise eigendecomposition of graph Laplacian matrix and operate
directly in the spatial domain. These filters define convolutions based on nodes spatial
relations. A relational graph convolution layer [143] can take into account different kinds of
edge types, which resembles the valence model.

xi = θrootxi + ∑
r∈R

∑
j∈Nr(i)

1
|Nr(i)|

θrx j (2.16)

Where Nr(i) is subset of neighborhood N(i), which includes ith neighboring nodes, such
that are connected to it by edges type r. The edge type set R consisted of single, double,
triple and aromatic molecular bonds. Here the aggregation function □ is the weighted sum,
where the weighting is given by the inverse number of points |Nr(i)| in each neighbouring
subset. The function φ is a linear transformation parameterised by weights θr and θroot ,
where the index is attributed to the type of connection between the graph nodes. Figure 2.16
demonstrates the convolution given by equation 2.16 applied to 2 -methylpentane-1.3 diene.
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Downsampling Pooling

Similarly to convolutions, pooling techniques were extended from CNNs to GNNs [170].
Downsampling pooling takes a graph as input and outputs a coarsened graph with fewer
edges and nodes. It is used to reduce the number of hyperparameters and increase model
generalization and achieve permutation invariance. The graph coarsening works by clustering
graph nodes and then using these clusters as new nodes, where each coarsened graph nodes
vector representation x is given by

x = P({ f (x
′
) : x

′
∈C(x)}) (2.17)

Where C(x) is the set nodes in original graph which were clustered together to make the
coarsened graph node x. f is a functional transformation applied to the original graph nodes
vector representation and P is the permutation invariant function, such as mean/max/sum.

The main difference between various pooling techniques is the choice of graph coarsening
process, and what graph attributes determine this process. A differential pooling layer [166]
can learn how to coarsen graph instead of a predefined procedure. Equations 2.18 demonstrate
coarsened graph adjacency A(l+1) and node feature X (l+1) matrices computations by the
differential pooling applied to a graph represented by adjacency matrix A(l) and node feature
matrix x(l). 

S = σ(GNNclust(A(l),X (l))

Al+1 = ST A(l)S

X l+1 = ST X

(2.18)

Where S ∈ RN×C is an assignment matrix with number rows equal to the number of nodes
N in original graph and number of clusters C. Each ith row in S gives original graph node i
probability being assigned to a particular cluster.GNNclust is a graph convolution function
(2.15), which computes logits used by softamx function σ to compute these probabilities.

Read-out pooling

Read-out or global pooling is used to find whole graph vector representation, which is usually
followed by dense layers (2.11) [59]. In general global pooling is defined by

hG = R({hv : v ∈ G}) (2.19)
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Where hG is a graph G vector representation obtained by applying read-out function
to graphs vertices v vectors representations hv. The simplest case of read out function is a
summation. Read-out layers are different in choice of aggregate function R.

2.4.3.4 Back-propagation

Forward propagation methods in neural networks can be applied to molecules represented
by vectors, sequences and molecular graphs, I,e has given network f with parameters θ

how predictions f (x;θ) are computed. During training forward propagation computes these
predictions on data sampled from the training data set and then the average scalar cost L
between these predictions and true targets is computed

L = E(x,y)∼pdata
L f unc( f (x;θ),y) (2.20)

Where x is model input, i.e molecules represented by descriptors, smiles or molecular
graphs and y the molecular properties. L f unc is a loss function, which measures the quality of
predictions.

The back-propagation algorithm is used to compute gradients of the scalar cost L with
respect to neural network weights θ . The backpropagation algorithm is based on the differ-
entiation chain rule. Consider abstract diagram of a typical neural network with model depth
k (Fig. 2.17), where X is model input, θi−1 and fi are ith layer parameters and output, while
L is the scalar cost. The network layers are shown by rectangular boxes, with errors pointing
at them illustrate inputs to each layer.

✒✑✓✏
X ✲

✻

θ0

✲✒✑✓✏
f1

✲

✻

θ1

...

✻

θk−2

✲✒✑✓✏
fk−1

✲

✻

θk−1

✲✒✑✓✏
fk

✲✒✑✓✏
L

Fig. 2.17 Forward pass in multi-layer network

To get the gradients to the neural network weights θ0,θ1, ...,θk−1, partial derivatives
of L with respect to each layer are needed.The chain rule allows to determine the partial
derivatives as
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∂L
∂θk−1

=
∂L
∂ fk

∂ fk

∂θk−1
(2.21)

∂L
∂θk−2

=
∂L
∂ fk

∂ fk

∂ fk−1

∂ fk−1

∂θk−2
(2.22)

∂L
∂θk−3

=
∂L
∂ fk

∂ fk

∂ fk−1

∂ fk−1

∂ fk−2

∂ fk−2

∂θk−3
(2.23)

∂L
∂θi

=
∂L
∂ fk

∂ fk

∂ fk−1
...

∂ fi+2

∂ fi+1

∂ fi+1

∂θi
(2.24)

The red terms are partial derivatives between layers outputs and inputs. These derivatives
are a function of network weights and the layers functional form. This leads to observation
that the product of these red terms can either amplify or vanish the gradients [123]. Whereas
blue terms are partial derivatives of layer outputs with respect to layer parameters, which
are functions of layers inputs. Assuming partial derivative ∂L

∂θi−1
is found, then to compute

the next layer ∂L
∂θi

part of computation can be reused. Where the new terms to compute
are highlighted by terms inside the boxes. Therefore gradients in later layers are partially
products of the previous. For later convenience concatenated gradients of all layers,i.e left
hand side of equation 2.24 will be written as v(θ).

2.4.3.5 Optimizers

Once the network weights gradients v(θ) are computed by the back-propagation algorithm,
optimize-rs use these to update the weights θ to reduce scalar loss L. The simplest form of
such update is stochastic gradient descent [21].

θt = θt−1 −ηv(θt−1) (2.25)

Where η is the learning rate, which is a positive scalar with value less then one. Too
high η values will result in oscillating scalar loss (2.20) and too low value will result in too
slow decrease of the scalar loss L. Modifications of equations 2.25, known as RMSprop and
ADAM optimize-rs [139] commonly used to update the networks weights.

RMSprop

Often the loss function is highly sensitive to some directions in parameter space and in-
sensitive to others [57]. Therefore it makes more sense to have different learning rates for
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each parameter and automatically adapt these learning rates through the course of learning.
Root mean square propagation optimizer (RMSprop) is an adaptive learning method [139].
RMSprop updates parameters less, which therefore have a higher weighted sum of past
squared gradients. This weighted sum is calculated recursively by

E[g2]t = βE[g2]t−1 +(1−β )v(θt)
2 (2.26)

RMSprop introduces positive scalar parameter β , which controls the influence of past
squared gradients on the weighted sum [57]. Larger β higher the influence of the past
gradients for the current weight update. The network weights then get updated by RMSprop
by

θt+1 = wt −
η√

E[g2]t + ε
v(θt) (2.27)

Adam

Gradient descent (2.25) makes a monotonic improvement at every iteration, given appropriate
learning rate. However, it can take a long time to converge. Different loss function sensitivity
can make oscillations in a certain direction or no movement in the other. The method of
momentum is designed to address these issues and accelerate training. The momentum
algorithm accumulates an exponentially decaying moving average E[g]t of the past gradients
and continues to move in their direction [87].

E[g]t = αE[g]t−1 +(1−α)v(θt) (2.28)

Parameter α is a positive scalar, which controls the influence of past gradients on
accumulated momentum. Higher α value means larger impact of the past gradients to the
current weight update. Adaptive moment estimation optimizer is a modification of RMSprop
(2.27), where instead of gradients v(θ) accumulated gradients (2.28) are used [139].

θt+1 = θt −
η√

E[g2]t + ε
E[g]t (2.29)

2.4.3.6 Regularization

Dropout [148], weight regularization and early stopping techniques can be used to regularize
neural networks training. The primary aim of regularization is to reduce learning algorithm
generalization error, but not its training error.
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Dropout provides a computationally inexpensive but powerful method for regularizing
deep learning models. The key idea is to randomly drop neurons from the network. This
prevents neurons from co-adapting too much. Ensembles of neural networks with different
model configurations are known to reduce over-fitting. By randomly dropping some neu-
rons a single model can be used to simulate having a large number of different networks
architectures, which is the goal of dropout regularization.

Drop out multiplies element-wise output of each layer by tensor with the same shape
whose elements are either zero or one. These elements are sampled randomly from the
Bernoulli distribution with probability p element equal to 0 and p− 1 equal to one. Pa-
rameter p ∈ (0,1) is another tun-able parameter, with p = 1 all the network neurons being
dropped,while p = 0 means no drop out is applied [124].

Too large neural network weights can lead to a network being oversensitive to the inputs
[119]. For example minor noise in inputs can result in completely different network outputs.
The weight regularization was inspired by ridge regression, where it adds αθ⊺θ to loss (2.20)
[57]. This addition results in the following stochastic weight update by optimizer,where the
change in the update rule to (2.30) is highlighted in red.

θt = θt−1 −ηv(θt−1)−ηαθt−1 (2.30)

Therefore the addition of the weight decay will multiplicatively shrink the weight vector
by a constant factor on each step. Parameter α is tun-able, so its values are determined
depending on the network architecture and a data-set.

When training a neural network model with sufficient capacity to over-fit the task, a
steady decrease in training loss can be observed, but validation error begins to rise again.
That means that the model can achieve better results by returning to the previous parameter
settings. Therefore every time the model makes an improvement in validation error its
weights are stored. The neural network training terminates when no improvement over
validation error is recorded over the number of predefined training steps. This procedure is
known as early stopping [14].

2.4.3.7 Convergence acceleration

Three common techniques used to accelerate the training of neural networks and reach
convergence, which includes learning rate schedulers, weight initialization and normalization
techniques. The first method addresses the problem of finding an appropriate learning rate η

in (2.27) and (2.29). The weight initialisation tackles the problem of making an appropriate
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neural network weight before the training begins. The normalisation techniques are used to
improve neural networks architecture [72].

Learning rate schedulers

Learning rate schedules are helpful in training more adaptively, with the basic intuition of
using a high learning rate at the beginning of training, and lowering the learning rate as the
training progresses. Cyclic learning rates allow learning rates to increase and decrease over
the curse of training, which gives the model capability to escape undesired stationary points.
In addition learning rate schedulers allow to find maximum practical learning rate [75].

Weight initialisation

Deep learning models are iterative and therefore require some parameters to be initialised.
Training deep learning models is a sufficiently difficult task that most algorithms are strongly
affected by the choice of initialization. Most commonly initialisation means the initial neural
network weights values. The initial point can determine whether the algorithm converges
at all, with some initial points being so unstable that the algorithm encounters numerical
difficulties and fails altogether. When learning does converge, the initial point can determine
how quickly learning converges and whether it converges to a point with high or low cost.
There is no strict rule which determines, which weight initialisation method must be used
[146].

On the other hand, one aim that is clear with respect to the weight initialisation is that it
needs to break the symmetry problem [32]. The symmetry problem occurs when initialised
weights have the same value. If all the weights start with equal values and if the solution
requires that unequal weights be developed, the system can never learn, since the weights
will receive the same update and remain equal. Therefore all weight initialisation methods
include initialising weights by sampling from a particular distribution. The choice of the
distribution is what makes these initialisation differ [57].

Another problem to consider in the weight initialisation includes the vanishing gradient
problem, where the network gradients are close to zero, which results in network weights
not being updated and hence the network won’t learn anything (equation 2.27). Similarly,
improper weights initialisation can cause gradient explosion. Improper weight initialisation
causes the products of each layer input to output gradients (red terms in 2.24) to either
vanish or explode.However many heuristic techniques were proposed to initialise neural
networks weights, which depend mostly on the type of the networks activation functions
including sigmoid, tanh and relu [22]. The main idea behind initialisation strategies for
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different activations functions is to keep activation’s ( fi in Fig 2.17) zero centred with uniform
variance in order to prevent gradient vanishing or explosion.

The standard approach is to initialise neural network weights depending on the type of
activation function used in each neural network layer. For neural network layers with weights
θ ∈ Rm×n and Sigmoid or Tanh activation functions, glorot (2.31) initialisation [52] and
Kaiming (2.32) initialisation He et al. [64] for layers with Relu activation’s.Where U and N
represent uniform and normal distributions in 2.31 and 2.32.

θi j ∼U(−
√

6
m+n

,

√
6

m+n
) (2.31)

θi j ∼ N(0,
2

(n+m)2 ) (2.32)

Normalisation

To speed up training different normalisation techniques can be used including batch (BN),
layer, layer (LN), instance (IN) and spectral normalization (SN) [72]. All except the last
one transform neural network layers activation’s ( fi Fig 2.17), while the last one transforms
network layer weights θ . The difference between batch, layer and instance normalisation
is the difference in how mean µ and variance σ for normalisation is calculated, were the
normalisation is given by

xnormilised =
x−µ

σ

In order to make comparison between normalisation techniques assume a network activa-
tion is x and it has the following dimensions

x ∈ RN×C×H×W

Where N,C are the mini-batch size, number of channels, and H,W are spatial activation’s
dimensions (Figure 2.18). In batch normalisation (BN), mean and variance are calculated
for each individual channel across all samples and dimensions H,W . Mean and variance in
instance normalisation are calculated in the same manner as in BN, but for each instance as
well. In layer normalisation mean and variance are calculated for each instance across all
channels and dimensions H,W .
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Fig. 2.18 Deep learning normalisation methods adopted from [152]

Spectral normalization (SN) was specifically designed for WGAN networks discriminator,
in order to make discriminator a 1-Lipschitz function and to scale weights [113]. Spectral
normalisation transforms each 2-dimentional weight by

W =
W

σ(W )

Where σ(θ) is the largest singular value of weight matrix θ . Therefore spectral normali-
sation limits the maximum possible elongation of a vector to which the weight matrix θ is
applied to.

2.4.4 Comparison of algorithms

This sub-chapter summarises the advantages and disadvantages of the algorithms described in
the literature review. This discussion aims to understand why a family of different algorithms
must be applied to data sets instead of choosing only one algorithm. The first choice in
modelling fuel properties is to whatever to apply deep learning algorithms. Theoretically,
neural networks can provide superior performance in QSAR prediction accuracy, because of
their ability to learn new molecular representations, which could be informative and unknown
to begin with [79]. On the other hand neural networks are complex in implementation and
require many parameters to tune. In addition, it might take a lot of time to go throw one
parameter setup [123]. Lastly, deep learning algorithms require data sets with sophisticated
sizes, i.e. at least in the order of thousands of training samples, which is not always present
in fuels properties datasets.

Non-deep learning algorithms can include support vector machine (SVM), random forest
(RF), gradient boosting machine (GBM) and K-nearest neighbours (KNN). SVMs perform
well in cases where the number of variables is much larger than the number of samples,
which is very applicable to most fuel properties data sets, where the number of descriptors
is larger than the number of training samples. The SVM algorithm requires the input data
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to be normalised, which can be skewed by outliers in data. In addition for the classification
tasks, SVMs do not output probabilities and assign labels instead. Such a property will
require algorithm calibration for classification tasks. The last disadvantage of SVMs is the
computational expense. SVMs require the entire dataset to be stored in memory during
training, making them less suitable for very large datasets where memory limitations may
arise. Neural networks on the other hand update their parameters with batches of data, which
eliminates memory limitations compared to SVMs.

Random forests are robust to over-fitting because they mitigate the risk of over-fitting
by aggregating the predictions of multiple decision trees. Random forests can estimate a
variable’s importance, while neural networks and SVMs can not [141]. This information
can be useful for variable selection and understanding the underlying data, for example
which molecular descriptors influence the octane number the most. Random Forests can also
handle missing data and outliers effectively by using techniques such as mean imputation
or proximity-based methods [54]. Therefore random forests can be useful where some
molecular descriptors values are absent. Such a property is missing in other algorithms
discussed in this thesis, except for gradient-boosting machines. Another advantage of random
forests is that they do not make strong assumptions about the distribution of the data [26],
which in the case of fuel data sets is unknown. They can handle a wide range of data types and
feature interactions . The last property is important since the interaction between descriptors
used for fuel properties modelling and their interaction is not always clear. Random forests’
disadvantage is the same as with SVMs, it requires the entire training dataset to be loaded
into memory during the training phase. Another potential pitfall of random forests is a high
bias towards variables with high cardinality, i.e. when the categorical variables range in
the dataset is comparatively big compared to the dataset size [62]. Such an issue can easily
happen when modelling fuel properties since the categorical descriptors range could be
substantially high. These descriptors may have a higher chance of being selected in the tree
splits, potentially impacting the importance estimation of other variables by random forest.

Gradient boosting machines share similar advantages and disadvantages with random
forests since both are based on an ensemble of multiple decision trees [115]. The common
advantages include estimation of variable importance, handling missing data, do not require
normalization of the input data. The common disadvantages of random forests are poor
performance with high cardinal variables and computational complexity. GBMs can model
highly complex relationships by sequentially building decision trees [151]. However, this
property can also lead to over-fitting and hence GBMs require more careful tuning of
parameters compared to random forests. In addition, gradient-boosting machines are more
computationally complex compared to random forests with the same number of trees, since



36 Literature review

sequential tree building prohibits parallelization, because each tree is built one after another
is complete.

The k-nearest neighbours (KNN) algorithm is a relatively simple and intuitive algorithm
and requires only a few parameters to tune, which are the choice of similarity metric between
data points and the number of neighbours. The unseen data-point predictions get predicted
values as the average of the neighbors’ values. The disadvantages of KNN include sensitivity
of variables scaling and curse of dimensionality, which both influence the calculation of
the distance between the data points and hence predictions. Variables with large scales can
dominate the distance calculation and skew predictions. As the number of variables increases,
the density of the data becomes sparse in the high-dimensional space, making it difficult for
KNN to find meaningful neighbors and potentially degrading its performance.

In conclusion neural networks and gradient boosting machines have the highest ability
in modelling complex relationships, but require careful parameter selection. Random forest
algorithms are more robust to outliers, since they use average of many trees. Gradient
boosting and random forests algorithms do not require variables normalisation, while the
other algorithms can be influenced by the data normalisation process. KNN algorithm is
the easiest to implement require the smallest parameters compared to algorithms to tune,
however perform worst in high dimensional data. On the other hand support vector machines
are much better in high dimensional data. Lastly neural networks can learn new molecular
representations, while non-deep learning algorithms can not.

2.5 Variable selection

This part of the methodology discusses variable selection in QSAR modelling. When
descriptor molecular representation is used it’s unclear, which descriptors should be used
as model inputs. Given n descriptors the total number of possible descriptors permutations
is 2n, so it becomes infeasible to try all combinations for large n. For example the number
of descriptors which describe fuel properties calculated by [114] is between 1000 and 2000.
However, variable selection is needed to avoid over-fitting risk in QSAR modelling [163].
Over-fitting is the problem when the QSAR model demonstrates poor external predictivity
while performing much better on the validation part of the data-set. Contradictory [46]
concluded that state of the art algorithms such as random forests, support vector machines
do not gain much from the variable selection. However, there is no best or worst variable
selection method. It can actually be considered as another parameter in the QSAR model
optimization process.
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There are 3 main types of variable selection techniques, including filter, wrapper and
embedded methods [55]. Filter methods measure some dependency of descriptors on the
target property value. Thereafter obtained measurement is used to decide whatever vari-
able/descriptor contributes to the target property. An example of the filter method is a
correlation-based or mutual information test. Filter methods include distance, information,
dependency and consistency methods [56].

The wrapper method to variable selection uses a search algorithm to traverse the space of
possible variables subsets and evaluates each subset by evaluating machine learning algorithm
performance using the chosen subset. Sequential Forward Selection search algorithm [4]
is an example of wrapper method, it reduces the number of descriptors sets for the QSAR
model evaluation from the total 2n to n(n+1)/2, where n is the number of variables.

The embedded variable selection method uses a learning model to perform training and
variable selection simultaneously [63].Regularized trees [41], lasso and ridge regressions are
examples of embedded variable selections. The comparison by 5 criteria’s between filter,
wrapper and embedded variable selection methods is given in Table 2.3.

The first column in Table 2.3 checks whatever a variable selection method considers
dependencies between variables. The second column checks if the variable selection method
choice affects the learning model choice. Ideally, the QSAR model needs to select optimal
variables and the learning parameters simultaneously, since the optimal model parameters for
a given choice of variables might not be the best model. The third column looks at whether
the variable selection method interacts with the training model. Fourth column checks if
variable selection can lead to over-fitting. While the last column looks at the impact of
variable selection on-time computer executes the method versus the number of features and
data set size.

Some trade-offs become apparent in Table 2.3, like variable dependence versus over-
fitting risk. The complex relationships between molecular descriptors and fuel properties
require not ignoring the interdependence between descriptors. On the other hand some fuel
properties data-sets might be too small to use wrapper methods for variable selection and to
avoid over-fitting.

Alternative multioptimazation method to QSAR variable selection was proposed by [118],
where the number of selected variables and models accuracy are optimized simultaneously.
In this method Pareto front of non-dominated solutions is created, where for each given
number of variables the best set of variables is found, which gives the maximum model
accuracy.
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Variable
selection
method

Variable de-
pendence

Independent
of the
QSAR
model

Interacts
with QSAR
model

Does not
over-fit

Comp. com-
plexity

Filter univar ✗ ✓ ✗ ✓ low
Filter multi-
var

✓ ✓ ✗ ✓ medium

Wrapper de-
terministic

✓ ✗ ✓ ✗ high

Wrapper
randomized

✓ ✗ ✓ ✗ very high

Embedded ✓ ✓ ✓ ✗ medium
Table 2.3 Summary of variable selection methods

2.6 Validation strategies

Training machine learning models involves splitting data sets into train, validation and test
sets. Train data-set is used to train machine learning models. Since training machine learning
models involves finding appropriate model parameters, the validation part of the data-set is
used to compare different model settings. In addition, the validation part of the data-set is
used to compare different variable selection methods if descriptor molecular representation
is used for modelling fuel properties. The test part of the data-set is not involved in any
part of modelling and it’s kept apart for an unbiased estimate of the model performance. In
quantitative structure-activity modelling, the division of molecular data-sets into the train,
validation and test sets can be categorized into the following three categories:

1. Random selection

2. Based on Y response - molecules targeted by the property of interest

3. Based on X response - molecules clustered by structural similarity or descriptors

The selection of one of these approaches remains an open question in QSAR modelling.
Therefore best practices in pharmaceutical research were taken into consideration. [129]
investigated the difference between published QSAR model results and the one remodelled
with rational splitting technique and concluded that splitting techniques (2) and (3) lead to
better external predictivity than random selection. In particular data sets with a small number
of molecules showed the biggest improvement in external predictivity. In addition, [34]
argued that for the best results, training set data should be well distributed over the full range
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of endpoint values,i.e the Y response. This is often not possible, for various reasons, but very
poor distribution, such as two clusters of chemicals, or one or two chemicals far removed
from the others, will exert strong model leverage and must be avoided. However, [106] found
that models based on rational division (2) and (3) methods generate better statistical results
for the test sets than models based on random division, but the predictive power of both types
of models are comparable. Therefore all the three methods in data-set splitting were applied
to molecules with a number of molecules less than 500.

On the other hand, [107] stated that if QSAR model is sensitive on the method of splitting
and distributions on training and test sets this can lead to purposeful selection of train and
test to guarantee a good statistical result. Consequently model accuracy based on the single
split is insufficient to guarantee the true predictivity of the QSAR model. Therefore multiple
splits intro train, validation and test sets were used in this research for data-sets, which found
to be sensitive on the method of splitting.

Lastly, the proportions of train, validation and test sets were varied. The impact of
data-set size was investigated by [137] and the conclusion was drawn that the optimum size
of the training set should be set based on particular data set and types of descriptors and
statistical analysis is used.

2.7 QSAR modelling practices

2.8 Modeling fuel properties

This chapter reviews methods used to model fuel properties, mainly research octane numbers.
Modelling fuel properties includes quantification of the fuel’s chemical structure, variable
selection, choice of learning algorithm and the model validation strategy,i.e the same as in
any QSAR modelling. Mainly the difference between published fuel properties models lies
in the method of molecular description and consequent selection of these variables as model
inputs. Occam’s razor, or the principle of parsimony, states that all necessary information
should be used for modeling and nothing more; thus, it is undesirable to include unnecessary
variables in the model. In addition discrepancies in model validation strategies are present.

The first type of QSAR fuel models describe each fuel by functional groups [7],[90],
[39], [94],where model inputs predetermined manually by the domain knowledge. Inorganic
chemistry functional group represent a substituent in a molecule that causes the molecule’s
characteristic chemical reactions. Figure 2.19 shows functional groups as inputs to model
to predict Cetane number (CN), RON and MON. Based on fact that the CN can be treated
as reverse octane number, while RON and MON are closely related the same model inputs
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Fig. 2.19 Architecture of the ANN for predicting CN, RON, and MON from the group
structure of a fuel molecule [90]

were used in [90]. In addition functional groups were used to model mixture of hydrocarbons
octane number [8].

On the other hand physical properties can be used for modelling octane number [6],[160].
However the difference between these papers is that feature selection algorithm was used to
determine most relevant physical properties (Table 2.5) in the first paper, while the second
paper used domain knowledge to select them. Boruta algorithm and k-nn imputing were used
to select physical properties in [160].

Alternately to functional groups and physical properties, molecular descriptors can be
used to model fuel properties [98],[37],[80],[95] . The advantage of the descriptor-based
approach is that molecules can be described in various levels of detail [61].However, there
is no domain knowledge compared to functional groups or physical properties, which can
be used to select molecular descriptors to model octane numbers, so variable selection
techniques must be applied.

Correlation-based approach was used to select relevant descriptors in [37] and [80].
Here the descriptors that correlate well with octane number and poorly correlate with
other descriptors were kept. On the other hand to account for both the complexity and
generalizability of models to resist overfitting, which commonly occurs when using a single-
objective feature selection method, Multi-objective optimization with NSGA2 algorithm was
used to select relevant descriptors in [98]. Table 2.4 shows the selected molecular descriptors.
The optimization objectives included model accuracy and the number of selected descriptors.
In this optimization Pareto front of non-dominant solutions was created, where an increase
in one objective leads to a decrease in another one. Thereafter the number of relevant
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Symbol Description Descriptor type
ZM2V Second zagreb index by valence vertex degrees Topological indices
SPAN Size of descriptors Geometrical descriptors
nCp Number of terminal primary C Functional group counts
IC1 Structural complexity per vertex information indicies

Mor03u Signal 03/unweighted 3D-MoRSE descriptors
Mor31m Signal 31/weighted by mass 3D-MoRSE descriptors
Mor10p Signal 10/weighted by polarizability 3D-MoRSE descriptors
Mor16m Signal 16/weighted by mass 3D-MoRSE descriptors
Mor29v Signal 29/weighted by van der Waals volume 3D-MoRSE descriptors

RDF020m Radial distribution function -020/weighted by mass RDF descriptors
ALOGP2 Lipophilic contributions of atoms in the molecule Molecular properties

ALOGPS logS Solubility in water hydrophilic descriptors Molecular properties

Table 2.4 List of Molecular Descriptors Selected by Multi-objective Feature Selection

features weight type
XLogP3 0.2689 physical

autoignition 0.1845 physical
CCCCCC 0.1360 structural

LogP 0.1144 physical
XLogP-AA 0.0928 physical
complexity 0.0918 physical

boiling point 0.0488 physical
vapor pressure 0.0415 physical

CCCCC 0.0213 structural

Table 2.5 RON Predicting Features by Weight and Type
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descriptors was chosen as such which gives a minimum decrease in the model accuracy. This
approach in selecting relevant descriptors in QSAR modelling resembles published earlier
[147] in pharmaceutical journal. In addition to octane number, bio-fuels viscosity [20] and
auto-ignition temperature [142], cetane number[37] were modelled with descriptors as model
inputs.

2.9 Knowledge gaps

This chapter summarises knowledge gaps in the application of machine learning techniques in
fuels research. Fuel properties predictions modelling demonstrated that fuel research papers
are based on advances made in QSAR modelling in pharmaceutical sciences. Therefore some
of the main knowledge gaps in fuels research lie in advances made in pharmaceutical sciences.
Three major knowledge gaps have been identified, which are the applicability domain, inverse
QSAR modelling and the QSAR modes interpretations. The first knowledge gap is focused
on the reliability of QSAR fuel models predictions. The gap demonstrates that prototype fuels
can be suggested by generative models, which has not been investigated yet. However, the
last knowledge gap lies in QSAR modelling techniques themselves, which is an interpretation
of machine learning models, which are known for their black box predictions.The rest of this
chapter will expand these knowledge gaps and provide references to literature to strengthen
the evidence of these gaps.

2.9.1 Applicability domain

The domain of applicability (AD) is an important concept in quantitative structure activity
relationships (QSAR) that allows one to estimate the uncertainty in the prediction of a
particular molecule based on how similar it is to the compounds used to build the model
[157]. This is particularly important in fuels properties modelling, so the QSAR models fuel
properties predictions become reliable, especially with respect to prototype fuels.

However there is no single score function, which can define how a given molecule is
similar to other set of molecules. The similarity function depends on how molecules been
described by descriptors, graphs, e.t.c. For example if molecules are described by structural
fragments they consist, then the the most common similarity is given by Tanimoto distance
[15].This score ranges from 1 if molecules are exact the same to zero if they consist of
completely different fragments.There are various approaches for determining AD of QSAR
models. The most commonly employed approaches for estimating the interpolation regions
in a multivariate space include the followings [136]
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Fig. 2.20 Plot of the absolute error in prediction vs. the binned distance to model for the
global plasma protein binding

1. Ranges in the descriptor space.

2. Geometrical methods.

3. Distance-based methods.

4. Probability density distribution

5. Range of the response variable

Here, the first four approaches are based on the methodology used for interpolation space
characterization in the model descriptor space. On the contrary, the last one depends solely
on response space of the training set molecules.

Various pharmaceutical QSAR studies investigated impact of applicability domain on
models predictions. 30 QSAR models were developed using molecular fingerprints, two-
dimensional descriptors, and five machine learning algorithms by [156] to predict PPAR
Binding Affinity. In this study compounds were described by network similarity graphs,
which then were used to compute compounds similarity score. Thereafter positive correlation
between molecule predictions error and similarity scores were found. In another study [157]
absolute QSAR model error predictions were clustred



44 Literature review

Fig. 2.21 Prediction accuracy vs novelty score [108]

To show how applicability domain impacts QSAR model predictions error in classifying
bio-active compounds, model prediction error was plotted against compounds similarity
distance score by [108]. The result is shown in Figure 2.21, where its apparent the larger
proportion of compounds in test set, which compromise molecules with less similarity to the
train set, the higher the prediction error.

2.9.2 Inverse QSAR

The literature review demonstrated the application of QSAR models to predict fuel properties.
However, it is desirable to know what chemical structures can be used as new fuels. Such
information can be applied to guide prototype fuels experiments. Theoretically compounds
with desired properties can be found by inverse QSAR modelling [112]. Deep generative
models have been shown powerful in generating novel molecules with desired chemical
properties via their representations such as strings, trees or graphs [40]. Despite this, there
remain relatively few examples of using generative models in real molecular discovery
campaigns. This is because these campaigns are often characterized by a series of additional
hurdles, making it difficult to directly deploy generative models for concrete applications
[17]. Moreover application of inverse QSAR model to discover new fuels molecules is
unexplored.

Recently inverse QSAR models demonstrated ability to make biologically active molecules
[30]. However the inverse QSAR modelling application is not limited to drug design only.
Polymer dielectrics are essential components in several applications such as electrical insula-
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tion, capacitive energy storage, organic photovoltaics and flexible, stretchable and wearable
electronic. New polymer dielectrics were discovered by inverse QSAR models by [103]. Or-
ganic light-emitting diodes (OLEDs) have great potential to be applied in the third-generation
display devices. OLEDs have promising properties, including energy-saving and long-lasting
working time [83], both of which outperform liquid crystal display (LCD) technology. New
OLEDs were discovered by inverse QSAR models [53]. Moreover the experimentally deter-
mined external quantum efficiencies for these synthesized candidates were as large as 22%.
Polymer solar cells admit numerous potential advantages including low energy payback time
and scalable high-speed manufacturing, but the power conversion efficiency is currently
lower than for their inorganic counterparts. Design of new polymeric materials by variational
autoencoder model [88] was demonstrated by [82].

2.9.3 Model interpretations

QSAR models are widely applicable but can suffer from regards to the interpretation of the
prediction [158]. That applies to fuel properties predictions, since these are a case of the
QSAR modelling. Interpretation is the retrieval of useful knowledge from computational
models. Models that do not allow for an interpretation of the cause behind the prediction
can be underutilized, as the user cannot easily assess the prediction [126]. The problem with
interpretation arises from the use of non-interpret-able variables used to describe chemical
structures or non-interpret-able machine learning and statistical models in QSAR modelling.
The scope of interpret-ability can be further divided into the local and global interpretation.
In QSAR, global interpretation is information on structure-property relationships for a series
of compounds, helping provide insight on mechanisms of action, activity and properties of
compounds. Local interpret-ability gives information about how different parts of a single
compound influence the molecular property and can be applied to identify structural motifs,
which reduce or enhance the property in QSAR [48]. QSAR interpretation techniques can be
grouped into the following categories.

1. Model – Descriptor – Structure Paradigm

(a) Machine learning model specific interpretation approaches

(b) Machine learning model agnostic interpretation approaches

2. Model – Structure - Paradigm

Machine learning agnostic interpretation in QSAR bio-fuels models was demonstrated by
[161] , by applying LIME algorithm [133] to developed bio-fuel octane number classification
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model [160]. The bio-fuel octane classification model was altered not to include non-
interpriatble model inputs, despite some loss in accuracy, since LIME is a variable importance
algorithm and requires inputs to be interpretable. In addition LIME algorithm provides only
local interpretations.

Nevertheless, new approaches have been created to interpret machine-learning models,
and therefore QSAR models, which include octane number models, for example, SHAP
algorithm [101]. SHAP algorithm assigns variable importance as LIME. Alternatively to
variable importance, rule extraction methods were created to interpret models build with
support vector machines [16] and artificial neural networks [84]. These methods can provide
global model interpretations, which [161] lack.

It is important for the QSAR model to be as accurate as possible to provide meaningful
model interpretations. QSAR model interpretations by similarity maps [134], universal
structural [127] and computationally matched do not require model inputs to be interpreted
and therefore do not trade-off model accuracy with interpretations as in [160].



Chapter 3

Methodology

3.1 Modelling overview

The topography of the thesis methodology is given in this chapter. The modeling consisted
of two interdependent directions: from structure to property and the inverse property to
structure, namely QSAR and molecular generative modeling. QSAR modeling was used to
find relationships between molecular structures and fuel properties, such as research octane
number, enthalpy of combustion, and other fuel physical properties by applying machine
learning algorithms to molecular data sets with the corresponding fuel properties. Molecular
generation on the other hand was used to suggest molecules with the desired properties, such
as RON by applying machine learning generative models to large data sets consisting of
small organic compounds,which were later assessed by QSAR physical properties models.

QSAR modeling includes data sets collection and processing, molecular representations,
and machine learning algorithm training, which encompasses variable selection, algorithm
parameter tuning, and model validation. Molecular representations are the process of describ-
ing molecules numerically. The variable selection step decides, which obtained molecular
representations remain as the predictive model inputs. The algorithm parameter tuning step
comprises optimizing the algorithm’s parameters to improve its predictive capabilities, based
on chosen metrics, such as R2 in case of a regression task. Consequently validation is used to
check the algorithm capabilities on unseen data.

Generative modeling consist of data-set collection, molecular representations, constrains
setting, algorithm parameter tuning, and molecular generation followed by properties check-
ing. Both constrains settings and property checking are QSAR models. Constraints settings
guide algorithms to generate molecules with the specified constraints, such as increased
research octane number or molecular weight in a specified range. The properties checking
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Fig. 3.1 Methodological workflow

involves examining generated molecules in terms of build QSAR fuel physical properties
models .

Figure 3.1 summarises methodological workflow. As seen from the figure there are many
common steps in QSAR and Molecular generative modelings such as data-set collection and
processing, molecular representations, variable selection, and algorithm tuning. The rest
of this chapter will provide a technical explanation behind these steps, excluding data-set
collection and molecular generation, which are specific to each modeling task.

3.2 Molecular representations

Molecular representations used in fuel QSAR and generative modeling are introduced in
this chapter. Molecular representations describe molecules numerically, so algorithms can
be applied to molecular data sets. These representations can be grouped by learned/given,
mathematical type such as vector or graph, descriptors theoretically or experimentally derived,
and so on.

There is no specific rule, which tells what kind of molecular representation is the best.
Therefore trial and error approach with respect to molecular representation in modeling
fuel properties was present. However, a chosen representation must be compatible with an
algorithm, which will be applied later.
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Compound Smiles RON
Ethanol CC0 109.0

3-Methylpentane CCC(C)CC 74.5
2-Methyl-1,3-butadiene CC(=C)C=C 99.5

1-Octyne CCCCCCC#C 50.5
1-Phenyl-2-methylpropene CC(=C)c1ccccc1 104.1

3-Heptene (cis) CCCC=CCC 90.2
Table 3.1 Example of smiles molecular representation in RON data

Smiles

Smiles are the most common molecular representation used in chemical data sets. This
representation is in string format, which was derived from graph molecular structure repre-
sentation [159]. The abbreviation of smiles stands for simplified molecular input line entry
system. SMILES syntax consists rules for atoms, bonds, branching e.t.c. To make chemical
rules even more strict canonization rules can be added to the SMILES syntax rules, the
relating molecular representation is then named canonical smiles. Table 3.1 shows a section
of research octane number database with molecules in smiles format.

The benefit of smiles representation is that each smiles string represents only one structure.
With this property in mind, smiles molecular representation was used in the molecular
generative modeling. In addition, all fuel QSAR modeling started with writing molecular
data sets in smiles format.

Descriptors

Molecular descriptors are the most common numerical representation of molecules, which
give a particular scalar value to them. For example, molecular weight or atom count are both
molecular descriptors.

Molecular descriptors were used in modeling fuel properties, including the octane num-
ber. On the other hand, these were not used in molecular generative modeling, since the
relationship between molecules and descriptors is one too many, and therefore obtaining a
molecular structure from a set of descriptors is not feasible.

The molecular descriptors are divided into experimental and theoretical. Experimental
descriptors are molecular properties obtained by specified experiments.Research octane
number can be considered as experimental descriptor. Applying various algorithms to
molecular graph representation derives theoretical descriptors. Two-dimensional circular
connected fingerprint Rogers and Hahn [135] is an example of theoretically derived descriptor
(Figure 3.2). Molecular fingerprints represent bit vectors or count vectors. These vectors are
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Fig. 3.2 Morgan Fingerprint generation

obtained by applying a kernel to a molecule. Typical kernels extract features from molecules,
hash them, and use the hash to determine bits that should be set. Fingerprints encode presence
or absence of a particular molecular fragment. This type of molecular representation was
used to find similarity between generated compounds.

Theoretical descriptors can be grouped by dimensionality, which refers to the representa-
tion of molecules from which the descriptor value was derived.

• 0D-descriptors (i.e. constitutional descriptors, molecular formula)

• 1D-descriptors (i.e. list of structural fragments, fingerprints)

• 2D-descriptors (i.e. graph in-variants)

• 3D-descriptors (3D-MoRSE descriptors, WHIM, quantum-chemical descriptors)

• 4D-descriptors (such as those derived from GRID or CoMFA methods, Volsurf)

Besides, descriptors can be categorized by their nature, including constitutional, topolog-
ical, geometrical, electronic and quantum chemical. Guha and Willighagen [61]. Consti-
tutional descriptors characterize general properties of molecules and are fragment additive.
These include molecular weight, ring count and functional groups. Topological descriptors
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Fig. 3.3 Toluene

are concerned with molecular topology, such as the longest carbon chain or any other molecu-
lar structural attributes derived from graph molecular representation. Electronic and quantum
chemical derived from physical simulations applied to molecular representation.

After all the benefit of descriptors is that a vast amount of information with respect to
molecules can be obtained, which can be used to find relationships and correlations between
structures and properties. On the other hand vast amount of information creates an ambiguity
about which descriptors to keep as model inputs since the influence of descriptors on a target
property can be interdependent.

Graphs

The most intuitive molecular representation is the molecular Graph, where atoms and bonds
are graph nodes and edges respectively. Such molecular representation resembles the valence
model. Mathematically molecular graph is an undirected graph described by adjacency , node,
and edge feature matrices.Advantages of graph molecular representation include the fact that
identical molecules represent identical graphs and vice versa.In addition mathematical theory
behind the graphs is well understood. This molecular represenation was used in both QSAR
and molecular generative modelling.

For a molecule with N atoms and M bonds, the adjacency matrix is a binary matrix
A ∈ RN×N describing atoms connectivity, where Ai j is one if there is the bond between atoms
i and j and zero if there is no bond. Important to note that the adjacency matrix for any
molecular graph is symmetric, that is Ai j = A ji for any i, j. The node feature matrix is a matrix
X ∈ RN×l , where each matrix row Xi is vector length l which describes atom i properties,
including atom type, valence, e.t.c. The edge feature matrix E ∈ RM×g, where each row Ei

vector size g describes i edge, including the edge type. Adjacency A, node feature X and
edge feature E matrices are shown for toluene molecule (Figure 3.3).
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A =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 0 0
1 0 1 0 0 1
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 1 0 0 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
X =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
0 0 1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
E =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0
0 1 0 0
1 0 0 0
0 1 0 0
1 0 0 0
1 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
In this example node and edge feature matrices, rows are one-hot encoded vectors, which

show type atoms and bonds respectively. Whereas columns in the edge feature matrix E
are ordered by single, double, triple, and aromatic. Columns in the node feature matrix are
ordered by carbon, oxygen, nitrogen, and silicon atoms.

Learned representations

Instead of defining the molecular representations before training like with previous molecular
representations, these can be learned from data sets. From a machine learning perspective,
it is a challenge to encode high-dimensional non-Euclidean molecular data into a feature
vector. From wider perspective finding useful features from molecular graph is a case of
representation learning from graphs. Two learning molecular representation algorithms
developed by Duvenaud et al. [45] and mol2vec Jaeger et al. [76] were applied to fuels
QSAR model development. The first algorithm shows that chemical structure representations
can be found directly from molecular graphs during training procedure by substituting non-
differential steps in circular fingerprint generation to differentiable to allow the error signal
to back-propagate.The second algorithm uses the idea of natural language model word2vec
applied to a large set of valid chemical compounds represented by smiles, with an idea that
molecules are sentences, while smiles symbols are words. The second approach is also called
transfer learning, since the representation was learned one data set and applied to another.

Both molecular representation approaches have advantage to skip variable selection
step, since learning will allow to find optimal molecular representation. On the other the
differentiable fingerprint Duvenaud et al. [45] is highly data dependant. That means if
a dataset is not big or diverse enough, the algorithm might not learn effective molecular
representation, which was the case with octane number dataset.
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Molecular representation Python Library Reference
SMILES RDKit (author?) [Apache Software Foundation]

Descriptors Mordred Moriwaki et al. [114]
Graph PyTorch Geometric Fey and Lenssen [47]

Learned Mol2vec, DeepChem dee [1]
Table 3.2 Python libraries for molecular representations

Python molecular APIs

As the molecular representations are diverse, the same applies to python open source li-
braries, which implement them. Table 3.2 lists python libraries used to make molecular
representations

Molecular representations applied in this research

Each methodology chapter used their own molecular representations. Molecular descriptors
were used in regression tasks, since the fuels data-sets sizes were not sufficiently large to
learn new molecular representations. For the classification tasks mol2vec model [76] was
used to find vector representation of molecules. Such representation was useful to train
classification algorithms, since mol2vec model creates similar vectors for similar molecules.
Compared to circular fingerprints, which are commonly used for QSAR modelling such
representation overcomes bit collision problem [153]. To generate new fuel molecules graph
and smiles representations were used. The advantage of graph representation was higher
degree of variety of molecules to produce, while string based representation is easier to train
with.

3.3 Interpretation

3.3.1 Introduction

The aim of this methodology chapter is to show that knowledge about fuels can be extracted
from trained machine learning models, which are non-interpretable. The idea is to compare
existing domain knowledge about fuel auto-ignition properties and interpretations behind
classification models, which predict if a given molecule has a high octane rating. The data
source and description chapter shows where the data to model octane classifications models
was taken from. The modelling sub-chapter explains which algorithms were used to make the
classification models and how they were optimized. The more detailed experiments set up is
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written in the corresponding results chapter. Lastly, the method used to get interpretations
behind trained classification models is explained with examples.

3.3.2 Data source and description

Two databases from the octane number modelling papers [98] and [160] were used in
constructing the octane number prediction dataset. The first database consisted of 227
molecules, while the second 147. The first database represented fuel chemical structures by
canonical smiles,while the second by PubChem ids. PubChem ids are unique compound
identifiers in the PubChem database [18]. Pubchem ids were calculated for the first dataset
and the two data-sets were merged according to PubChem ids.

Octane numbers were converted to binary values, where 0 represents an octane rating less
than 94.4, with 1 representing octane numbers greater than this threshold, which represents a
value typical of widely utilised fossil gasoline . In addition fuel chemical structures were
standardized by ChemAxon® software, which included aromatization of cyclic bonds. For
example the benzene rings in canonical smiles are written as a sequence of double-single
carbon-carbon bonds, while in practice the ring includes aromatic bonds.

3.3.3 Modelling

Octane data-set was split by 20% test and 80% training and validation. Four classification
models were developed by support vector machine (SVM), random forest (RF), gradient
boosting machine (GBM) and k-nearest neighbours (KNN) algorithms. The hyper-parameters
for each algorithm were found by Bayesian optimization, where the optimization target was
10-fold cross stratified validation on the train validation set and the validation metric utilised
the ROC-AUC score. ROC-AUC is the area of True positive rate versus False negative rate
under the different probabilistic thresholds, where an area closer to 1 indicates better classifier,
and if the area is equal to 0.5, the classifier performance is equal to a random estimator.
Figure 3.4 shows schematic representation of 10-fold stratified cross validation schematics.
The parameters of each model, which gave the best score in the cross validation are then
chosen. Thereafter models with these parameters are trained on the whole train-validation
set.

The 10-fold cross-validation is necessitated by relatively small octane number data-set,
since the sample variability between training and test part could be quite considerable. For
example an algorithm could only be trained on paraffins and olefins but tested on cyclic
compounds and oxygenates. Stratification was used to ensure similar distribution of high and
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Fig. 3.4 10-fold cross validation

low octane fuels in each fold as in the whole data-set since the chosen ROC-AUC metric is
sensitive towards the class imbalance.

Classification algorithms using SVM, RF, GBM and KNN are not probabilistic so their
probability estimates need to be interpreted with caution. Calibration was therefore required
to improve likelihood estimates of the models. Platt’s scaling was used to calibrate the
likelihood estimates and scaling is the application of logistic regression to output probabilities
of classifiers and the true labels in the data-set. Calibration quality can be quantified by
Brier’s score and visualized by a reliability diagram, which plots the actual fraction of fuels
having a high octane number versus probabilistic bins range.

For example, there were two groups of fuels, the first of which was predicted to have
probability of having a high octane number in a range between 0 and 0.2. The second had a
probability range between 0.2 and 0.4. However, the actual fraction of fuels having a high
octane number was 0.25 and 0.4 for the first and the second group of fuels. Consequently,
the reliability diagram will illustrate two-point (0.15,0.25) and (0.3,0.4). The closer these
points to the diagonal in the reliability diagram the better are the likelihood estimates.

3.3.4 Interpretation method

This sub-chapter illustrates the interpretation method and results for the four octane number
classification models. Fuels were described with mol2vec embedding, so the description
of the fuel had neither physical nor explicit chemical meaning. Accordingly, interpretation
by model structure paradigm must be chosen, since finding the variable importance or the
rule extraction methods will not provide intuitive model interpretation. Secondly, different
types of machine learning algorithms were chosen for the octane number classification
model to reduce or find bias between different types of models. Therefore the interpretation
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Fig. 3.5 Universal interpretation adapted from [127]

method must be model agnostic. Figure 3.5 illustrates the universal interpretation approach
[127] applied in finding the ketone group contribution to the likelihood of Butyl Levulinate
belonging to a high octane number range. Here two molecules compared, whose difference
is only the presence of the ketone group. If ketone group presence increases the likelihood
of fuel having a high octane number than it has positive contribution and vice versa. Such
method has origin in chemical informatics drug discovery, known as Matched molecular pair
analysis (MMPA) [42].

3.4 Applicability domain

3.4.1 Introduction

This methodology sub-chapter introduces a method to find fuel properties models’ appli-
cability domain. The aim of finding the applicability domain is to establish confidence in
the model’s predictions. New bio-fuel structures might be too dissimilar to molecules in
fuel properties data sets, so there is a need to distinguish, which bio-fuel properties can
be predicted or not. The applicability domain was established by finding the relationship
between models predictions errors and the similarity of test compounds and compounds used
to train fuel properties models. The goal of this study was to find such a similarity measure
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that would correlate with model prediction errors and will work on multiple fuel properties
data-sets.

The fuel properties data sets selected in this study included research octane number
(RON), boiling point (BP), auto-ignition temperature (AIT), enthalpy of combustion (EC),
density and dynamic viscosity. Four applicability domain techniques were applied to these
fuel properties, including Tanimoto distance, Leverage distance, one class SVM and isolation
forest.

The methodology is divided into fuel properties selection, data collection, QSAR mod-
elling and applicability domain. The first sub-chapter explains the reason behind the selected
fuel properties. Thereafter modelling behind fuel properties is shown. Algorithms parameter
selection is shown in the corresponding results chapter. The applicability domain subchapter
explains the choosen applicability domain methods.

It was found that anomaly detection algorithms OneClassSVM and IsolationForest could
establish the applicability domain of fuel QSAR models compared to distance measures such
as Leverage and Tanimoto by illustrating a constant decrease in the mean average error of
the selected fuel molecules.

3.4.2 Fuel properties selection

There are 6 main characteristics of highly qualified automobile engine fuel. The first
is research octane number, which is responsible for smooth combustion without engine
knocking. The next one is the enthalpy of combustion which is directly related to the power
output.

It is essential for spark ignition fuel to mix with air under engine operating conditions.
Internal combustion fuels must have sufficient volatility to form a combustible mixture. The
boiling point is a fuel property related to the mixing of fuels with air, which measures the
temperature at which a substance evaporates at atmospheric pressure. Furthermore boiling
point is related to other fuel physical properties such as vapour pressure, density, latent heat
of vaporization, viscosity, and the fuel surface tension [167].In general, lower boiling point
fuels exhibited higher flame temperatures, less visible flame, and lower particulate emissions
[145].

Similar to octane number auto-ignition temperature tells about fuel ignition. The auto-
ignition temperature or kindling point of a substance is the lowest temperature at which it
spontaneously ignites in a normal atmosphere without an external source of ignition, such
as a flame or spark. This temperature is required to supply the activation energy needed for
combustion.
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Density and kinematic viscosity are two key properties of automotive fuels. Density is
important because it relates volume directly with weight in the fuel tank and indirectly with
the energy content. Viscosity influences the lubrication properties as well as the combustion
properties of the fuel. Low viscosities lead to poor lubrication, which can cause excessive
wear and leakage. Higher viscosities can cause an obstruction of the hoses or poor atomization
of the fluid leading to poor combustion and an increase in exhaust gas emissions.

3.4.3 Data collection

This subchapter summarises and describes the sources of the selected fuel properties data.
The octane number data-set came from 3 published papers [98], [160] and [154]. The first
paper explored variable selection in predicting the octane number, while the second built
classification model, which tells if a fuel has octane number higher or lower then 95. The
last papers attempts to collect property database of fuel compounds with emphasis on spark-
ignition engine applications. Boiling point data was taken from Handbook of thermodynamic
and physical properties of chemical compounds [165], which collects physical, thermody-
namic and transport properties for organic compounds covering C1 to C70 organics. This
book was also used to get data for entropy. In addition entropy data was taken from paper on
entropy predictions [9].Reid vapor pressure P on the other hand was computed by Antoine
(equation 3.1)

log10P = A− B
T +C

(3.1)

Where coefficients A,B and C for each compound were collected by web scrapping from
NIST Chemistry WebBook [97], while temperature T was set to 38.7 degrees.

The autoignition temperature dataset was collected from 2 chemical engineering books
[23] and [164], which collect data for organic compounds. The first book is a chemical
engineering book for students. The second book contains almost 450,000 data records
covering physical, thermophysical, thermodynamic, transport, safety, and environmental
properties for over 5000 inorganic substances and over 35,000 organic substances. Lastly,
data for autoignition temperature data was taken from paper [86], which predicts hydrocarbon
auto-ignition temperature.

Last two properties density ρ and dynamic viscosity ν are temperature dependant. These
properties can be computed by Rackett and GuzmanAndrade respectively, which take into
account temperature.

ρ =
1
R

A
B
C D1+(1− T

B )
E (3.2)
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Fuel property Size
Octane number (RON) 492
Boiling point 5549
Auto ignition temperature 944
Enthalpy of combustion 5172
Reid vapour pressure 403
Density 3930
Dynamic viscosity 6660

Table 3.3 Datasets sizes

ν = Aexp(
F
T
+G) (3.3)

Density data was taken from Physical Properties and Refractive Index table from [165].
The viscosity data was taken from published work on predicting viscosity for bio-fuels [142].

Table 3.3 shows the resulting data-sets sizes after combining data from different sources
and removing duplicates

3.4.4 QSAR modelling

Descriptor-calculation software Mordred [114] was used to compute descriptors for each
molecule in fuel properties datasets (Table 3.3). The number of descriptors computed for
each compound was equal to 894. Problems can arise when the number of variables is
greater than the number of samples; therefore, it is necessary to select a subset of descriptors
which contribute to fuel property of interest. Firstly descriptors with normalised variance less
than 0.01 were removed, because these descriptors were almost constant. Thereafter highly
correlated descriptors were removed with the coefficient of determination larger than 95%.

Fuel QSAR models were built by a full factorial experiment involving 4 machine learning
algorithms and 4 variable selection algorithms. Machine learning algorithms included multi-
layer perceptron (MLP), support vector machine (SVM), gradient boosting regressor (GBM)
and random forest (RF).

Variable selection methods included 2 wrapper methods "Wrapper + linear model" and
"Wrapper + learner", elastic net and no variable selection."Wrapper + linear model" and
"Wrapper + learner" mean that the linear model was used to evaluate the selected descriptors,
while in the second case the same algorithm was used in the wrapper method to select
descriptors and the algorithm was used to model fuel properties. These two option choice
was justified because wrapper methods are good at finding the set of descriptors for a
particular model,i.e the second case. However wrapper methods are susceptible to over-
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fitting, so wrapper with a simple model such as linear was used. The elastic net model is an
embedded variable selection algorithm commonly used in QSAR modelling. [46]

3.4.5 Applicability domain

In this work, 4 applicability domain techniques were used. One-Class Support Vector
Machine (denoted as 1-SVM), IsolationForest (denoted IF), Leverage and Tanimato distances.
This sub-chapter explains how these were used to establish the fuel properties applicability
domain.

1-SVM and IF are algorithms used for outlier detection, i.e both find data points, which
are considerably different to the rest of the data points. Both algorithms are classification
models, which return two values, one for the data point being an outlier or not. These
algorithms have a common parameter ν ∈ (0,1), which controls what portion of data is
considered to be outliers. Figure 3.6 illustrates how 1-SVM separates data points depending
on ν applied to synthetic 2-dimensional data with two visibly clear clusters.

In 1-SVM and IF fuel properties applicability domain was found by the learned frontier,
with data points within it being inside the applicability domain. The learned frontier is
shown by green lines and points within the domain are coloured blue in Figure 3.6. The
learned frontier was found by fitting 1-SVM and IF to train data used to model fuel properties.
Thereafter test data points were classified by the learned frontier within and outside of the
model’s applicability domain. Consequently mean error of predictions for data points within
the applicability domain was computed. Parameter ν was varied to change the learned frontier
location and the respective mean of error within the domain was computed. Thereafter mean
prediction errors within the domain were plotted against the ν value.

The other two methods Leverage and Tanimoto were distance based. Both methods
compute a scalar value, which tells how a compound in the test set is different to training data.
Tanimoto distance J is a common measure of similarity between compounds with values
between 0 and 1, where 0 means no similarity and 1 is for identical compounds.

J(A,B) =
|A∩B|
|A∪B|

(3.4)

Where A and B are each respective molecule’s fingerprints. The fraction in 3.4 means the
ratio between the number of common fingerprints in two molecules divided by the number
of unique fragments in both molecules combined. The similarity between a compound from
the test set and train data was computed by finding the average for similarities between the
compound from the test set and all the compounds in train data.
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Fig. 3.6 Impact of contamination factor ν on data points classification
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The leverage distance is based on the Mahalanobis distance to the centre of the training-
set distribution. The leverage distance h between compounds in the data set is computed
by

h = xT (XTX)
−1

x (3.5)

Where x is a test compound descriptors value and X is the training set descriptors values.
Important to note is that equation 3.5 involves matrix inverse, so for some training set
descriptors values X the leverage distance can not be computed if XTX is not a full rank
matrix.

Once these distances were computed, these were normalised by the maximum distance,
so the compound with the largest distance had a value of 1. Consequently, mean prediction
errors were computed for compounds with distance values less than α ∈ (0,1). This was
done in order to observe how the distance affects the test error predictions.

3.5 Generative modelling

3.5.1 Introduction

This methodology sub-chapter introduces 2 generative models used to generate fuel-like
molecular structures. The purpose of this study is to investigate the generative model’s ability
to create new bio-fuel molecular structures. Bio-fuels can be potentially produced from
a variety of sources and their molecular structure could be different to intuition. Similar
to model interpretations domain knowledge about fuel structures will be used to make
assessments of the generated fuel-like structures.

The role of generative models is to capture the underlying rules of a probability distribu-
tion. In this research, it was the distribution of molecular compounds of interest. Given a
collection of training sample points {Xi}, a model is trained to match data distribution PX , by
means of a generative process PY , where Y PY resembles the real data X PX . Compared to clas-
sification models, which find P(Y |X) given data-set in form {(X1,Y1),(X2,Y2), ...,(Xn,Yn)},
generative models find a joint distribution P(X ,Y ).

There are four main machine-learning models, which can be applied to generate molecular
structures. These include likelihood-based variation auto-encoders [88] and auto-regressive
models [144], likelihood-free generative adversarial networks [58], and reinforcement ap-
proaches [173]. In this study, adversarial networks and auto-regressive models were used.
The benefit of auto-regressive models is that they can be trained to modify a given molecule
and are much easier to implement and train compared to reinforcement approaches. Adver-
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sarial networks don’t assume any data distribution during training compared with variation
auto-encoders and can come up with novel molecules. In addition study by [27] showed
that auto-regressive models with LSTM networks outperformed other models in terms of
generated molecular qualities.

The sub-chapter starts describing the first generative model used in this study, which was
generative adversarial network. Description includes architecture choice for the generator
and discriminator networks. Consequently the second generative model is introduced, which
was auto-regressive model that replicates SMILES string generation by similar to words
by language models. Thereafter metrics used to evaluate quality of generated molecular
structures is given, followed by the models set up procedure.

3.5.2 Generative adversarial network

The second model that was trained to output valid organic molecules was a generative
adversarial network. These networks do not explicitly define probability density functions as
the above auto-regressive model. Instead, GANs take a game-theoretic approach by learning
to generate from training distribution through a 2-player game. The game is defined by
discriminative D and generative G networks with a mini-max training objective.

min
G

max
D

V (D,G) =x∼pdata(x) [logD(x)]+z∼pz(z) [log(1−D(G(z))] (3.6)

Where pdata and pz are unknown molecular distribution and normal distribution with
mean zero and variance 1. The learning objective is to find the transformation function
G, such that maps from the normal distribution pz to molecular pdata. The discriminative
network D learns to distinguish real molecules X pdata(x) and fake G(z) where, z pz, while
generator network G tries to fool the discriminator, so the discriminator will treat generated
samples as real.

In this working generator, G consisted of three consecutive dense layers with a hidden
number of nodes 128,256,512, and the output from the last layer is projected by 2 dense
layers onto dimensions N ×F and N ×N ×T . To convert the obtained continuous repre-
sentations into discrete node feature matrix X and adjacency tensor A, the Gumbel-Soft
Max activation function was used. Where N is the maximum number of atoms, excluding
hydrogen. F is the number of atoms types, which was set to 3 and includes carbon (C),
oxygen (O), and no atom (NA). Ai j describes the connection type between nodes i and j,
which includes no connection. Generative model G always outputs symmetric A, such that
Ai j = A ji,i.e for any i, j ≤ N, since molecules are undirected graphs.
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The discriminator was a graph neural network with relational graph convolution layers
described in the methodology section. It took the adjacency tensor A and node feature matrix
X from both real molecules and generated and mapped them to a scalar between (0,1), which
represented the probability if A and X represent a fake molecule.

3.5.3 Auto-regressive model

Given a sequence of words (w1, . . . ,wn) language model can predict the distribution of
the next w(n+1) word. For example, if a language model receives the ‘University College’
word London will have a higher probability than another word. Language models capture
grammatical correctness and context. Similarly, language models can be applied to molecular
generation, by modeling molecules as a sequence of smile symbols. Mathematically the
model gives the likelihood of sequence of symbols S = (s1, . . . ,sn) by

Pθ (s) = Pθ (s1)
T

∏
t=2

Pθ (st |st−1, ...,s1) (3.7)

Where θ are learnable model parameters. Language models differ in terms of formulation
of Pθ . In this work, recurrent neural networks were used to model Pθ . The model was trained
by optimizing the log-likelihood of the next symbols by

logP(S) =
n

∑
i=1

logP(si|s1,s2, ...,si−1) (3.8)

The input to the model is a sequence of symbols of molecular SMILES strings, which
includes atoms and bond symbols. Each smile’s sequence was given a ‘start’ token at the
beginning. This token was used to indicate the beginning of any sequence. If the length of
a sequence was shorter by k symbols than the length of the longest one, additional ‘PAD’
tokens were appended to the sequence. The model ground truth labels consisted of the same
sequence as the input but shifted with one step forward. Therefore the ‘start’ token was
omitted, but the ‘end’ token was appended to indicate the end of the sequence. Figure 3.7
illustrates how the model processed the input ethanol molecule.

The trained auto-regressive model does not directly make sequences but rather computes
conditional probabilities of the next symbols. Therefore sampling strategy is important to fac-
tor in the model inference. The most simple way to generate smile sequences from the trained
model is to take the greedy approach. Here each sequence symbol is generated according
to the maximum likelihood from the learned probability distribution Pθ . However, such a
strategy will give only one molecule. To increase the diversity of generated molecules each
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Fig. 3.7 Auto-regressive model set up

conditional token probability (Equatiuon 3.7) was skewed with temperature hyperparameter
T , which provides a trade-off between randomness and correctness in sampling.

P(xs+1 = k|s1, ..,sn) =
exp

yk
i

T

∑
K
i=1 exp(y

k
i /T )

(3.9)

Where T is a positive scalar when T = 1 the conditional distribution is equivalent to the
learned one. On the other hand, T → 0 will make the distribution equivalent to Dirac delta,
while T → ∞ will transform the distribution to uniform. The consequence of the first extreme
is that the sampling will be equivalent to the greedy approach, but the second extreme will
lead to completely random sampling. Here the model is given a ‘start’ token. Then the
model gives the probability distribution of the second token by (Equation 3.9). The second
token is sampled from the obtained distribution. Thereafter the model gives the third token
distribution given the first two. This process repeats until the ‘end’ token is reached. It’s
worth noting that the model input can be one or more tokens in length instead of ‘start’ only.
This allows the model to generate molecules from a molecular fragment encoded as a smiles
string.

Lastly, the trained model can be fine-tuned to output molecules with desired properties. In
this work, a hill-climbing (Figure 3.8) algorithm was used to modify trained auto-regressive
model weights.

3.5.4 Generated molecules assessment

To check generated molecule’s properties three criteria were used including validity, unique-
ness, and novelty. The validity was measured as the ratio between the number of generated
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Fig. 3.8 Hill Climb algorithm

compounds and the ones which were actually valid. Valid, that is, whether they correspond
to an (at least theoretically) realistic molecule. For example, molecules with an incorrect
SMILES syntax, or with invalid valence, are penalized. RDKit python package was used to
check the correctness of generated smiles string for the auto-regressive model and a written
script was used to check the valence correctness for the molecular graph generated by the
GAN model.

The uniqueness benchmark assesses whether models are able to generate unique molecules.
It is desired for the model not to output repetitive samples. Therefore uniqueness was mea-
sured as a ratio of unique and valid molecules divided by the total number of generated
compounds.

The optimal goal for the generative model is to be able to make molecules not seen in the
training set used for generative models. Consequently, the novelty was defined as the ratio of
molecules that are valid and unique and not present in the training set divided by the number
of generated molecules.

3.5.5 Experiment strategy

To check the generative models’ ability to make future bio-fuel structures three tests were
given to generative models. The first test was a valid organic molecules test, which shows
the model’s ability to make valid organic molecular structures since bio-fuels are organic
molecular structures. Both models were trained on QM9 data-set [130], which consists of
organic molecular structures with several heavy atoms up to 9. Such size of heavy atoms, i.e.
not including hydrogen is common in conventional hydrocarbon fuels used for spark ignition
engines. Generated molecules were then checked in terms of validity in terms of chemical
structures and later their uniqueness compared to qm9 data-set used for training.
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Models which pass the first test are then checked for their ability to generate valid and
unique organic molecules with high octane values. To accomplish that trained models on the
qm9 data-set were fine-tuned by the developed octane regression model from the applicability
domain chapter. Thereafter generated molecular structures will be checked again in terms
of their uniqueness and validity. However in the second test uniqueness will be compared
not only with QM9 data set but also the data-set used to train the octane regression model.
Consequently generated unique molecules will be checked in terms of traits of high knock
resistance molecular structures, such as presence of double bonds, branching and a short
main carbon chain.

The last test will check models ability to generate unique molecular structures with high
octane values and increased presence of the oxygen atoms, since bio-fuels contain oxygen
atoms.





Chapter 4

Interpreting octane number predictions

4.1 Classification models validation

The quality of the developed models was evaluated by accuracy, precision, sensitivity,
specificity and F1 score on the test set of molecules, which were not used in any part of the
model development. Accuracy shows the overall model performance, while precision is the
proportion of fuels which were predicted as having a high octane number actually had high
octane number. Sensitivity is the proportion of fuels which had a high octane number and
were predicted as such. Specificity is proportion of fuels which had low octane number were
predicted as such. F1 score is a hybrid metric which takes into account precision and recall.
Table 4.1 shows these metrics on the test set of octane database by the 4 developed models.
Figure 4.1 shows the ROC-AUC curve for the developed classification models evaluated on
the test set.The ROC-AUC curve shows the classification models false positive rate versus the
true positive rate for the different classification thresholds. False positive rate is the ratio of
fuels predicted to have a high octane number among fuels actually having an octane number
in the low range. The true positive rate is the ratio between fuels predicted having a high
octane number among fuels in the high octane range. The probability threshold converts
probability of fuel belonging to high octane to binary range ,i.e a fuel is either in high or low
octane number range.

The four developed octane number classification models (Table 4.1) displayed ROC
scores 0.93,0.92,0.93 and 0.90, which is higher than 0.88 in [160]. Average accuracy was
slightly less than 0.88 and was equal to 0.85,0.86,0.86 and 0.82. Sensitivity was almost
identical, except for the KNN model with numbers being equal 0.91,0.89,0.89,0.77 compared
to 0.88. Precision was also mostly identical with values equal to 0.90,0.89,0.9, and 0.80
compared to 0.88. This comparison indicates that the developed classification models have
similar performance as in [160]. Reliability diagram is included in Figure 4.2
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Model Accuracy Precision Sensitivity Specificity F1 score
SVM 0.849 0.909 0.914 0.789 0.845
RF 0.863 0.889 0.886 0.842 0.865

GBM 0.863 0.899 0.886 0.842 0.865
KNN 0.822 0.805 0.771 0.868 0.835

Table 4.1 Classification models test result

Fig. 4.1 ROC-AUC curve for the four classification models



4.1 Classification models validation 71

Fig. 4.2 Reliability diagram for the four classification models
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4.2 Interpretation results

Six different interpretation cases were considered, which are summarised in Figure 4.3 In
each case a compound with known octane number was modified in the same manner as in
matched molecular pairs analysis [42]. Thereafter the developed octane number classification
models reported the likelihood of the modified compounds having an octane number higher
than 94.4. The rest of this sub-chapter discusses the observed changes in likelihoods and
corresponding molecular structure modifications.

Case 1

The extent of branching was reduced in 2,2-dimethyl-3-ethylpentane. All four-classification
models reported considerable drop in the likelihood of fuel belonging to high-octane class,
while the original compound belongs to the high octane class with an octane number equal to
102.

Case 2

Dicyclopropylmethane has octane number equal to 96.0, and is classified as a high octane
fuel. The cycloalkane structure was removed from Dicyclopropylmethane and four models
reported almost equal probabilities of the modified compound to have either low or high
octane number. The result can be interpreted as significant drop in ignition properties
attributed to the removal of the cycloalkane. However, the original compound had an
octane number close to 94.4, with the difference less than 2 octane points. Therefore equal
probabilities of the modified compound can indicate that the modified molecule has an octane
number close to the threshold, and that the removal of cycloalkane has no effect on ignition
properties.

Case 3

Branching was reduced in T-butylbenzene in the same manner as with 2,2-dimethyl-3-
ethylpentane . However, all four classification models reported an almost 100% likelihood of
the modified compound to have high octane number. This result is completely opposite to
that in Case 1. Therefore the influence of branching upon ignition properties might depend
on the surrounding functional groups. In this case benzene ring was present, which is known
to have high impact on ignition properties [168].
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Case 4

The myrcene double bond was changed to a single bond, all four classification models
reported likelihood of modified compound belonging to high octane twice lower then low
octane range. The result can indicate that double bond removal did not significantly improve
ignition properties of Myrcene, which was already in low octane range with octane number
equal to 82.5. However the saturation from single to

Case 5

Branching was again investigated in the context of cyclic compounds. This time one carbon
atom was removed from Sabinene. A significant drop of the likelihood of fuel belonging to
the high-octane class was reported, which is opposite in the context to (Case 3) considering
tert-Butylbenzene.

Case 6

Carbon was substituted to oxygen in Valero lactone. The tree based algorithms, RF and
GBM reported significant drop in the likelihood. However, the Support vector machine and
K-nearest neighbouring’s algorithms did not report a significant decrease in the likelihood of
the resultant molecule belonging to the high-octane range.

4.3 Conclusion

The interpretations of the classification models (Figure 4.3) were able to make a direct
comparison of fuel structures with slightly different structural changes, as shown in case 6
when oxygen was substituted to carbon in Valero lactone. Furthermore, the interpretations
obtained by this research method are able to illustrate the effect of small structural changes,
such as carbon-carbon bond modification as in case 4. Higher granularity in developed octane
number classification interpretation method compared to [161] , was achieved by employing
compact vectorised chemical information mol2vec [76] and machine learning model agnostic
QSAR interpretation [127]. Case 1 demonstrated agreement with respect to branched alkanes
known ignition properties [19].By removing a carbon atom, one extra site for oxidation
was avalibale, and consequence the likelihood of the modified compound belonging to high
octane class was low. Case 3 demonstrated agreement with [66], by showing structural
dominance of benzoic bonds, where reduced branching did not show any significant influence
on ignition properties, due to the nearby presence of the benzoic ring structure. Benzoic
ring structures are known for high ignition resistance due to high stability of – bond in the
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Fig. 4.3 Six interpretation cases by the four classification models
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benzene ring. However, this was not the case, when branching was reduced in Case 5, where
there was no presence of strong – bond. Case 2 was difficult to interpret since the structure
before modification had octane number close to the 94.4 threshold and after modification, all
four models reported almost equal likelihood of the fuel belonging to the high or low octane
ranges. Investigating case 6 was quite ambiguous with the 4 models showing different results.
This divergence could indicate that either the modified structure is too different from the rest
of the octane number database or a modelling failure. In order to distinguish between these
two sources of errors further work on models application domain needs to be done. However,
the strategy of using different classification models and validating interpretations made such
attention to detail as in case 6 possible. In addition to branching, ring functional group,
carbon-carbon bonds and substitution of atoms on octane number was demonstrated in this
report (Figure 4.3). This has not been achieved previously since the only octane QSAR model
interpretation method [161] relies on much coarser fuels chemical structure representation,
i.e molecular fingerprints. In addition, the obtained octane number classification models
interpretations were mostly the same with respect to the different algorithms used. Therefore
results obtained were not biased to a particular algorithm.

This chapter investigated interpretability behind the octane number quantitative structure
activity models (QSAR), since quantitative structure activity models developed with the aid of
machine learning algorithms provide high accuracy [6], [20] and [90], but lack interpretations
behind them.





Chapter 5

Fuel properties models applicability
domain

5.1 Fuel properties modelling result

This sub-chapter shows the result of regression models used to predict fuel properties.
Regression modelling consisted in finding the best variables selection method in conjunction
with the machine learning algorithm tuned. The variable selection methods included an
embedded method of the elastic net, sequential feature selection method with 2 learning
algorithms either linear model or support vector machine and no variable selection method.
Each data set was split into the test set 20%, which was not used in any form of modelling.
The rest of the data set was used for 5-fold cross-validation, which compared the choice of
the variable selected with the machine learning algorithm trained. Negative mean squared
error was used to measure the quality of cross-validation. Optuna python module [5] was
used to find machine learning hyper-parameters such that maximise negative mean squared
error on the cross validation.The parameter search grid is shown in Table 5.1

Algorithm Parameter Parameter Parameter
SVM 10−3 <C < 103 10−3 < γ < 10−1 2 < d < 10
RF 2 < maxdebth < 64 4 < maxlea f nodes < 20 5 < max f eatures < 30

MLP 10−5 < lr < 10−2 10−4 < α < 10−1 3 < bz < 10
GBM 2 < maxdebth < 10 5∗10−2 < lr < 10−1 3 5 < max f eatures < 30
GBM 20 < ntrees < 300 0.2 < subsample < 0.9

Table 5.1 Models parameters grid
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Property Model Model Parameters Var selection

RON
SVM

C = 993
no vard = 4

γ = 0.099

AIT
GBM

lr = 0.93

no var
maxdebth = 6
ntrees = 189

subsample = 0.73
max f eatures = 21

Heat Combustion
GBM

lr = 0.93

wrapper(lin)
maxdebth = 5
ntrees = 157

subsample = 0.63
max f eatures = 22

Boiling Point
SVM

C = 742
wrapper(lin)d = 5

γ = 0.087

Density
GBM

lr = 0.93

wrapper(lin)
maxdebth = 8
ntrees = 132

subsample = 0.81
max f eatures = 17

Viscosity
SVM

C = 876
no vard = 5

γ = 0.213
Table 5.2 Selected hyper-parameters in best performing models

Table 5.3 shows the result of QSAR fuel properties models on the test set, The table
includes regression results in terms of coefficient of determination R2, mean average error
(MAE) and mean average percentage error (MAPE) for the combination of different learners
and variable selection methods. The best parameters found by the optuna package are shown
in Table 5.3.

It’s evident that heat combustion, boiling point and density were among the best per-
forming models due to the dataset sizes. However, viscosity performed slightly worse than
expected, which is due to the uneven distribution, which resembled exponential distribution
in target values.

It is evident that the combination of variable selection and learners among different fuel
properties was not the same for the best-performing models. However, SVM and GBM
algorithms performed the best. This result can be partially explained by the way models were
optimized. Models parameters were optimized with Bayesian optimization package optuna,
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Property Dataset size Model Var selection R2 MAE MAPE

RON 492

SVM no var 0.82 5.22 0.10
GBM elastic 0.81 5.22 0.10
MLP wrapper(lin) 0.76 7.26 0.15
RF wrapper(rf) 0.69 7.62 0.12

AIT 492

GBM no var 0.83 26.14 0.04
SVM wrapper(svm) 0.79 26.5 0.04
RF wrapper(lin) 0.80 26.82 0.04

MLP no var 0.82 31.85 0.05

Heat Combustion 1000

GBM wrapper(lin) 0.96 231.32 0.01
RF wrapper(RF) 0.95 289.9 0.01

SVM wrapper(svm) 0.95 308.71 0.01
MLP wrapper(lin) 0.92 474.15 0.01

Boiling point 8

SVM wrapper(lin) 0.99 2.64 0.01
MLP wrapper(lin) 0.99 2.76 0.01
GBM wrapper(lin) 0.98 3.24 0.01

RF wrapper(lin) 0.93 5.98 0.02

Density 8

GBM wrapper(lin) 0.99 4.68 0.01
MLP wrapper(lin) 0.99 7.82 0.01
SVM no var 0.99 10.37 0.01
RF wrapper(lin) 0.9 31.85 0.04

Viscosity 8
SVM no var 0.95 1.60∗10−4 0.11
MLP wrapper(lin) 0.95 1.80∗10−4 0.13
GBM wrapper(lin) 0.87 1.97∗10−4 0.13

Table 5.3 QSAR fuel properties models performance

which builds a probabilistic model in models hyperparameter space and searches for the best
hyperparameters. Since it takes longer for MLP and RF to perform one calculation compared
to SVM and GBM, less steps were taken in the optimization process. The lower speed is
attributed to the computational complexity of the selected machine learning algorithms.

Figure 5.1 illustrates expected values for fuel properties on the test set versus the predicted
values for the best-performing models (Table 5.3) for each fuel property. The closer the
points to the red line in Figure 5.1 better the predictions. The viscosity (VIS) plot in Figure
5.1 looks biased for larger viscosity values, this can be explained again by the much lower
number of data available for larger viscosity values.
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Fig. 5.1 Predicted and actual fuel properties,where RON(no units), AIT(K), HC(KJ/kg),
BP(K), DEN(mg/cm3), VIS(mPa s)
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5.2 Applicability domain results

The first approach to finding the influence of chemical structure on prediction error was
measuring the mean Tanimoto distance between the tested compounds and all compounds on
the train set used to build fuel property models.

Figure 5.3 illustrates the octane model prediction errors versus the mean Tanimoto
distance. The four algorithms used to build the octane model illustrate similar patterns.
However, the correlation between the errors and mean Tanimoto distance can not be observed.
On the other hand, all four models show that the worst prediction in terms of absolute error
was observed at the largest Tanimoto distance. In order to investigate the Tanimoto distance,
the errors were grouped at a binned distance, which is illustrated in Figure 5.4. Again
the pattern between the error distribution and bins was not observed. The conclusion was
made not to proceed with Tanimoto distance to establish applicability domain for other fuel
properties because in octane models the Tanimoto distance could not subgroup compounds
in the test set in terms of prediction errors.

Thereafter tested compounds were grouped by outlier detection algorithms OneClassSVM
and IsolationForest, by varying ν parameter, which influences which compounds are con-
sidered to be within the applicability domain or not. Figure 5.8 shows the mean absolute
prediction error for compounds considered to be within the applicability domain according
to the anomaly detection algorithms. The error values for ν = 0 correspond to the error on
the whole test set (Table 5.2).

All fuel properties and algorithms used for modelling illustrate a constant decrease in
the prediction error for compounds considered to be inliers by anomaly detection algorithms
with the ν parameter between 0 and 0.4. Therefore the anomaly detection algorithms
could group compounds by structural information in such a way that correlates with models
prediction errors. This can be explained by the fact that anomaly detection algorithms
consider compounds within the applicability domain by their similarity in descriptor space to
compounds used in the training set.

However, some differences in trends were evident in Figure 5.7, which can be attributed
to the distribution of the train compounds in the descriptor space used for modelling different
fuel properties. On the other hand, the trends in errors were similar for the models used to
predict a given fuel property.

Since the octane number is a prime fuel property of interest error distribution for different
ν values were plotted in Figure 5.5 and Figure 5.4. The difference between the two figures is
that the first one includes the worst predictions, while the second does not. It can be observed
that there is a constant decrease in error values variance as ν gets larger, with the largest
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Fig. 5.2 Mean average absolute octane number prediction error vs mean Tanimoto distance

decrease observed for the SVM model, which was the most accurate for the octane number
predictions(Table 5.2).

To investigate further if the worst predictions attributed to different compounds for
the 4-built octane number model Table 5.8 was created. The table includes the worst 10
predictions for 4 octane number models built by different algorithms. It’s evident that the
same compounds showed the worst performance.

5.3 Conclusion

In this study 4 applicability domain techniques were investigated including 2 distance-
based Tanimoto and Leverage, and 2 anomaly detection algorithms OneClassSVM and
IsolationForest.These were applied to 6 fuel properties data-sets including research octane
number, autoignition temperature, density, viscosity, boiling point and heat combustion.
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Fig. 5.3 Octane predictions errors distribution at different mean Tanimoto distance bins
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Fig. 5.4 Octane models mean average absolute error distribution vs contamination hyper-
parameter ν
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Fig. 5.5 Octane models mean average absolute error distribution vs contamination hyper-
parameter ν with outliers in previous figure excluded
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Fig. 5.6 Impact of contamination factor ν on predictions mean absolute error for different
fuel properties
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Fig. 5.7 Impact of contamination factor ν on predictions mean absolute error for different
fuel properties
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Fig. 5.8 Octane models worst predictions
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It was found that the anomaly detection algorithms could establish an applicability domain
by sorting test compounds by their structural similarity to the training set. Thereafter sorting
compounds in such a way showed a correlation to the test compound’s prediction errors
(Figure 5.6) and (Figure 5.7). For example the errors in admonition temperature decreased
from 25 to 15 in Figure 5.6, given ν = 0.6 .

However, the distance metrics such as Tanimoto and Leverage could not sort compounds
by their similarity to the train set in such a way that correlates with the prediction errors.
Figure 5.2 shows poor correlation between mean Tanimoto distance and predictions errors.

The leverage distance, which measures the distance in descriptor space between the test
compound and the mean of descriptors values for the training set was unstable. This was
attributed to matrix inversion in (Equation 3.5). For the matrix inversion to be computed, the
computed matrix must have full rank, i.e none of its columns can be represented as a linear
combination of other columns. However since the descriptors can have such a relationship,
the inversion was not possible for some descriptors. Therefore leverage distance was omitted
since it can’t be used to compare results in the applicability domain given a chosen descriptors
definition.

Secondly, Tanimoto’s average distance did not show a correlation between its values and
octane QSAR model error (Fig 5.2). However, compared to Leverage distance, the Tanimoto
measure was descriptors agnostic, since its calculation is based on finding the ratio between
compounds’ common number of fragments and the total for two compounds (equation 3.4)
and therefore it could be computed no matter what descriptors were used for modelling fuel
properties.

In addition compounds with the worst prediction tend to have the largest Tanimoto
distance. The weak relationship between the Tanimoto distance and models predictions
errors can be attributed to two factors. The first one is that the fuel properties were modelled
with descriptors, not by the molecular fragments and so even if Tanimoto distance has
chemical intuition in terms of similarity between compounds it can be misleading in terms of
descriptors. Secondly, fuel properties datasets most likely had a clustering structure, with
some compounds grouped together in descriptor space.

In conclusion anomaly detection algorithms could establish applicability domain for the
chosen fuel properties. For example OneClassSVM algorithm in Figure 5.6 could consistently
reduce model predictions errors up to v = 0.5. Research octane number predictions errors
for support vector machine coloured in red reduced from 5 to 2, where v = 0.5.





Chapter 6

Generative modelling of high octane fuel
molecules

6.1 Introduction

This chapter demonstrates results for generative modelling application in prototype fuel
development. The goal of this chapter is to show how generative modelling can reveal fuel
like molecular structures, which would not be found by intuition. The main findings include
list of hydrocarbons and oxygenated compounds, which were generated to maximise the
octane number. The structures found were in agreement with the domain knowledge of what
knock resistant compounds might look like.

To make chapter results reproducible the experiment set up sub-chapter includes the
generative models used architecture set up and hyper-parameter grid used to maximise the
generative models performance. Valid organic molecules test demonstrates the generative
models used ability to make valid organic chemical structures, which was the first models
test, since bio-fuels come from organic sources. The test also included models ability to
generate valid organic compounds with 2 properties, which can be found analytically. This
was done in order to check the generative models ability to make property targeted molecular
structure generation.

The last two subs-chapters show the final main results, which was the generation of fuel
like molecules. Generating hydrocarbons with high octane sub-chapter shows molecules
optimized for the octane number. While the last chapter uses LSTM models memory
property and creates molecules starting from oxygen in order to increase oxygenated content
in hydrocarbons structure generation to resemble bio fuels.
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6.2 Experiment set up

Auto-regressive model

Auto-regressive model architecture included sequentially embedding layer, LSTM cell [70]
and linear layer. The embedding layer weight size was equal to the input dimension times the
embedding dimension, which was a variable parameter listed as embed dim in Table 6.1. The
input dimension was equal to 27. The embedding layer was learning vector representation
for each unique character used in the smiles string. LSTM cell had variable parameters
the number of layers n layers and hidden dimension Hhidden (Table 6.1), these influenced
the final hidden ht and cell state vectors ct shapes, which were equal to (n layers,Hhidden)

and (n layers,Hhidden). Drop out was drop out (Table 6.1) applied to the embedding layer,
LSTM cell and the linear layer, this parameter acted as regularization. The linear layer
transformed the LSTM cell output dimension back to 27 size, since soft-max was used to
compute probabilities of the next character.

Apart from architectural and regularisation parameters, learning rate lr (Table 6.1) con-
trolled the optimization process of Adam optimizer [87]. Figure 6.1 shows the model
architecture printed by Torchviz [31] python package. Table 6.1 includes column selected
value, which shows parameters used to produce results in the following sub-chapters.



6.2 Experiment set up 93

Fi
g.

6.
1

A
ut

or
eg

re
ss

iv
e

m
od

el
di

ag
ra

m



94 Generative modelling of high octane fuel molecules

Parameter Search range Selected value
embed dim 50−200 2 100
batch size 16−128 64
n layers 1−3 2 2
drop out 0.1−0.8 0.3

lr 10−5 −10−1 10−3

Hhidden 32−512 512
Table 6.1 Auto-regressive model parameter search

GAN model

The GAN model included discriminator and generative networks. Discriminator receives
graph as input and outputs scalar. Generator receives vector of variable size z and out-
puts adjacency tensor and node feature tensors with dimensions (nmoleclues,9, 9, 5) and
(nmoleclues,9, 5) representing molecular graph. In adjacency tensor dimensions 9 and 5
represent the maximum number of atoms excluding hydrogen and the type of connection
between them including, single, double, triple , aromatic bonds and no bond. The node
feature tensor dimensions of 9 and 5 represent the number of atoms excluding hydrogen in
one molecules and the atoms types. These types included oxygen, carbon, nitrogen, fluorine,
which were present in QM9 dataset and empty atom.

Discriminator consisted of two relational graph convolution layers [143], which propa-
gated signal between graph nodes, followed by aggregation layer [96] , which transformed
graph input into vector form, and lastly series of dense layers. Figure 6.3 shows discriminator
architecture used to make results for the rest of this chapter. Generator consisted of series of
3 consecutive linear layers, where the output of the third layer was projected two separate
layers, which were edges and nodes in Figure 6.2. These were then reshaped into tensors from
405 to (9, 9, 5) for edges and from 45 for node feature layer into (9,5). Later gamble-softmax
activation [78] was applied along last dimensions in edge and node feature tensors in order
to get dis-create values for the type of bond and type of atoms respectively.

6.3 Valid organic molecules test

This sub-chapter shows results in model validation for GAN and auto-regressive models.
Figure 6.4 shows the ratio of valid molecules made during each epoch step. The models were
trained by stochastic gradient descent in mini-batches, consisting of 64 molecules at each
step. Epoch denotes the number of batches when learning iterations cover the full training set.
In this case, it was 120000 molecules from the QM9 dataset [130] small organic molecules.
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Fig. 6.2 Generator architecture

Figure 6.4 shows that the auto-regressive model learned to make valid molecules quickly,
while the GAN model showed high oscillation in valid molecules produced and then dimin-
ished quality of molecules made. Since the auto-regressive model showed superior results it
was chosen for the latter test to make molecules with target properties.

One of the major reasons why the GAN model did worse than the auto-regressive model
is the difference in the optimization tasks for these models’ equations 3.6 and 3.8. The
solution to 3.6 is a saddle point, while the minimum is 3.8. Optimizers currently made
for deep learning packages are fundamentally designed to find the minimum point, not the
saddle. Figure 6.5 shows three cases of vector fields, the first one is with divergence and curls
present, the second with no divergence, and the last without curl. Deep learning training can
be represented by traversing in these fields. In the case of a single minimum, it’s a traverse in
a curl-free field, where a minimum can be reached with an appropriate step size. However in
the case of GAN curl is present, which makes traverse with rotation present and it makes it
hard for first-order optimizers to converge to the saddle point.

Figure 6.6 illustrates how sampling parameter T from equation 3.9 affects the number of
novel molecules made. It was found that slight distortion of the original distribution from
T = 1 to T = 1.4 made the maximum number of novel molecules. This sampling temperature
will later be used for sampling in the hill climb algorithm (Figure 3.8) in order to modify
molecules with the desired properties. In addition, as expected as the temperature parameter
increased and the learned smiles symbols distribution was more distorted towards uniform
distribution, the number of valid molecules diminished.

To test the ability of the generative model 2 tests were made including optimizing
molecular structure to increase the octanol-water partition coefficient, known as logP, and
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Fig. 6.3 Discriminator architecture
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Fig. 6.4 Auto-regressive model vs GAN training

Fig. 6.5 Vector field comparison
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Fig. 6.6 Valid, Unique and Novel molecules vs sampling temperature T

altering the chemical structure to include the ketone group. Figure 6.6 shows the initial
logP distribution for valid molecules produced and then for each iteration of the climb hill
algorithm step N (Figure 6.7). It is evident that after 10 steps the median value for logp
values of molecules made converges, which is due to the fact that similar molecules are made
at each iterative step. To test the ability of the model to force chemical structure constraints
on molecules produced, the hill climb algorithm was given a reward function that gives 1 if
the ketone group is present and 0 if not. Figure 6.8 shows the initial ratio of molecules with
the ketone group at steps 0 to step 10.

To conclude LSTM language model was the preferred choice, based on the proportion
of valid compounds generated (Figure 6.4). The number of novel compounds reached 45%
by getting the sampling temperature around 1.5 (Figure 6.6). Thereafter the generative
model was fine-tuned for 2 tasks. One is to optimize the logP value and the proportion of
compounds with the ketone group. These tasks were given to check the generative model
capabilities since logP and the ketone group ratio can be validated analytically, unlike the
octane number, which can only be determined by conducting an experiment. In conclusion,
this verified technique of generating novel compounds with the property target set will be
used to generate prototype fuel structures, which can not be found by intuition.
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Fig. 6.7 Generated molecules logP values at each climb hill step

Fig. 6.8 Ratio of generated compounds with ketone group at each climb hill step
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Fig. 6.9 Sample of generated molecules with ketone group

6.4 Generating hydrocarbons with high octane

In this chapter, molecules were optimized during generation for increasing the octane number.
The same procedure of fine-tuning the LSTM model was taken with logP values and ketone
group presence as in chapter 6. The only difference with chapter 6 molecular generation
was the reward function, which returned the octane number predicted by the SVM model
developed in chapter 5 (Table 5.3) multiplied by sign, which is only negative for compounds
that contain nitrogen. This insured that molecules containing nitrogen will not be saved as
top-performing and hence be used to fine-tune the model (Figure 6.10). Such a procedure
introduces bias against generating molecular structures with nitrogen. Molecules with
nitrogen were not considered as future fuels, since their combustion produces toxic nitrogen
oxide emissions. Figure 6.10 shows the distribution of the reward function values of the
generated molecules at each hill climb step. The hill climb algorithm was stopped when the
median reward value converged to 100 at step 10 (Figure 6.10). Thereafter this model will be
used to make compounds from scratch and start with the oxygen symbol. Important to note
that the hill climb algorithm did not eliminate completely molecules with nitrogen present,
which can be found as negative outliers in Figure 6.10

The model generated 500 compounds, which were later sorted by the octane number
predicted by the same model used in the reward function. The best 30 molecules are shown in
Figure 6.11. Table 6.2 lists 12 molecules out of these 30 which were not present in the QM9
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Fig. 6.10 Octane number distributions at different hill climb steps

dataset [130] of small organic compounds used to train the generative model. This selection
was undertaken, so the new compounds can not be found by simply calculating the octane
number for QM9 molecules. Pub-Chem identification number [18] was used to compare if
molecules are identical since the same molecule can have different smile notations. These
identification numbers were computed by open source package PubChemPy [Matt Swain].

Several molecules in Table 6.2 produced by the generative model and were already
present in the octane database, such as 2,2,3-trimethylpentane. Mainly these duplicates were
represented by alternative forms of smile’s strings, for example an aromatic ring can written
either c1ccccc1 as an aromatic ring or as an unsaturated ring C1==CC==C1. Subsequently, 5
molecules were left, which are not included in the QM9 and octane databases. The procedure
undertaken used pubchem ids. Figure 6.12 shows the structure of these molecules left. Table
6.3 shows their predicted physical properties, made by models from chapter 5.

From Figure 6.12, it can be seen that in general two generated molecules are compact
and incorporate branching. For example 2,2,3,4-tetramethyl, similar in structure to 2,2,3,3
-tetramethyl pentane, which has a measured octane value of 114. It can also be seen that 40%
of the molecules incorporate an aromatic ring. Both branching and aromatic rings are known
to increase knock resistance [150], [85] . The smallest molecule 3-methylbutan-2-ol had the
alcohol group. Finally, these 5 molecules had physical properties shown in table 6.3, which
were in the adequate range for fuels.
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Fig. 6.11 Generated molecular structures with the highest octane values
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SMILES Compound Name Present_in_Octane_data
CC(O)C(C)C 3-methylbutan-2-ol False
CC(C)(C)C(C)CC 2,2,3-trimethylpentane CC(C)C(C)(C)C [112.1]
CC(C)Cc1ccccc1 (2-methylpropyl)benzene CC(C)CC1=CC=CC=C1 [101.6]
CC(C)(C)C(C)C(C)C 2,2,3,4-tetramethylpentane CC(C)C(C)C(C)(C)C [116.8]
CC(C)(C)c1ccccc1 tert-butylbenzene CC(C)(C)C1=CC=CC=C1 [103.0]
CCC(C)c1ccccc1 (butan-2-yl)benzene CCC(C)C1=CC=CC=C1 [100.7]
CC(C)c1cccc(C)c1 1-methyl-3-(propan-2-yl)benzene False
CC(C)(C)C(C)C 2,2,3-trimethylbutane CC(C)C(C)(C)C [112.1]
CC(C)(C)C(O)C(C)C 2,2,4-trimethylpentan-3-ol False
CC(C)C(C)c1ccccc1 (3-methylbutan-2-yl)benzene False
CC(C)(C(C)C)C(C)C 2,3,3,4-tetramethylpentane False
CC(C)(C(C)(C)C)CC 2,2,3,3-tetramethylpentane CCC(C)(C)C(C)(C)C [99.1]

Table 6.2 Generated compounds not present in QM9 data-set

Fig. 6.12 Molecules not present in either QM9 and octane data-sets
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Compound name RON Density(mg cm3) Boiling point(K) Viscosity(m Pa s)
3-methylbutan-2-ol 105 806 369 0.86
1-methyl-3-(propan-2-yl)benzene 108 846 452 0.68
2,2,4-trimethylpentan-3-o 109 813 445 0.74
(3-methylbutan-2-yl)benzen 105 847 464 0.80
2,3,3,4-tetramethylpentane 114 740 401 0.57
gasoline 95 743 368 0.70

Table 6.3 Physical properties of generated molecules not present in QM9 and octane datasets

6.5 Generating oxygenated molecules with high octane

The trained model was subsequently used to generate 3000 compounds where an oxygen atom
was included in the starting token, thereby ensuring that the final structure also incorporates
oxygen. The number of molecules generated increased from previous 500 in order to increase
the variety of compounds since the additional constraint of oxygen was implemented. Figure
6.13 shows the generated molecules incorporating oxygen that were not present in either
QM9 dataset or the database used to train the reward function. These generated RON numbers
and physical properties including density and viscosity at 40 degrees and the boiling point at
standard atmospheric pressure are shown in Table 6.4.

The first observation is that fewer aromatic species were generated (Figure 6.13) com-
pared to molecules without a starting oxygen symbol (Figure 6.11).Started with oxygen, the
majority of compounds contain more than one oxygen. It can also be seen that there the
oxygenated compounds generated also featured a greater abundance of branching relative to
the molecules generated without the oxygen starting token (Figure 6.11). It is also interesting
to note that these molecules showed a greater abundance and variety of oxygen-bearing func-
tional groups.For example ketones and ethers (Figure 6.13). The presence of the latter is inter-
esting given that ether linkages are known to decrease octane number.[ f indre f erence]These
molecules were hydroxymethyl acetate,3-(hydroxymethyl)-4-methylpentan-2-one and 3-
methylbutan-2-yloxymethanol. Some compounds like 4-methylhex-2-yn-1-ol and 4,5-
dimethylhex-2-yn-1-o had triple bonds. These are known to increase the RON number,
but also increase soot formation [need ref here]. One feature of the generated compounds
1-butan-2-ylcyclopropan-1-ol included triangular structure, which is not common in practical
fuels.
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Fig. 6.13 Generated structures starting with oxygen symbol, which were not present in QM9
and octane datasets
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Compound name SMILES RON DEN BP VIS
1-methoxyethanol O(C)C(C)O 102 952 358 0.99
2-(hydroxymethyl)-3-methylbutanal OCC(C=O)C(C)C 100 940 447 1.18
4-methylpentane-2,3-diol OC(C(C)O)C(C)C 100 950 455 0.98
3-methylbutane-1,2-diol OC(CO)C(C)C 99 962 432 0.97
4-methylhex-2-yn-1-ol OCC#CC(C)CC 98 829 450 0.68
3-hydroxycyclopentan-1-one OC1CCC(=O)C1 97 1085 416 0.96
1-butan-2-ylcyclopropan-1-ol OC1(C(C)CC)CC1 98 925 425 1.03
(2-methylphenyl)methanol OCc1ccccc1C 97 1020 492 1.04
2-propan-2-ylpropane-1,3-diol OCC(CO)C(C)C 97 958 481 1.06
(2-methylpropan-2-yl)oxymethanol OCOC(C)(C)C 99 901 411 0.90
1-hydroxy-4-methylpentan-3-one OCCC(=O)C(C)C 101 924 448 0.83
3-(hydroxymethyl)-4-methylpentan-2-one OCC(C(=O)C)C(C)C 97 914 466 0.87
3-methylbutane-1,1-diol OC(O)CC(C)C 100 948 451 1.15
2-methylphenol Oc1ccccc1C 103 1031 460 1.07
hydroxymethyl acetate OCOC(=O)C 104 1125 464 1.47
4,5-dimethylhex-2-yn-1-ol OCC#CC(C)C(C)C 98 813 465 0.66
2-(hydroxymethyl)butanal OCC(C=O)CC 100 1025 426 1.28
3-methylbutan-2-yloxymethanol OCOC(C)C(C)C 98 889 435 0.86
1-hydroxybutan-2-one OCC(=O)CC 105 1042 380 0.80
butane-1,2-diol OCC(O)CC 97 991 404 1.04
2-phenylpropan-1-ol OCC(C)c1ccccc1 97 989 505 1.17
1-hydroxy-3-methylbutan-2-one OCC(=O)C(C)C 104 960 404 0.72
3-methyl-2-propan-2-ylbutan-1-ol OCC(C(C)C)C(C)C 101 811 455 0.84

Table 6.4 Generated compounds not present in QM9 and octane datasets
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6.6 Conclusion

In attempt to generate molecules 2 methods were tried including GAN model and auto-
regressive model, and the auto-regressive model performed all the tasks,m which were valid
organic compounds test and generation of fuel like molecules.

Figure 6.4 showed that auto-regressive model performed better in valid organic molecules
test, it reached 95% in the proportion of generated valid compounds during training, while
the GAN model reached maximum of 50%. Consequently GAN model was not later used to
create molecules with the desired properties.

Thereafter hill climb algorithm (Figure 3.9) was applied to tune the trained auto-regressive
model to bias molecular generation towards chosen theoretical targets such as an increase in
logp values and the ratio of compounds with ketone group. These tests could show models’
ability to bias molecular generation and check it analytically, unlike the octane number,
which can only be determined by experiment.

Median generated molecules logp values before applying the hill climb algorithm were
around 0.5 at step 0 in Figure 6.7 increasing to 3.5 at step 10 in Figure 6.7. The ratio
of molecules with the ketone group before and after the hill climb algorithm application
increased from 0.15 to 0.8, step 0 and step 10 in Figure 6.8.

After testing the generative model’s ability to bias molecular generation on theoretical
targets, the model was fine tuned to increase the octane number. Figure 6.10 showed the
octane number values of the generated compounds before fine tuning and after. Median
octane number of generated compounds converged to 100 (Figure 6.10). In Figure 6.10
some compounds had negative octane rating, because predictions of the octane number
for the compounds outside of THE applicability domain were assigned negative score in
order to encourage model not to generate compounds outside the applicability domain of the
regression octane number model.

Thereafter generated compounds with the high octane ratings were assessed qualitatively
by their chemical structure properties. The model was able to reproduce already-known
high-knock-resistant compounds (Table 6.2), which were not present in the QM9 data set
used for the generative model training. Although such a result indicates that the model can
produce knock-resistant compounds, it has limited practical use, as the model’s goal is to
propose novel high knock-resistant compounds. Therefore compounds in Figure 6.12, which
were not used in any form of model development were further investigated. These compounds
showed known chemical structure attributes of high knock resistance compounds, such as
branching, cyclic rings, and compactness. Practical experiments and compound synthesis
would be required to validate the octane rating of these molecules. Later the generative model
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was forced to produce molecular structures starting with oxygen in smiles strings describing
fuels chemical structure (Table 6.4). Again these compounds showed the traits of high knock
resistant structures, such as compactness, presence of double bonds and branching.



Chapter 7

Conclusions and Future work

This chapter provides an overall summary of the thesis, by giving conclusion to the literature
review, research results and future work. Literature review sub-chapter gives the main
literature findings, which defined the main research directions. The results sub-chapter
summarises the key findings from the modelling investigations undertaken. The future work
provides research directions based on the obtained results and the limitations in methodology.

7.0.1 Literature review

Three major machine learning application gaps were found in the context of fuel research.
These were interpretations of the models used to predict fuel properties, consideration of the
applicability domain of the fuels properties models, and the application of inverse QSAR
generative models.

The interpretation of predictions by a model enables further insights into the underlying
relationship between the chemical structure and fuel properties. In addition model inter-
pretations allow checks of the model predictions by comparing them with known chemical
mechanisms.

In drug design, molecular property prediction models (QSAR) must have an applicability
domain, which defines what compounds can be used as the model input. This stems from the
fact that machine learning models can not confidently extrapolate, and so the data used to
train a model defines what the model can predict or not. The cost of false prediction can be
high in drug development. This approach was taken in the context of fuels in order to find
boundaries of what can be predicted or not, based on the available fuel properties data.

Lastly advances in chemical informatics and machine learning demonstrated targeted
molecular structure generation known as inverse QSAR or de-novo molecular design. Since
combustion is a very complex process, future fuels structures can potentially be suggested
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by inverse QSAR, i.e helping to overcome limitations in current combustion knowledge and
intuition.

7.0.2 Results

This final chapter provides a summary of the thesis results and their significance. These
include results from chapters 4,5 and 6 which were interpretations of the octane number
models predictions, applicability domain in fuels properties regression models and generation
of fuel like chemical structures.

To demonstrate interpretations behind the fuel property predictions model, 5 classification
models were built, which predicted if a given compound had a research octane number above
or below 95. This value was chosen as a reference for standard gasoline value. The models
showed an average accuracy of 85%, which is comparable to the developed octane number
classification model by [160]. Thereafter 6 model interpretations were compared to known
relationships of fuel structural changes to the research octane number. Five out of six cases
demonstrated agreement by four models where the structure changes lead to an increase or
decrease of the octane number values. Since 4 out of 5 machine learning algorithms were
fundamentally different, it demonstrated versatility in the chosen method behind octane
number classification model interpretations.

The fuel properties applicability domain was investigated by conducting a cross-product
experiment between 4 different machine learning algorithms, 6 fuel properties and 4 methods
to compute the similarity between each compound in the test set and all other compounds
in the train set. The goal was to find which similarity measure would correlate with the
regression model’s prediction errors. Methods included 2 distance-based and movement of
classification boundaries by a chosen parameter.

The trained regression models showed satisfactory level of accuracy between 1% and
10% in mean average absolute error, for data-sets with more than 1000 samples and less.
Distance based similarity measures did not correlate with the predictions errors and hence
could not establish the fuels applicability domain. Such a result can be explained by clustered
nature of fuel data-sets. Intuitively clustering can be result of the different types of chemicals,
for example straight chain alkanes and compounds with aromatic ring.

The outlier detection algorithms such as OneClassSVM and IsolationForest established
the relationship between predictions errors and compounds location inside and outside the
classification boundary. All trained machine learning algorithm on all data-sets showed
almost a 2 fold decrease in predictions errors, by choosing compound with the moving
classification boundary to ν = 0.6. However further increase in the contamination factor did
not show predictions error reduction. This can be attributed to the fact that the classification
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boundary at such a point can ignore another cluster of train data to which the tested compound
is closer.

Two generative models were investigated to perform inverse QSAR for fuel like struc-
ture generation. The GAN model produced 50% valid organic compounds, while LSTM
produced 95%. The later was than chosen to be fine tuned by a hill climb algorithm with
the octane number predictions as the reward function in order to get structures with high
knock resistance. The first result demonstrated the generation of already known highly knock
resistant compounds, which were not used as input to generative model training. The other
compounds generated, which were not included in any part of modelling including training
the reward octane function, showed traits of high knock resistance such as branching, cyclic
structures, and the compact size of the molecules.

Overall these three major results expand current applications of machine learning and
chemical informatics applications to fuel research beyond the current race in the accuracy of
predictions, where these accuracy results are compared on different sets of molecules in the
test set. The outcome of these results is to gain better knowledge of combustion by utilizing
model interpretations. Applicability domain results show that the boundary of what needs
to be tested in the experiment and what can be predicted based on the available data can be
established. Lastly, the generative modeling approaches can help direct compounds to be
tested in experiments since not all combinations of fuel structures can be tested due to high
combinations of fuel potential structures and limited knowledge in analytical methods that
can define if a given structure is suitable as a fuel candidate.

7.0.3 Future work

This sub-chapter describes what future research steps can be taken based on the results of
this research. These include octane number modeling, interpretations of fuel quantitative
structure activities models, and inverse quantitative structure modeling by application of the
generative models.

Fuel properties modeling showed a decrease in the mean absolute errors of predictions
with fuel properties data-set size increase. One of the possible ways to improve the octane
number modeling is to create domain-specific variables for the fuel molecules used as input to
the training models. Since the research octane number data set is relatively small, algorithms
might not find interim variables, which can capture relationship between the variables and
octane number. An example of such variables could be some specific combustion attributes of
the fuel molecules. For example the extent of branching of alkyl chains, presence of alcohol
functional groups and some other oxygenated groups could be added as model inputs.
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Interpretations of the octane number predictions used only one approach which was
model and variable agnostic. However other interpretations of QSAR models could be
applied. These include algorithm and variable specific interpretations. The goal of applying
other approaches is to increase confidence in interpretations, where the domain knowledge is
not sufficient to check the sensibility of the results. The applicability domain results showed
that there is a relationship between test compounds error and there similarity to the data used
to train models.

In terms of applicability domain results, the outlier detection algorithms could consis-
tently sort compounds and showed the decreased mean absolute error in predictions as the
contamination factor was increased. However, it’s unclear what is the best value for contami-
nation factor to use when considering new fuels. In this research, the proposed method is to
use the value where the rate of error decrease start to converge. However such approach has
no formal definition. Therefore, a probabilistic approach in treating confidence of predictions
could have better formal definition and be more intuitive.

The generative model used was a language model, which uses string smiles notation.
The main drawback with such approach is that the developed model can only add symbols
sequentially. The generative model use could have much greater impact by updating existing
chemical structures. In this case the model can only add symbols to starting structure, which
limits how the given molecule can be updated. For example the model can not delete atoms or
change a bond type. Therefore for future work generative model which uses graph molecular
representation can overcome such limitations. Models such as [111] can be applied for fuels
prototyping in order to investigate decreasing saturation of fuel molecules, which were used
in drug discovery research. Such modelling would help to increase the range of biomass
which can potentially be used as fuel source.

This research built applicability of the octane number classification model, which agreed
with known structural properties of fuels in 5 by 6 cases. The applicability domain of
fuel properties was established by outlier detection algorithms, which could separate test
compounds in such way the prediction errors reduce twice. Lastly the generative modelling
showed promising fuel like chemical structures, with a known high octane number of
approximately 100
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