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Abstract 

Background The widening of group-level socioeconomic differences in body mass index (BMI) has received consid-
erable research attention. However, the predictive power of socioeconomic position (SEP) indicators at the individual 
level remains uncertain, as does the potential temporal variation in their predictive value. Examining this is important 
given the increasing incorporation of SEP indicators into predictive algorithms and calls to reduce social inequal-
ity to tackle the obesity epidemic. We thus investigated SEP differences in BMI over three decades of the obesity 
epidemic in England, comparing population-wide (SEP group differences in mean BMI) and individual-level (out-of-
sample prediction of individuals’ BMI) approaches to understanding social inequalities.

Methods We used repeated cross-sectional data from the Health Survey for England, 1991–2019. BMI (kg/m2) 
was measured objectively, and SEP was measured via educational attainment, occupational class, and neighbourhood 
index of deprivation. We ran random forest models for each survey year and measure of SEP adjusting for age and sex.

Results The mean and variance of BMI increased within each SEP group over the study period. Mean differ-
ences in BMI by SEP group also increased: differences between lowest and highest education groups were 1.0 kg/
m2 (0.4, 1.6) in 1991 and 1.3 kg/m2 (0.7, 1.8) in 2019. At the individual level, the predictive capacity of SEP was low, 
though increased in later years: including education in models improved predictive accuracy (mean absolute error) 
by 0.14% (− 0.9, 1.08) in 1991 and 1.05% (0.18, 1.82) in 2019. Similar patterns were obtained for occupational class 
and neighbourhood deprivation and when analysing obesity as an outcome.

Conclusions SEP has become increasingly important at the population (group difference) and individual (prediction) 
levels. However, predictive ability remains low, suggesting limited utility of including SEP in prediction algorithms. 
Assuming links are causal, abolishing SEP differences in BMI could have a large effect on population health but would 
neither reverse the obesity epidemic nor reduce much of the variation in BMI.
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Background
Obesity rates have more than tripled among adults in 
England since 1980 [1]. Average body mass index (BMI) 
has also increased, but the population distribution of 
BMI has become more spread and more skewed [2], 
implying that individuals have not been equally affected 
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by the obesity epidemic. Given the substantial health and 
economic costs associated with obesity [3], identifying 
solutions to the obesity epidemic continues to be an area 
of significant policy and research interest.

A large amount of research has focused on social ine-
qualities in obesity and BMI (see, e.g. [4, 5] for reviews). 
Recent evidence finds that adults in the most deprived 
areas of England are twice as likely to have obesity as 
those in the least deprived areas [6]; a similar difference is 
observed comparing highest and lowest education groups 
[6]. Evidence further suggests that, in England, inequali-
ties in obesity and BMI according to education level have 
widened — in absolute terms — alongside the develop-
ment of the obesity epidemic [7], a pattern observed in 
multiple other countries [8], though not all [9].

Research on social inequalities in BMI has typically 
taken a population-level approach and focused on esti-
mating associations — for instance, examining the mean 
difference in BMI according to educational attainment. 
Less attention has been paid to the explanatory power of 
socioeconomic factors at the individual level — for exam-
ple, the proportion of between-person variability in BMI 
that can be predicted by socioeconomic position (SEP) 
[10]. Though measures of SEP have been included in pre-
dictive algorithms for BMI [11] and reducing social ine-
quality has been proposed as a way to tackle high obesity 
rates [12], SEP appears to explain only a small amount 
(< 6%) of between-person variability in BMI [9, 13–17]. 
This is the case even when multiple indicators of SEP 
across life are used [13, 14].

The comparatively low explanatory power of SEP 
accords with more general observations. The variance 
in adult BMI explained by environmental factors shared 
between twins (such as parental SEP) is very low, in con-
trast to the proportion explained by genetics and non-
shared environmental factors [18]. This low explanatory 
power is observed across almost all traits and is known 
as the ‘gloomy prospect’ in behavioural genetics [19, 20]. 
Attempts to directly predict individual life outcomes 
using SEP and other survey data have produced hum-
bling results. For example, a recent scientific mass col-
laboration showed that several socioeconomic outcomes 
were largely unpredictable using a range of sophisticated 
predictive models and unusually rich survey data (includ-
ing socioeconomic histories) [21].

While the explanatory power of SEP on BMI may be 
lower than perhaps expected [12], it could have system-
atically changed across time. The increasing variation of 
population BMI partly reflects increasing inequalities 
between SEP groups, but it reflects increasing variation 
within these groups, too [2, 15, 22–25]. If the increasing 
variation within groups exceeds the increasing variation 
between groups, the explanatory power of SEP — already 

low — may have fallen further still. Determining whether 
this is the case is important for understanding the role 
of SEP as a contributor to the obesity epidemic [22] and 
for understanding the (continuing) potential for using 
SEP in predictive algorithms. However, research on this 
question is limited. Studies from the USA [9] and Indo-
nesia [15] find the explanatory power of SEP on BMI has 
decreased over time, but social inequalities declined in 
these countries over the periods assessed. Thus, results 
may not generalize to England or other countries that 
have experienced widening inequalities across time.

Existing research is further limited by a focus on indi-
vidual-level (education) and not area-level (e.g. neigh-
bourhood deprivation) measures of SEP which may 
capture area-based factors, such as neighbourhood walk-
ability and fast food outlet density [26]. Existing research 
is also limited by the use of methods not tailored for pre-
diction. In particular, studies have used linear regression 
models of limited flexibility, which may not have cap-
tured interactions and other non-linearities. They have 
also assessed explanatory power within the same sample 
as used to estimate models (thus biasing towards more 
optimistic results) and have not assessed predictive abil-
ity, specifically — a metric of particular importance for 
creating accurate prediction algorithms for BMI.

We examined trends in the explanatory and predic-
tive power of individual- and area-level SEP on BMI 
more formally by adopting principles and methods from 
machine learning. We used random forest models and 
repeated cross-sectional data from the Health Survey for 
England (HSE) to examine changes in the predictive abil-
ity of educational attainment and neighbourhood depri-
vation for BMI and obesity between the years 1991 and 
2019, a period in which obesity rates doubled in England 
[1].

Methods
Participants
The HSE is an ongoing series of annual nationally rep-
resentative cross-sectional health surveys that began in 
1991 [27]. A detailed description of the survey is avail-
able elsewhere [28]. The HSE uses a multi-stage sampling 
design with households drawn from a list of postcode 
sectors. Non-response weights are provided with the 
data from 2002 onwards, due to increasing refusal rates 
(household response rates fell from 77% in 1994 to 60% 
in 2019; see Additional file 1: Fig. S1) [28, 29]. We used 
these weights where available, assuming weights of 1 in 
other survey years. We limited our analysis to individu-
als aged 25–64 — the lower bound chosen to focus on 
ages with few members (1–8%) in full-time education 
(whose eventual education level is not known) and the 
upper bound chosen to reduce selection biases that could 
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arise due to higher mortality rates among high BMI indi-
viduals [30]. We further limited our sample to those of 
White ethnicity to create comparable populations less 
liable to changes in composition due to inflow and out-
flow of migration. For similar reasons, we also excluded 
a small number of individuals whose highest qualifica-
tion was obtained abroad as well as individuals currently 
in full-time education (4.2% of observations). There was 
only a small amount of missingness on our covariate data 
(< 0.1%), so we analysed complete cases only. Our final 
sample size was 143,094. This excluded 10.7% of the eli-
gible sample who had missing BMI data. The sample size 
each year ranged from 1813 in 1991 to 9556 in 1993.

Measures
Body mass index
BMI was calculated by dividing weight in kilogrammes 
by height in metres squared. Height and weight were 
measured directly by interviewers. From 1995, individu-
als weighing more than 130 kg were asked to give an esti-
mate of their weight due to limitations with the scales, 
so measurements for these individuals are based on 
self-report.

Socioeconomic position
The HSE contains few measures of SEP that are meas-
ured consistently in each wave. We focus on educational 
attainment, occupational social class, and neighbour-
hood deprivation; each captures different dimensions 
of SEP [31], has been widely used in the social inequali-
ties literature [32], and is related to obesity in the UK 
[6]. (HSE also contains data on income quintile, but we 
did not use this here as it is missing in a sizeable num-
ber [~ 15%] of cases, with missingness increasing over 
the survey period.) Education was recorded using the 
national vocational qualification schema to categorize 
qualifications according to skill level (high to low: NVQ 
4/5, higher education below degree level, NVQ 3, NVQ 2, 
NVQ1, none). [NVQ 4/5 is equivalent to degree or above; 
see [33] for further example qualifications.] Occupational 
social class was captured using the Registrar General 
Social Class Schema (high to low: I Professional, II Mana-
gerial and Technical, III Skilled Non-Manual, III Skilled 
Manual, IV Partly Skilled, V Unskilled). Data on social 
class are available from 1994 onwards, except 2010 and 
2011. Social class is missing in a small number of cases 
(< 3%) where occupation was not categorizable within the 
schema (e.g. employees of the Armed Forces) or where 
the participant was long-term unemployed.

Neighbourhood deprivation was measured using the 
index of multiple deprivation (IMD) and was categorized 
into quintiles (1st least deprived–5th most deprived). 
The IMD combines deprivation across seven domains 

(income, employment, education, health, crime, barri-
ers to housing and services, and living environment). In 
the HSE, IMD data are available from 2001 only; at the 
electoral ward level from 2001 to 2002 and lower super 
output area (LSOA) level thereafter (LSOAs comprise 
400-1200 households). New versions of the IMD are 
released intermittently. The IMD2000 is available from 
2001 to 2002, the IMD2004 from 2003 to 2007, the 
IMD2007 from 2008 to 2010, the IMD2010 from 2011 to 
2014, the IMD2015 from 2015 to 2018, and the IMD2019 
in 2019. We use the IMD quintile data as supplied, as it 
precluded further harmonization.

Covariates
We included age and sex as covariates in our prediction 
models as the relationship between age, sex, and SEP 
(particularly education) has changed strongly over time 
(with, e.g. the population becoming increasingly highly 
educated) and as age and sex may confound the associa-
tion between education and IMD and BMI [7, 34]. Age 
was available in single years prior to 2015, but only in 
5-year categories from 2015 onwards. For consistency 
with earlier years, for years 2015–2019, for each indi-
vidual, we randomly drew a single-year age (with equal 
probability) from their respective 5-year age category. 
Mean age increased in our sample between 1991 and 
2014 (average age ~ 43 in 1991 and ~ 45 in 2014).

Statistical analysis
To maximize predictive ability, we used random forest 
models, known to provide similar or superior predic-
tions to traditional regression approaches in multiple set-
tings [35, 36]. Our analysis consisted of fitting random 
forest models and assessing their predictive accuracy 
and explanatory power. Random forests are a decision 
tree-based method in which data are recursively split 
according to decision rules invoking individual predic-
tor variables (e.g. male or female, age < 45). Decision rules 
are chosen such that splits minimize heterogeneity in 
the target variable (here, BMI). To avoid overfitting, ran-
dom forests use an ensemble approach where the results 
of multiple decision trees are averaged, with each tree 
being fit on a subset of predictor variables and a random 
sample of observations. As predictions are generated via 
successive binary splits, random forests can account for 
non-linearities or interactions between independent vari-
ables (e.g. between age and education) without requiring 
their explicit parameterization, an advantage here given 
previously observed differences in social inequalities in 
BMI between males and females, across cohorts, and 
over the life course [7].

We fit a random forest (500 trees) for BMI for each 
year of data collection and measure of SEP, using SEP, 
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age, and sex as predictor variables. We then extracted 
model predictions and used these to calculate three met-
rics of explanatory power and predictive accuracy: vari-
ation explained (R2), mean absolute error (the difference 
between observed and predicted BMI), and probability 
of superiority. (In this setting, the probability of superi-
ority is the probability that among two randomly chosen 
participants, the participant with the higher predicted 
BMI score has the higher observed BMI.) Importantly, to 
avoid overfitting, we generated model predictions using a 
portion of our data that was not used to estimate the ran-
dom forest model (procedure explained further below). 
R2 provides a (relative) measure of how well SEP can pre-
dict between-person differences, while mean absolute 
error and probability of superiority provide summaries of 
how well SEP can predict individuals.

We compared the three metrics to (a) baseline predic-
tions where mean BMI was used and (b) the results of 
random forest models including only sex and age as pre-
dictor variables. We also calculated the magnitude of the 
association between educational attainment and BMI by 
using the results of the random forest models to predict 
mean BMI assuming everyone in the population had the 
same SEP. We defined the size of the association between 
SEP and BMI as the difference in predicted population 
mean BMI for the most advantaged and disadvantaged 
SEP categories (NVQ 4/5 vs no qualifications for educa-
tion; I Professional vs V Non-Skilled for social class; and 
highest vs lowest quintile for IMD). To calculate confi-
dence intervals, we used bootstrapping accounting for 
the complex survey design (Rao and Wu method [37], 
500 bootstrap samples). For the predictive accuracy and 
explanatory power metrics, we  generated predictions 
using the observations not selected within a given boot-
strap in order to avoid overfitting.

As the random forest models were estimated for each 
year separately, to more easily ascertain trends in (a) the 
proportion of prediction error explained by each SEP 
variable and (b) the size of the association between BMI 
and each SEP variable, we smoothed the bootstrap esti-
mates by regressing estimates upon year splines using 
generalized additive models (GAMs) — GAMs allow for 
flexible, smooth non-linear associations between inde-
pendent and dependent variables. The change in the age 
variable to 5-year categories from 2015 onwards may 
have artificially increased the relative incremental pre-
dictive power of including SEP in models. Consequently, 
we also ran the GAM models using data only up to 2014 
to assess whether trends were observable prior to the 
change in the data.

We performed a series of further analyses. First, as 
social inequalities in BMI are typically found to be 
stronger among females than males [4], we repeated the 

analysis stratifying by sex. Second, as age was imputed in 
later years, we re-ran models with age inputted as 5-year 
categories (25–29, 30–34, …, 60–64 years old). Third, as 
obesity (BMI ≥ 30  kg/m2) is of particular research and 
policy interest, we repeated the analysis using obesity as 
the outcome measure (see Additional file  1: Results S1 
for further detail on methods used). Fourth, as random 
forests could potentially overfit the data, we repeated 
the BMI analysis using simple linear regression. In these 
models, predictors were included as linear (age) or cat-
egorical (sex, education, occupational class, IMD) terms 
with no interactions included.

The organization used to conduct the HSE changed in 
1994. Some previous studies using HSE have accordingly 
focused on data from 1994 onwards [38]. We present 
results from 1991 to 2019, but in the text report results 
from 1994 where results from 1991 to 1993 depart con-
siderably from those in later years.

Results
Descriptive statistics
There was an increase in the overall mean and variance 
of BMI and the prevalence of obesity between 1991 and 
2019 (Fig. 1a–c; see also Additional file 1: Fig. S2). Edu-
cation levels generally increased across time; the pro-
portion of individuals with the highest education level 
increased from 11.7% in 1991 to 37.5% in 2019 (Addi-
tional file  1: Fig. S3). Increasing education levels led 
to non-linear changes in the variance of the education 
measure; variance decreased overall between 1991 and 
2019 but peaked in 2002 (Fig.  1d). Descriptive statistics 
for the SEP measures and covariates are also shown in 
Additional file 2: Table S1.

Predicting BMI
Mean BMI increased among all education groups, social 
classes, and IMD quintiles across the survey period, 
including among those with the highest SEP (Fig. 2a, b) 
— for instance, predicted mean BMI increased for the 
most highly educated group (NVQ 4/5) from 26.2 kg/m2 
(95% CI = 25.6, 26.7) in 1991 to 28.2  kg/m2 (27.7, 28.5) 
in 2019. More disadvantaged SEP was generally related 
to higher BMI and there was some evidence that social 
inequalities widened over time. The difference between 
the lowest and highest educated groups was 1.0  kg/m2 
(0.4, 1.6) in 1991 and 1.3 kg/m2 (0.7, 1.8) in 2019, while 
the difference between individuals in the most and least 
deprived neighbourhoods was 0.6 kg/m2 (0.3, 0.8) in 2001 
and 1.3 kg/m2 (0.7, 1.8) in 2019 (see Additional file 1: Fig. 
S3 for smoothed results). The trend cannot be explained 
by changes in age composition over time — generating 
effect sizes using the age structure of the 2019 HSE sam-
ple similar results (results available on request).
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Fig. 1 Descriptive statistics (+ 95% confidence intervals) by survey year. a Mean body mass index. b Proportion of individuals who are obese 
(BMI ≥ 30 kg/m2). c Standard deviation of BMI. d Shannon’s entropy (a measure of variability) for categorical educational attainment variable. All 
figures are weighted. Confidence intervals derived using the Rao and Wu bootstrap method to account for complex survey design

Fig. 2 Results of random forest models predicting BMI by survey year. a Predicted mean population BMI assuming all individuals have 
given educational attainment. b Predicted mean population BMI assuming all individuals belong to given social class. c Predicted mean population 
BMI assuming all individuals from areas in given IMD quintile. d Difference in mean BMI at the population level between highest (NVQ 4/5, I 
professional, or 1st quintile IMD) and lowest (no qualifications, V unskilled, or 5th quintile IMD) SEP groups. Confidence intervals calculated using 
bootstrap samples accounting for complex survey design (500 bootstraps, centile method)
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While average BMI increased within SEP groups, so 
did its variability (Additional file  1: Fig. S5). Given this 
increasing variability, the total prediction error increased 
over time, regardless of the model used (Fig. 3a). In 1991, 
using age, sex, and education level to predict BMI gener-
ated an average prediction error (the difference between 
predicted and observed BMI) of 3.4  kg/m2 (3.2, 3.6). In 
2019, prediction error increased to 4.4  kg/m2 (4.2, 4.6). 
For social class, equivalent figures were 3.3  kg/m2 (3.2, 
3.4) in 1994 and 4.4  kg/m2 (4.3, 4.6) in 2019. For IMD, 
equivalent figures were 3.8  kg/m2 (3.7, 3.8) in 2001 and 
4.4 kg/m2 (4.3, 4.6) in 2019.

While prediction errors increased in absolute size, 
there was some evidence that each measure of SEP 
explained a greater proportion of variation in BMI over 
time, as measured as the proportion of prediction error 
reduced by including education, social class, or IMD in 
the random forest model or, alternatively, by incremental 
R2 (Fig. 3b, c; see Additional file 1: Fig. S4 for smoothed 
results). The improvement in prediction attributable to 
education was 0.14% (− 0.90, 1.08) in 1991 and 1.05% 
(0.18, 1.82) in 2019 (Fig. 3b). (A trend of increasing pre-
dictive accuracy improvement from including education 
in models was also observed using data from 1991 to 

2014 only.) Across the studied period, the total reduc-
tion in prediction error when including education, social 
class, or IMD in models was very small — less than 1.1% 
each year (see Additional file 1: Fig. S6 for model residu-
als). Equivalently, incremental R2 was low: for education, 
0.76% (0.29, 1.17) in 1994 and 1.57% (0.2, 2.62) in 2019 
(Fig. 3c). Highlighting this, the ability of education, social 
class, or IMD to distinguish pairs of individuals at higher 
BMI levels was also generally poor. The probability of 
superiority derived from models including SEP was 0.59 
or lower in each year — little different from the prob-
ability of superiority derived from models just including 
age and sex (Fig. 3d). Education was typically more pre-
dictive of BMI than social class or IMD (Fig. 3b), though 
the temporal increase in mean level differences between 
highest and lowest SEP groups was greatest for IMD 
(Fig. 2d; see also Additional file 1: Fig. S4).

Further analyses
Qualitatively similar results were obtained when linear 
regression was used instead of the random forest algo-
rithm or when using the 5-year age group as a covari-
ate, rather than the single-year age (results available on 
request). Qualitatively similar results were also obtained 

Fig. 3 Predictive accuracy of random forest models predicting individuals’ BMI by survey year. a Mean absolute error of model predictions by model 
(i.e. average difference between predicted and observed BMI; baseline prediction uses sample mean, and other estimates are random forest models 
including stated covariates). Higher values are indicative of less accurate prediction. b Percentage reduction in prediction error when further 
including educational attainment, social class, or IMD in the random forest model (compared to the model including age and sex). c Incremental R2 
when further including educational attainment, social class, or IMD in the random forest model (compared to the model including age and sex). d 
Probability of superiority by model
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when predicting obesity instead of BMI: social inequali-
ties increased over time as did the proportional improve-
ment in prediction when including SEP in models, but 
the overall predictive power of SEP was low (see Addi-
tional file 1: Results S1 and Additional file 1: Figs. S7-S10 
for full detail). Larger social inequalities were found 
among women when stratifying the BMI analysis by sex 
(Additional file  1: Fig. S11). Population-level differences 
in mean BMI according to SEP were approximately twice 
as large among females compared with males. Accord-
ingly, SEP improved individual-level predictions to a 
greater extent among females, though improvements in 
predictive accuracy remained low. The relative improve-
ment in predictive accuracy across the study period was 
more clearly observed among females.

Discussion
Summary of results
The results demonstrate an increase in mean BMI and 
an increase in the variability of BMI between 1991 and 
2019 in England, as well as an increase in the preva-
lence of obesity. Mean BMI and prevalence of obesity 
increased across all education groups and IMD quin-
tiles, and there was an increase in social inequalities over 
time. However, variability in BMI within SEP groups also 
increased. While the ability of education, social class, 
and IMD to explain the between-person variability of 
BMI increased over the study period, explained variance 
remained low and absolute prediction errors increased in 
size. A broadly similar pattern of results was found when 
attempting to predict obesity. SEP further had limited 
utility in identifying, among pairs of individuals, the per-
son with obesity or a higher BMI. Effect sizes were larger 
in females than males, and education was typically more 
predictive than social class or IMD.

Explanation of findings
These results are consistent with previous studies 
showing limited explanatory power of SEP for BMI 
[9, 13–15] and accord with studies showing increased 
variance within SEP groups over the obesity epidemic 
[2, 15, 22–25]. More generally, they are also consistent 
with findings that shared environmental factors explain 
limited variance across a wide range of behavioural and 
health-related traits (the ‘gloomy prospect’ of behaviour 
genetics [19, 20]), as well as with the results of a mass 
scientific collaboration study showing that socioeco-
nomic outcomes are largely unpredictable even using 
rich longitudinal survey data [21]. Researchers in one 
study were able to predict 60% of the variance in BMI 
among older adults using deep learning methods and 
detailed socioeconomic, demographic, and other study 
data (> 450 variables) [39]. However, their analysis also 

included several variables directly related to health, 
such as healthcare utilization.

Intriguingly, the observed small change in the pro-
portion of variance explained by SEP as group-level 
BMI differences have increased is consistent with a 
model in which the effects of risk factors for high BMI 
have uniformly increased in strength over the obe-
sity epidemic [40] — one study in Sweden found that 
genetic effects have similarly increased, while heritabil-
ity has remained almost stable [41]. However, there are 
reasons to expect changes in the variation explained 
by education, including the changing distribution of 
education itself as the population has become more 
highly educated (see Fig. 1) and variation in the returns 
to education (i.e. through period and cohort effects in 
the effect of education on earnings) which could lead 
to differences in effect size, e.g. from changes in relative 
access to healthy foodstuffs.

Our results raise the question of why such low explan-
atory power of SEP is observed. One reason is that low 
SEP is neither a necessary nor a sufficient cause of high 
body weight. Instead, SEP is expected to operate distally 
at the end of long causal chains, the steps of which may 
be blocked, amplified, or attenuated in the presence or 
absence of other exposures. For instance, at a population 
level, neighbourhood deprivation may lead to higher BMI 
by influencing physical activity via affecting walkability 
[42], but some individuals may compensate by travelling 
to surrounding areas or may get sufficient exercise if they 
do physically demanding jobs. The effects of SEP on BMI 
may thus be heterogeneous, a process that would entail 
greater BMI variance within lower SEP groups, which is 
observed in practice [2]. Furthermore, extremely strong 
effect sizes — stronger than those found in typical epide-
miological studies — are required to obtain good predic-
tive power at the individual level [43]. As such, while SEP 
had an increasingly large effect size on BMI across time, 
it was not sufficiently large to yield accurate predictions 
at the individual level.

Our results may have implications for efforts to tackle 
obesity rates. Assuming the link between SEP and BMI 
is causal (an assumption supported in some, but not all, 
quasi-experimental studies; [44]), our results suggest that 
reducing the social gradient in BMI could reduce but not 
reverse the obesity epidemic: consistent with other work 
[2], our results show that obesity rates have increased 
among all social groups while inequalities within these 
groups have also increased over time. As has been pre-
viously argued, the increasing variability of BMI could 
mean a one-size-fits-all approach may not be effective 
as increased variability may reflect distinct determi-
nants [45]. We should, however, note that predicting the 
effects of intervening on SEP or its mediating pathways 
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is challenging, partly as it is possible that inequality itself 
could increase obesity rates [46].

Despite an increasing association between SEP and 
BMI at the population level, the results suggest limited 
utility of the use of SEP indicators in predictive algo-
rithms for obesity or BMI. Algorithms to predict obe-
sity based on high-level SEP data are likely to have an 
unacceptably low sensitivity and specificity — focusing 
only on those with low SEP would miss the majority of 
cases. Including SEP in models may be justified for health 
equity reasons, however [47]; without its inclusion, 
risk will be systematically underestimated for low SEP 
individuals.

While SEP does not explain much of the between-per-
son variation in BMI, determining its predictive ability 
is important as it can motivate the development of more 
complex and specific theories and highlight the need for 
other non-standard but highly predictive data. Genetic 
data are increasingly available — polygenic scores for 
BMI now achieve R2 of 15% [48] — but text or other 
‘big’ data could also be useful. A recent study mining the 
content and style of essays written at age 11 explained 
approximtely 60% of the variability in childhood cogni-
tive ability [49], though the ability to predict BMI and 
other physical health measures is unlikely to be this high.

Strengths and limitations
Strengths included objective measurement of BMI and 
use of data spanning almost three decades of the obesity 
epidemic in England, though for a small number of indi-
viduals with particularly high weight, self-reports were 
used instead. We examined measures of individual- and 
area-level SEP, measures that are easy to collect (and 
thus may appear in predictive algorithms) and have been 
widely studied in the social inequality literature previ-
ously. Nevertheless, due to data limitations, some dimen-
sions of SEP (such as income) were not examined, and 
the variables that were used were relatively high level 
and restricted to a small number of categories, limit-
ing potential predictive accuracy. The measures were 
also based on current SEP; life course measures of SEP 
— or of body weight (e.g. ever having obesity) — may 
have yielded more accurate predictions (though the 
gloomy prospect makes us circumspect as to the degree 
of improvement). Improvements in predictive accuracy 
may also have been greater if covariates other than age 
and sex were included in models as this would allow for 
the determination of more granular interaction effects. 
Future work should examine a larger and more detailed 
suite of socioeconomic data.

Though HSE is designed to be representative, non-
response increased over the study period, consistent 
with other cross-sectional health surveys and several 

longitudinal studies [50, 51]. Non-response may have 
been related to BMI or SEP. Previous work has shown 
that, among eventual HSE participants, individuals from 
more deprived areas or with highest or lowest incomes 
required more contact attempts, on average [52], and, 
in a major UK birth cohort, obesity was related to lower 
participation in a midlife biomedical sweep [53]. While 
we used survey weights, differential non-response could 
have reduced the predictive accuracy of SEP and biased 
time-related changes.

We also focused on White non-student or foreign-
educated participants for comparability across time 
— results may not generalize to other sections of the 
population. The HSE data are cross-sectional. Assuming 
that our estimates at least partly confounded (see, e.g. 
[54]), we are likely to have obtained optimistic estimates 
of predictive accuracy, relative to intervening directly on 
SEP. Finally, the random forest models may have been 
too flexible and overfit the data, producing poor out-of-
sample predictions. Nevertheless, using ordinary least 
squares (OLS) regression yielded similar results.

Conclusions
While absolute inequalities in BMI and obesity accord-
ing to education and neighbourhood deprivation 
increased in England between 1991 and 2019, within-
group inequalities also increased and were large relative 
to between-group inequalities, contributing to the weak 
explanatory power of SEP. Though explanatory power 
increased over the study period, it remained low which 
suggests that reducing inequality is unlikely to reverse 
the large impact on the obesity rates which increased 
across all SEP groups since the beginning of the obesity 
epidemic. Nevertheless, the possibility of heterogeneous 
effects of SEP means that targeted attention within SEP 
groups could be fruitful.
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