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Abstract 

Background Alzheimer’s disease involves accumulating amyloid (A) and tau (T) pathology, and progressive neuro-
degeneration (N), leading to the development of the AD clinical syndrome. While several markers of N have been pro-
posed, efforts to define normal vs. abnormal neurodegeneration based on neuroimaging have been limited. Sensitive 
markers that may account for or predict cognitive dysfunction for individuals in early disease stages are critical.

Methods Participants (n = 296) defined on A and T status and spanning the AD-clinical continuum underwent 
multi-shell diffusion-weighted magnetic resonance imaging to generate Neurite Orientation Dispersion and Density 
Imaging (NODDI) metrics, which were tested as markers of N. To better define N, we developed age- and sex-adjusted 
robust z-score values to quantify normal and AD-associated (abnormal) neurodegeneration in both cortical gray mat-
ter and subcortical white matter regions of interest. We used general logistic regression with receiver operating char-
acteristic (ROC) and area under the curve (AUC) analysis to test whether NODDI metrics improved diagnostic accuracy 
compared to models that only relied on cerebrospinal fluid (CSF) A and T status (alone and in combination).

Results Using internal robust norms, we found that NODDI metrics correlate with worsening cognitive status 
and that NODDI captures early, AD neurodegenerative pathology in the gray matter of cognitively unimpaired, 
but A/T biomarker-positive, individuals. NODDI metrics utilized together with A and T status improved diagnostic 
prediction accuracy of AD clinical status, compared with models using CSF A and T status alone.

Conclusion Using a robust norms approach, we show that abnormal AD-related neurodegeneration can be 
detected among cognitively unimpaired individuals. Metrics derived from diffusion-weighted imaging are poten-
tial sensitive markers of N and could be considered for trial enrichment and as outcomes in clinical trials. However, 
given the small sample sizes, the exploratory nature of the work must be acknowledged.
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Introduction
Amyloid plaques and neurofibrillary tangles (NFTs) 
are defining features of Alzheimer’s disease (AD) [1]. 
As underscored by the AT(N) framework, determining 
positivity for these features either by way of neuroimag-
ing or deriving cutoffs based on cerebrospinal fluid (CSF) 
levels of Aβ42 and p-Tau can better define the disease, 
prior to development of the clinical syndrome of AD 
[2–5]. Cerebrospinal fluid (CSF) levels of Aβ42 and p-Tau 
have become widely adopted in AD research as sensitive 
markers for preclinical AD, where pathology pre-dates 
clinical manifestations of AD [2–4, 6]. Identifying disease 
markers is important for early identification as well as for 
enriching therapeutic intervention trials. Biomarkers of 
AD can also provide quantitative benchmarks that may 
evaluate the efficacy of disease-modifying drugs [4]. CSF 
has proven to be highly useful and provides several bio-
markers from a single sample; however, CSF biomarkers 
lack the regional specificity of neuroimaging techniques, 
potentially missing key AD-defining patterns of pathol-
ogy. Neurodegeneration (N) is a critical facet of the AD 
process, since it likely mediates the relationship between 
amyloid plaques and tangles and clinical cognitive decline 
[7]. However, the development and utility of neuroim-
aging-based markers of N has been limited, given that 
conventional magnetic resonance imaging (MRI) based 
measures of volume primarily capture the gross atrophy 
that is typical of later stage disease, and disease-specific 
neurodegeneration may be difficult to parse from age-
related changes [8, 9].

Recently, several quantitative microstructural MRI 
techniques, including multi-shell diffusion-weighted 
MRI (dMRI), T2 relaxometry, quantitative magneti-
zation transfer (qMTR), and cortical mean diffusivity 
(cMD) have emerged as promising for detecting micro-
structural alterations that precede the gross anatomic 
changes observed with conventional T1-weighted 
imaging in both cortical gray matter and subcortical 
white matter tracts [10–15]. By definition, quantitative 
MRI is more sensitive to tissue type than conventional 
MRI [13]. T2 relaxometry and DTI indices examined in 
medial temporal lobe regions have improved the sen-
sitivity and specificity of detecting amnestic MCI and 
AD compared to conventional FA and MD [13]. Mole 
et al. [14] have also quantified the multiple interaction 
effects of APOE-ε4, family history of dementia, and 
obesity on white matter microstructure over time using 
quantitative magnetization transfer (qMTR). In recent 
years, multi-shell acquisition techniques coupled with 

novel modelling approaches have enhanced capabili-
ties for deriving biologically plausible estimates of brain 
microstructural architecture in  vivo [9, 16–18]. Stud-
ies suggest that cortical mean diffusivity (cMD) can 
detect preclinical changes in gray matter architecture 
that correlate with biomarker status [15]. In addition, 
Neurite Orientation Dispersion and Density Imaging 
(NODDI), a type of multi-shell acquisition DWI, has 
gained increased use for identifying microstructural 
alterations in neuropsychiatric and neurodegenerative 
diseases including, schizophrenia, bipolar disorder, 
Parkinson’s disease, and AD [19–24]. Previous work 
from our group has shown that NODDI metrics are 
especially sensitive to cortical microstructural altera-
tions across the AD continuum, outperforming cortical 
thickness at predicting both MCI and AD [25] as well 
as exhibiting higher sensitivities to CSF markers of AD 
pathology [25].

NODDI—which has shown promise for capturing 
subtle neurodegeneration—applies a three-compart-
ment tissue model [18]. By assuming three separate 
environments for water diffusion, NODDI accounts 
for both intracellular and extracellular water diffu-
sion, allowing for a better interpretation of the neuro-
degenerative changes that occur in aging and AD [18]. 
The Neurite Density Index (NDI) estimates the density 
of axons and dendrites, or “neurites,” per voxel, and 
the Orientation Density Index (ODI) estimates the 
degree of neurite dispersion. ODI is impacted by loss 
of neurites, particularly when measured in gray matter. 
NODDI has gained increased use for identifying micro-
structural alterations in neuropsychiatric and neurode-
generative diseases including, schizophrenia, bipolar 
disorder, Parkinson’s disease, and AD [19–24].

To better define abnormal neurodegeneration (N) 
within the AT(N) framework, the current study lever-
aged multi-shell dMRI and NODDI modeling of data 
collected among participants who spanned the clinical 
and biological spectrum of AD. We applied a robust 
norms statistical approach (previously utilized for nor-
ming neuropsychological tests), to establish normative 
ranges and cut-offs for neurodegeneration (N) [26–28] 
in gray and white matter regions of interest. Using 
robust norms analysis of NODDI-ODI and NDI meas-
ures, we aimed to better identify preclinical neurode-
generation within AD-affected cortical and subcortical 
regions utilizing AT(N) biomarker criteria.

We hypothesized that the robust values of ODI and 
NDI in AD-affected regions would have an inverse 
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relationship with participant clinical severity and AT 
biomarker status indicative of neurodegenerative loss 
of axons and dendrites with worsening AT(N) disease. 
Currently, the AT(N) framework prioritizes biomarkers 
of A + and T + to categorize AD staging. However, since 
neurodegeneration likely mediates the relationship 
between A/T pathology and clinical cognitive decline 
in AD [6], we hypothesized that models that utilized 
regional NODDI metrics would better predict clinical 
diagnosis status than models that relied on CSF A/T 
status alone. Here, we show that microstructural altera-
tions in AD-associated regions could be separated into 
normal vs. abnormal neurodegeneration (N) in pre-
clinical and clinical AD stages, as well as inform upon 
the clinical predictive utility of relying on neuroimag-
ing markers of neurodegeneration, such as NODDI, 
in addition to CSF biomarkers. While our work is not 
without limitation, and further investigation is needed 
to fully define N within the AT(N) framework, we 
demonstrate that microstructural diffusion-weighted 
imaging, particularly NODDI, has potential as a neuro-
imaging biomarker for the detection of preclinical neu-
rodegenerative (N) changes in AD.

Methods
Participant selection
Data from 296 participants (Table  1) enrolled in the 
Wisconsin Registry for Alzheimer’s Prevention study 
(WRAP, n = 90), or the Wisconsin Alzheimer’s Dis-
ease Research Center (ADRC, n = 206) were included 
in analyses [21, 29]. Selection criteria included having 
undergone multi-shell diffusion-weighted MRI to deter-
mine NODDI metrics, successful lumbar puncture (LP) 
to measure Aβ42, Aβ42/40, and p-Tau via the Roche 

NeuroToolKit (NTK) platform, and a clinical consensus 
diagnosis of either cognitively unimpaired (CU, n = 285), 
mild cognitive impairment likely due to AD (MCI, n = 6), 
or dementia, due to probable AD (AD, n = 5). To ensure 
the analysis was focused on individuals on the AD con-
tinuum, selected participants were required to have 
either (1) a clinical diagnosis of either MCI or AD with 
a positive amyloid CSF status (A + /T − , A + /T +), or 
(2) a diagnosis of CU with either A − /T − , A + /T − or 
A + /T + CSF status. For each participant, the LP sam-
ple and clinical diagnosis closest in time to the latest 
NODDI scan was included in analysis. In accordance 
with NIA-AA guidelines, those classified as MCI likely 
due to AD, underwent clinical evaluation, brain imag-
ing, neuropsychological testing, and for simplicity are 
referred to as MCI.

Clinical diagnosis categories
Participants underwent comprehensive cognitive 
assessments. Diagnosis of cognitively unimpaired (CU, 
n = 285), mild cognitive impairment (MCI, n = 6) likely 
due to AD, or dementia due to probable AD (AD, n = 5) 
was determined using clinical and cognitive information 
in accordance with the 2011 National Institute on Aging-
Alzheimer’s Association (NIA-AA) workgroup diagnos-
tic criteria. MCI and AD groups were combined for the 
primary analysis (MCI/AD) due to small sample size, and 
statistical approaches for small and unequal sample sizes 
were employed.

CSF AD biomarker acquisition and A/T status analysis
CSF samples were collected via lumbar puncture (LP) 
after a minimum 8-h fast, centrifuged, aliquoted, and 
stored at − 80  °C [30]. CSF samples were assayed at the 

Table 1 Participant demographics

Two hundred ninety-six participants from the Wisconsin Alzheimer’s Disease Research Center (ADRC) and the Wisconsin Registry for Alzheimer’s Prevention (WRAP) 
studies at UW-Madison were included in the study. Participants underwent lumbar puncture (LP) for cerebrospinal fluid (CSF) collection and assays for Aβ42/40 and 
p-Tau, clinical diagnosis, MRI studies, and NODDI modeling. Exclusion criteria included a diagnosis other than AD-Dementia, MCI-AD, or CU. Participants were selected 
if they had a clinical diagnosis of CU with A − /T − , A + /T − , or A + /T + CSF or a diagnosis of MCI or AD and A + /T − or A + /T + CSF. CSF was analyzed using the Roche 
NeuroToolKit (NTK) assay. CSF cutoffs were determined in-house using previously published receiver operator curve (ROC) methods

Participant characteristic Cognitively unimpaired (CU) Mild cognitive 
impairment 
(MCI-AD)

Alzheimer’s 
disease dementia 
(dementia-AD)

Statistical method p-value

N = 296 N = 285 N = 6 N = 5

CSF Biomarker Status 
(A − T − /A + T − /A + T +)

231/26/28
(81.0%|9.1%|9.8%)

0/1/5
(0%|16.7%|83.3%)

0/1/4
(0%|20.0%|80.0%)

Fisher 1.07 ×  10–8

APOE ε4 genotype
(% positive)

103(36%)
NA = 10

3 (50%) 4(80%) Fisher 0.026

Sex
(% female)

186 (65%) 5 (83%) 2 (40%) Fisher 0.41

Age (years)
Mean, SD

65.10 ± 7.81 71.77 ± 9.73 71.36 ± 2.52 ANOVA 0.0121
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Clinical Neurochemistry Laboratory, University of Goth-
enburg. Measurements included  the following immu-
noassays performed on cobas e analyzers: Elecsys® 
β-Amyloid (1–42) CSF, Elecsys Phospho-Tau (181P) CSF 
and the β-Amyloid (1–40) robust prototype assay as part 
of the Roche NeuroToolKit (NTK) research platform.

Cutoff values for amyloid and p-Tau positivity were 
applied according to Van Hulle et  al. (2021) [29, 30] as 
follows: a CSF Aβ42/Aβ40 ratio < 0.046 defined amyloid 
positivity (A +), and a CSF p-Tau value ≥ 24.8 defined 
tau positivity (T +). Participants were then placed into 
one of three A/T status groups: A − /T − (Amyloid-/
Tau-), A + /T − (Amyloid + /Tau −), and A + /T + (Amy-
loid + /Tau +). A − /T + participants were not used as they 
were outside the AD A/T-criteria focus of this study [2]. 
Among the N = 285 CU participants, 54 were defined as 
having biological AD based on their CSF A/T biomarker 
status (A + /T −  = 16, and A + /T +  = 28).

Image acquisition and processing
MRI data were acquired on two General Electric 3  T 
MR750 scanners with 32-channel head coils located 
at the Waisman Center (n = 90) or the Wisconsin Insti-
tute for Medical Research (WIMR) (n = 206) at UW-
Health, Madison WI. Diffusion-weighted images were 
acquired using a multi-shell spin-echo echo-planar 
imaging pulse sequence (6 × b = 0  s   mm2, 9 × b = 500  s/
mm−2, 18 × b = 800  s   mm−2, and 36 × b = 2000s   mm−2; 
TR/TE = 8575/76.8  ms; 2 × 2 × 2  mm3 isotropic voxel 
resolution; 128 × 128 acquisition matrix). T1-weighted 
structural images were acquired using a 3D inversion 
recovery prepared fast spoiled gradient-echo FSPGR-
BRAVO sequence (TI = 450 ms; TR/TE = 8.1/3.2 ms; flip 
angle = 12; 1 × 1 ×  1mm3).

Similar to Vogt et al. (2020), diffusion-weighted images 
were denoised [21, 31] and corrected for Gibb’s ringing 
[32, 33] using MRtrix3 [34], and then motion-corrected 
and eddy current distortion corrected using the eddy tool 
[31] in FSL (v5.0.11) [33]. Diffusion tensor fitting was per-
formed using Diffusion Imaging in Python (DIPY) [32] 
to generate fractional anisotropy (FA) maps. NDI, ODI, 
and Viso parameter maps were generated by fitting the 
NODDI model in Python using Accelerated Microstruc-
ture Imaging via Convex Optimization (AMICO), which 
improves processing speed by approximating the NODDI 
model as a linear system [35]. Given that diffusion param-
eters likely vary between tissue types [18, 36] two sets of 
NODDI images were generated: one using the original 
intrinsic parallel diffusivity of 1.7 μm−2  ms−1 which were 
used for white matter NODDI value extraction, and sec-
ond set using a gray matter optimized intracellular intrin-
sic parallel diffusivity of 1.1  μm−2   ms−1 [36] which were 
used for gray matter NODDI value extraction.

Region of interest (ROI) selection and analysis
To develop robust norms representative of AD-neu-
rodegeneration, and to then interrogate the diagnostic 
predictive utility of NODDI microstructure in AT(N) 
defined AD, while limiting multiple comparisons, we 
selected six bilateral gray matter and six white mat-
ter ROIs that have previously been identified as show-
ing AD-related change on T1-weighted-MRI and DTI, 
respectively [7, 11, 15, 20, 37, 38]. Gray matter ROIs 
defined on the AAL atlas [39] and included the following 
regions: superior frontal gyrus, parahippocampus, hip-
pocampus, inferior temporal lobe, posterior cingulate 
gyrus, and inferior parietal and precuneus, a combined 
ROI of bilateral inferior parietal lobe and precuneus 
(Fig. 1). White matter ROIs, defined by the JHU-tractog-
raphy probability maps [40] as developed by Hua et al., 
included the following: cingulum (cingulate gyrus), cin-
gulum (hippocampus), superior longitudinal fasciculus, 
inferior longitudinal fasciculus, uncinate fasciculus, and 
forceps major (Fig. 2).

To extract NODDI metrics from gray matter in native 
diffusion space, a T1-weighted atlas-space image was 
first nonlinearly warped into each subject’s native dif-
fusion space. To improve the registration in this step 
especially in gray matter, we first constructed a ‘pseudo 
T1’ image in diffusion space [19, 21]. For this step, a gray 
matter (GM) fraction map was estimated by subtract-
ing a white matter (WM) fraction map (estimated from 
a subject’s FA map using Atropos in ANTS) and a CSF 
fraction map (estimated from the Viso parameter map) 
from 1. The GM, WM, and CSF fraction maps were then 
multiplied by their respective tissue classes (CSF = 0, 
white matter = 1, gray matter = 2) and summed to cre-
ate a pseudo T1 image. This pseudo T1 image has similar 
tissue contrast to a standard T1 image, which improves 
registration between diffusion and T1-weighted atlas 
space image. Using antsRegistration in ANTS, a nonlin-
ear registration step was then performed to register the 
T1-weighted atlas-space template image to the pseudo 
T1 image for each subject. The resulting warp field was 
then used to warp AAL atlas-space ROIs to the subjects’ 
diffusion space. To ensure ROIs only included gray mat-
ter voxels, we used each subject’s gray matter fraction 
maps (thresholded at 0.7 and binarized) to filter each 
ROI. FSL’s fslstats was then used to extract mean val-
ues for NDI and ODI within each gray matter-masked 
masked ROI [21, 41].

To extract NODDI metrics from white matter, first, an 
fsl JHU atlas-space FA template image was nonlinearly 
registered to each subject’s native diffusion-space FA 
image. Next, the resulting warp fields were then applied 
to warp atlas-space JHU tractography probability maps 
to the subject’s native diffusion space. JHU tractography 
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probability maps were generated as described in Hua 
et al. [35] for the regions of interest. Finally, these sub-
ject-space tract probability maps were then used to 
extract weighted average values for NDI and ODI within 
each tract metric (weighted by tract probability). Utiliz-
ing JHU tractography probability maps ensures that the 
average ROI value is more heavily weighted towards the 
core of the tract as opposed to the borders of the tract, 
where partial volume effects are likely greater.

Statistical analysis
Robust normative analysis
To define “normal” neurodegeneration we generated 
internal normative distributions. The problem of develop-
ing normative distributions for metrics in a small disease 
population has been addressed previously in neuropsy-
chological studies by developing internal norms for com-
monly used cognitive assessments [26–28]. In this study, 
we extended the robust norms approach from cognitive 

Fig. 1 Representation of white matter regions of interest (ROIs). Left to right: inferior axial, midsagittal, parasagittal, and superior axial views of final 
white matter ROIs. NDI and ODI were extracted from six bilateral white matter ROIs using the JHU-Tractography Atlas, and then averaged bilaterally 
before inclusion into logistic regression models. The ROI figure was constructed in MRIcroGL using the JHU-Tractography Atlas. Regions correspond 
to figure legend and are as follows: green = forceps major, light blue = cingulum (hippocampus), dark blue = inferior longitudinal fasciculus, 
orange = cingulum (cingulate gyrus), red = superior longitudinal fasciculus, purple-black = uncinate fasciculus

Fig. 2 Representation of gray matter regions of interest (ROIs). Left to right: coronal, midsagittal, inferior axial, and lateral views of final gray 
matter ROIs. NDI and ODI were extracted from seven bilateral gray matter ROIs using the AAL-Atlas. The precuneus and inferior parietal lobe were 
combined into one ROI, “Precuneus + Inf. Parietal.” The six ROIs were then averaged bilaterally and included in logistic regression models. ROI 
figure was constructed in MRIcroGL using the AAL-atlas. Regions correspond to figure legend and are as follows: green = superior frontal gyrus, 
yellow = parahippocampus, red = hippocampus, orange = inferior temporal, dark blue = precuneus and inferior parietal, light blue = posterior 
cingulate gyrus
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data to capture normal and abnormal ODI and NDI-
based neurodegeneration in our sample as follows. First, 
we identified a “normal, presumed non-neurodegenera-
tion” group as CU individuals who were negative on both 
CSF amyloid and tau (A − T −) (n = 231) and thus non-
AD within both a clinical framework as well as within the 
AT(N) framework (2). Next, we ran regression models 
with age and sex in the model predicting each NODDI 
measure (see Supplement, Eq.  1) developing initial 
z-scores based on these predicted values (Eq.  2). Those 
who had a NODDI metric 1.5 or more standard deviations 
below expected for one or more ROIs were removed from 
the sample (n = 18) to ensure that the group was com-
prised of a robustly normal “non-neurodegeneration” sub-
set. Using the reduced subset (n = 213) we ran the models 
again and saved the beta coefficients and root mean 
squared error (RMSE) for use in Eqs. 1 and 2, respectively, 
for each ODI and NDI metric and all CU, and MCI/ AD 
participants. From Eq. 1 we obtained predicted ODI and 
NDI values using the age and sex coefficients from the 
normative sample, and Eq. 2was used to convert predicted 
ODI or NDI values into a robust z-score.

We hypothesized that if NODDI metrics were indeed 
sensitive to the presence of neurodegeneration, the 
robust NDI and ODI z-scores would differ between the 
full CU group (n = 231) and the combined MCI/AD diag-
nosis group (n = 11). We further hypothesized that ODI 
and NDI z-scores would differ between CU A − (n = 231), 
CU A + /T − (n = 26), and CU A + /T + groups (n = 28), 
reflecting preclinical neurodegeneration. We tested these 
hypotheses using Kruskal–Wallis tests (FDR correc-
tion) followed with pairwise comparisons. We calculated 
Cliff ’s delta effect sizes; these are less influenced by outli-
ers and non-normative sample distributions than others 
such as Cohen’s d [42–44].

General logistic regression models
CSF biomarker status is considered the gold standard 
for the most sensitive detection of early pathologic AD. 
To investigate and compare whether diagnostic predic-
tion of AD/MCI is improved by inclusion of NODDI 
metrics, we compared general logistic regression mod-
els that included CSF A/T status measures only, NODDI 
metrics for 6 ROIs only, and combined NODDI met-
ric and CSF A/T status measures; we used penalized 
maximum likelihood estimation (Firth correction) to 

(1)

Predicted NDI or ODI value = b0 + bAge × Age (centered)+ bGender

× Gender (0 = male; 1 = female)

(2)
Robust z − score = (Observed score− Predicted score)/RMSE

minimize bias in estimation of coefficients and associ-
ated confidence intervals [45, 46]. In part due to our 
small sample size, we limited in the number of predictor 
parameters in the analysis (i.e., number of ROIs).

We constructed the following models, each control-
ling for age and sex: (0) age and sex only (to evaluate 
how adding biomarker-related variables affected model 
performance); (1) CSF A/T status group (1 = A − T − , 
2 = A + T − , 3 = A + T +), (2) WM NDI (3) WM ODI (4) 
GM NDI (5) GM ODI (6) CSF A/T status + WM NDI, (7) 
CSF A/T status + WM ODI (8) CSF A/T status + GM NDI, 
and (9) CSF A/T status + GM ODI. All 6  gray or white 
matter bilaterally averaged raw ROI values are included as 
individual covariates in the corresponding NODDI mod-
els ((Models 2–9). For ROIs, see Figs. 1 and 2; for models, 
see Table 2). Generalized Logistic Regression models with 
Firth bias correction were run using the logistf package 
(v1.24) in R studio (v1.1.463).

We then compared the diagnostic accuracy of the 
various models with receiver operator curve (ROC) 
area under the curve (AUC) analysis. We compared the 
diagnostic accuracy of the CSF A/T status-only model 
to that of models with both NODDI metrics and CSF 
A/T status, and to models with NODDI metrics alone. 
For each model, the ROC curve and AUC with a 95% 
confidence interval were generated using the pROC 
package (v1.16.1) in R studio.

Table 2 Logistic regression model performance predicting CU 
and combined MCI/AD clinical status

Logistic regression with Firth reduction predicted binomial clinical diagnosis 
outcomes (CU or MCI/AD). CU status included participants with CU diagnosis 
(n = 285) and A − /T − , A + /T − , or A + /T + CSF status. MCI/AD status included 
MCI or AD-diagnosed participants (n = 11) with A + /T − or A + /T + CSF A/T 
status. All models are controlled for age and sex. Receiver operator analysis 
(ROC) with area under the curve (AUC) assessed model prediction accuracy. 
Akaike information criteria (AIC) and penalized likelihood ratio (PLR) assessed 
model performance. Models with NODDI + CSF A/T status covariates had 
higher AUC values than the CSF A/T status-only model. The NODDI + CSF A/T 
status model with the lowest AIC and highest PLR included NODDI-NDI in 
AD-associated white matter regions

Logistic regression models AUC (95% CI) AIC PLR

All models including age and sex

 (0) No AT(N) predictors (0) 0.74(0.60–0.88) (0) − 27.1 (0) N/A

 (1) CSF A/T status (1) 0.93(0.89–0.97) (1) 108.7 (1) − 102.68

 (2) WM NDI (2) 0.90(0.85–0.96) (2) − 23.7 (2) 39.65

 (3) WM ODI (3) 0.81(0.65–1.00) (3) − 5.7 (3) 21.61

 (4) GM NDI (4) 0.83(0.68–0.98) (4) − 10.6 (4) 26.62

 (5) GM ODI (5) 0.87(0.78–1.00) (5) 4.9 (5) 11.10

 (6) CSF A/T status + WM NDI (6) 0.96(0.93–0.99) (6) 15.6 (6) 2.42

 (7) CSF A/T status + WM ODI (7) 0.97 (0.95–0.99) (7) 25.7 (7) − 7.42

 (8) CSF A/T status + GM NDI (8) 0.97(0.95–0.99) (8) 22.2 (8) − 4.20

 (9) CSF A/T status + GM ODI (9) 0.98(0.96–1.00) (9) 27.6 (9) − 9.64
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Model fit was assessed with the Akaike information 
criteria (AIC) using the extractAIC function from the 
stats (v 3.6.2) R package, and also with the penalized 
log-likelihood ratio (PLR) for Firth reduction using the 
anova.logistf function in the logistf (v 1.24) package in 
R. Model fit was used to identify the best performing 
model when there were overlapping AUC 95% confi-
dence intervals. Supplementary analyses were run divid-
ing the impaired participants into separate MCI and AD 
groups (see Supplementary materials).

Results
Comparison of NODDI robust normative z-scores 
between clinical diagnosis groups and AT status groups
Comparison of NDI and ODI z-scores between cogni-
tively unimpaired and impaired participants (CU vs. 
MCI/AD) showed significant differences in mean NDI 
or ODI z-score for all regions of interest except for 
the SLF and forceps major (Kruskal–Wallis, p < 0.05) 
(Table  3, Fig.  3). ODI and NDI z-scores correlated 
with p-Tau and amyloid across clinical status catego-
ries (Supplemental Figs. 1– 4). In gray matter regions, 
mean orientation dispersion (ODI) z-score was lower 
across all ROIs in cognitively impaired (MCI/AD) com-
pared to unimpaired (CU) groups (Table 3). Mean NDI 
Z-score was significantly lower in the bilateral hip-
pocampus, parahippocampus, and posterior cingulate 

gyrus for the MCI/AD group (Kruskal–Wallis, p < 0.05, 
Table 3, Fig. 3).

Within white matter regions, mean NDI z-score was 
lower in MCI/AD compared to CU in the inferior lon-
gitudinal fasciculus (ILF), cingulum (hippocampus), and 
cingulum (cingulate gyrus). Notably, ODI z-score showed 
significant bi-directionality within white matter, whereby 
bilateral UF and cingulum (hippocampus) were signifi-
cantly higher in the MCI/AD group compared to the CU 
group, while the ILF was lower in the MCI/AD group 
compared to the CU group (Kruskal–Wallis, p < 0.05, 
Table 3).

To evaluate whether microstructural changes were 
present based on A or T status, in the absence of differ-
ences in clinical status between groups, we compared 
NODDI metric z-scores between A − /T − , A + /T − , and 
A + /T + CSF status within CU individuals. We performed 
an omnibus test to identify ROIs that showed differences 
in Z-scores between A − /T − A + /T − A + /T + status. 
From ROIs that showed a difference in Z-scores, we per-
formed follow-up pairwise comparisons across CSF A/T 
status groups. We did not observe a significant difference 
in NODDI metric z-scores between pairwise comparison 
of the A − /T − and A + /T − participants or the A + /T − , 
A + /T + participants. However, pairwise comparison 
between A − /T − and A + /T + individuals, differed sig-
nificantly in mean ODI z-score in the posterior cingulate 

Table 3 Comparison of robust NODDI z-scores between CU and MCI/AD clinical status participants

Z-scores for NODDI-ODI and NODDI-NDI were calculated with robust norms analysis as described. CU clinical diagnosis group included all participants with a clinical 
diagnosis of cognitively unimpaired (CU) (n = 285). MCI/AD clinical diagnosis group included all participants with a clinical diagnosis of either MCI (n = 6) or AD (n = 5). 
Effect size was calculated by Cliff’s delta with 95% confidence intervals
a  = P < 0.05
b  = P < 0.01
C  = P < 0.001, Kruskal–Wallis
d  = Sig. Cliff’s delta)

GM ROIs (bilateral) NDI z-score p-value 
(Kruskal–Wallis)

Cliff’s delta (95% CI) ODI z-score p-value 
(Kruskal–Wallis)

Cliff’s delta (95% CI)

Superior frontal gyrus 0.11 0.28 (− 0.09–0.58) 0.002b 0.54 (0.17–0.78)d

Hippocampus 0.0061b 0.49 (0.002–0.79)d 0.001b 0.58 (0.13–0.83)d

Posterior cingulate gyrus 0.014a 0.44 (− 0.005–.73) 0.06 0.38 (− 0.018–0.67)

Inf. parietal + precuneus 0.15 0.25 (− 0.19–0.61) 0.00042c 0.63 (0.25–0.84)d

Parahippocampus 0.06 0.38 (− 0.13–0.73) 0.021a 0.41 (− 0.0150–0.71)

Temporal inferior 0.19 0.23 (− 0.22–0.60) 0.0026b 0.53 (0.06–0.81)d

WM ROIs (bilateral)

Uncinate fasciculus 0.059 0.33 (− 0.02–0.61) 0.003b  − 0.53 (− 0.78 to − 0.13)d

Superior longitudinal fasciculus 0.08 0.31 (− 0.09–0.63) 0.614 0.09 (− 0.25–0.41)

Inferior longitudinal fasciculus 0.017a 0.43 (0.04–0.70)d 0.042a 0.36 (− 0.018–0.65)

Cingulum (hippocampus) 0.03a 0.44 (0.16–0.65)d 0.01a  − 0.45 (− 0.68 to − 0.14)d

Cingulum (cingulate gyrus) 0.005a 0.50 (1.10–0.76)d 0.74 0.06 (− 0.41–0.31)

Forceps major 0.068 0.32 (− 0.07–0.63 0.92 0.017 (− 0.35–0.322)
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gyrus and combined inferior parietal and precuneus ROIs 
(Fig. 4, Table 4), whereby the A + T + group showed lower 
mean ODI z-scores. A + /T + participants trended towards 
a lower mean ODI z-score in the forceps major compared 
to the A − /T − group (Kruskal–Wallis, p = 0.055, Table  4, 
Fig.  4). No significant differences in mean NDI z-scores 
were observed for gray or white matter regions (Table 4).

General logistic regression comparing diagnostic accuracy 
of NODDI metrics and CSF A/T status
Table 2 summarizes results across all models predicting 
clinical diagnosis (MCI/AD vs CU). All models includ-
ing at least one AT(N) predictor showed higher AUC 
and nominally improved model fit compared to model 
0; however, models with CSF A/T status outperformed 
the base model (i.e., AUC CI’s higher than model 0). For 
models that included both NODDI metrics and CSF A/T 
status (Models 6–9) as predictors of clinical status, AUC 
values and 95% confidence intervals are closer to 1.00, 
than models that included CSF A/T status only (Model 

1) (Table 2). Participant A/T biomarker classification was 
unchanged regardless of whether p-Tau Aβ42 cut-offs or 
Aβ42/Aβ40 and p-Tau cut-offs were used.

Exploratory analysis where MCI and AD groups were 
not combined, demonstrated that models which included 
both the NODDI metrics and CSF A/T status together, 
also had higher comparative AUC values than the CSF 
A/T status model alone, when predicting CU vs. MCI 
and CU vs. AD groups (Supplemental Tables 1 and 2).

When predicting CU vs. MCI/AD diagnosis, the 
model with the best fit (lowest AIC and most positive 
PLR) included WM NDI and CSF A/T status (Table 2). 
Likewise, when predicting CU vs. AD, the model with 
the lowest AIC and most positive PLR included both 
NODDI WM NDI + CSF A/T status (Supplemen-
tal Table  1). For predicting CU vs. MCI clinical sta-
tus, both the NODDI WM ODI + CSF A/T status and 
NODDI WM NDI + CSF A/T status model had simi-
lar AIC and PLR values, differing by 0.2, respectively 
(Supplemental Table 2).

Fig. 3 Distribution of NODDI metric z-scores across CU and MCI/AD clinical diagnosis groups for all ROIs. Boxplots displaying median, 25th quartile, 
and 75.th quartile NDI or ODI z-scores and NDI or ODI values, respectively, for each ROI across CU and MCI/AD clinical status groups. NODDI-NDI 
and NODDI-ODI z-scores were developed using robust normative analysis in R as described. Box plot color corresponds to the clinical status group 
(gray = CU; blue = MCI/AD). ODI or NDI z-scores are labeled on the left Y-axis. On the right Y-axis are the raw NDI or ODI values corresponding 
to each z-score quartile. * indicates a significant difference in NDI z-score distribution between clinical diagnosis groups. “*” = P < 0.05, “**” = P < 0.01, 
“***” = P < 0.001, Kruskal–Wallis)
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Discussion
While AD is biologically characterized by amyloid plaques 
(A) and neurofibrillary tangles (T), these features do not 
always correlate well with clinical cognitive decline [2, 3], 
and other disease features are needed to fully inform on 
clinical progression. Features of neurodegeneration (N) 
have long been studied in the context of AD and indeed 
in vivo methods such as structural imaging long precede 
the development of neuroimaging techniques that are 
sensitive to pathologic amyloid and tau. Still, the efforts 
to define normal vs. abnormal neurodegeneration using 
neuroimaging among healthy and AD continuum indi-
viduals have been limited, not for lack of imaging meth-
ods, but rather due to limitations in separating age-related 
from disease-related effects. While several studies have 
compared markers of neurodegeneration between differ-
ent clinical categories of AD (AD vs. CU or MCI vs. CU) 
[20, 21, 37, 47], “normal” (AD neurodegeneration absent) 
and “abnormal” neurodegeneration (AD neurodegenera-
tion present) remains largely undefined among cognitively 
unimpaired individuals. As participants in this study were 
characterized on CSF A/T status, it was possible to exam-
ine neurodegeneration within preclinical, A/T criteria 
defined AD.

By and large, our findings support our hypotheses that 
(1) mean robust z-scores of NDI and ODI would be lower 
for cognitively impaired (MCI/AD) individuals compared 
to CU participants reflecting greater neurodegeneration, 
(2) that among cognitively unimpaired participants, indi-
viduals with greater A/T pathology would show greater 
neurodegeneration based on NDI and ODI z-scores com-
pared to individuals who were negative for AD pathology 
(A − /T −), and (3) that adding NODDI metrics to logistic 
regression models would improve prediction of clinical 
status and model performance. Overall, robust z-scores 
differing between biologically and clinically defined 
groups suggest greater neurodegeneration with greater 
disease severity. The exception to results largely support-
ing our expectations was the orientation dispersion find-
ings in UF and cingulum (hippocampus) white matter 
regions, which showed bidirectional differences in mean 
ODI z-score between CU and MCI/AD groups.

Measures of neurodegeneration, while commonly 
studied in the context of AD are typically considered to 
be non-specific markers of dementia [2]. Here, we capi-
talized on prior work to select gray and white matter 
regions of interest previously shown to be affected by AD 
to determine the extent to which microstructural altera-
tions in these regions could be separated into normal vs. 
abnormal neurodegeneration, as well as inform upon 
preclinical neurodegeneration in the context of known 
A/T status. Gray matter regions were those known to be 
sensitive to amyloid and tau pathology, [48–53] while the 

white matter regions included were those that connect 
cortical regions subserving memory function [54, 55] and 
long association fibers [56, 57] previously observed to be 
vulnerable to AD.

Counter to our expectations of observing decreased 
ODI among individuals with MCI and AD, we observed 
bidirectional effects when comparing ODI between cog-
nitively unimpaired and impaired groups in several white 
matter regions, depending on the brain region exam-
ined. While this is unexpected, it is possible that regional 
reactive astrogliosis that is observed as clinical disease 
progresses to cognitive impairment could impact ODI 
measurements. While reactive astrogliosis in the white 
matter has been largely related to Aβ plaque deposition, 
studies focusing on tauopathies and AD-associated tau 
deposition, have shown that microglia and astrocytes 
also become active following tau accumulation and NFT 
formation [52, 58–60]. Similar to our findings, a cMD 
microstructural imaging study by Montal et  al., showed 
a biphasic relationship between changes in gray mat-
ter cMD and clinical cognitive decline among A/T bio-
marker-positive individuals, which they proposed to be 
related to reactive astrogliosis [15]. High NODDI-ODI 
values have also been observed in a rodent tau pathology 
model of AD [61]. Additionally, higher values of other dif-
fusion imaging metrics have been associated with reac-
tive astrogliosis. Zhou et al. (2011) found that increased 
mean diffusion kurtosis was associated with higher astro-
gliosis as measured by immunohistochemistry in trau-
matic brain injury [62]. Another possibility for increased 
ODI in regions such as UF and ILF is that loss of fibers 
in a largely parallel-running long-projecting tract could 
effectively increase orientation dispersion [36]. Addi-
tional studies will be needed to replicate these findings, 
as well as longitudinal studies to determine how regional 
ODI changes over time during disease progression.

Using robust NDI and ODI z-scores allowed us to com-
pare NODDI differences across A/T, preclinical, and 
clinical statuses. Even among cognitively unimpaired 
individuals, we observed differences in ODI z-scores 
among those who were positive for AD (A + /T +) com-
pared to AD negative controls (A − /T −), in the precu-
neus, inferior parietal, and PCC gray matter regions. 
These findings suggest that detectable changes in 
microstructure, as indexed by orientation dispersion, 
may occur following or concurrent with A/T positiv-
ity, yet prior to development of clinical levels of impair-
ment. Given that significant differences in ODI were 
observed between cognitively unimpaired A − /T − and 
A + /T + status participants, but not between cogni-
tively unimpaired A − /T − and A + /T − individuals, 
the preclinical neurodegeneration observed here may 
reflect micro-architectural loss driven primarily by 
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hyperphosphorylated-tau, that has a synergistic effect 
with amyloid [51, 52, 61, 63, 64]. However, because we 
did not observe significant differences in ODI between 
cognitively unimpaired A + /T − and A + /T + individuals, 
it is not entirely clear how to interpret the disparities in 
ODI between the A − /T − and A + /T + cohorts strictly in 
terms of plaque and tangle pathology.

Lower orientation dispersion in the precuneus, inferior 
parietal, and posterior cingulate regions among CU par-
ticipants likely reflects loss of neuron and axon disper-
sion, or microstructural neural connectivity, in the highly 
dispersed gray matter regions, where hyperphospho-
rylation of tau results in the formation of neurofibrillary 
tangles [52]. This would be expected within the AT(N) 
framework of AD. One study by Rodriguez-Vieitez et al. 
found that changes in cMD in AD-associated areas were 
observed following tau, but not amyloid, deposition in 
CU individuals [63]. Further support comes from ani-
mal studies, where one study found that high NODDI-
ODI values were sensitive to tau burden in a rodent tau 
pathology model of AD [61]. Findings from Vogt et  al. 
suggest that neurodegenerative changes in gray matter 
may precede white matter degeneration [25, 41]. Like-
wise, the results of this study suggest that neurodegener-
ation in gray matter precedes that in white matter in the 

AD pathologic process; and, that gray matter neurode-
generation follows amyloid and tau and deposition. The 
observed decrease in ODI may reflect loss of complexity 
within highly dispersed cortical gray matter preceding 
loss of neuron and axon density. Given that our find-
ings of decreased ODI were isolated to the comparisons 
between A + /T + and A − /T − CU participants, could 
be indicative of tau deposition having a synergistic effect 
with amyloid. However, we cannot rule out that these 
patterns were due to underpowered analyses, and repli-
cation studies are needed. Somewhat unexpectedly, no 
significant differences in NDI were found between cog-
nitively unimpaired CSF A/T status groups in any brain 
region. This may suggest that substantial reductions in 
neurite density are indicative of more advanced stages of 
AD pathophysiology, and correspondingly, that extensive 
neurite loss is not a prominent feature of preclinical AD.

Our results from our logistic regression model com-
parison and receiver operator curve analyses showed that 
including NODDI metrics along with CSF A/T status 
improved the performance of logistic regression mod-
els when predicting cognitively impaired clinical status 
(MDI/AD) compared to models that relied solely on CSF 
A/T status alone. Participant A/T biomarker classifica-
tion was unchanged regardless of whether p-Tau Aβ42 

Table 4 Comparison of mean robust NODDI z-scores between CU A − T − and A + T + CSF A/T status participants

Z-scores for NODDI-ODI and NODDI-NDI were calculated with robust norms analysis as described. CSF A − T − status group included participants with a clinical 
diagnosis of cognitively unimpaired (CU) and A − T − CSF (n = 231). A + T + CSF (n = 28) status group included CU-diagnosed participants with A + T + CSF. CSF status 
cutoffs were determined by cutoffs through ROC analysis as described. Omnibus comparison (KW test, FDR correction) evaluated mean difference in ROIs z-score 
across all CSF groups. For ROIs that had a significant difference in Z-score across groups with omnibus comparison, an additional follow-up pairwise comparison 
(KW) was conducted across CSF status groups (A − /T − , A + /T +). All ROIs that showed significance in the omnibus test showed significance difference in pairwise 
comparison test. Thereby in this table, ROIs with non-significant P-values were those that only underwent initial omnibus comparison, whereas ROIs with significant 
p-values underwent both omnibus and pair-wise comparison testing. Effect size was calculated by Cliff’s delta with 95% confidence intervals
a  = P < 0.05
b  = P < 0.01
c  = P < 0.001, Kruskal–Wallis
d  = Sig. Cliff’s delta)

GM ROIs (bilateral) NDI z-score p-value 
(Kruskal–Wallis)

Cliff’s delta (95% CI) ODI z-score p-value 
(Kruskal–Wallis)

Cliff’s delta (95% CI)

Superior frontal gyrus 0.30 0.17 (− 0.03–0.35) 0.06 0.22 (− 0.037–0.45)

Hippocampus 0.30 0.12 (− 0.13–0.35) 0.2 0.06 (− 0.19–0.31)

Posterior cingulate gyrus 0.30 0.16 (− 0.096–0.40) 0.01a 0.30 (0.09–0.49)d

Inf. parietal + precuneus 0.30 0.18 (− 0.04–0.39) 0.01a 0.23 (0.027–0.46)

Parahippocampus 0.40 0.12 (− 0.13–0.36) 0.06 0.24 (− 0.010–0.47)

Temporal inferior 0.40 0.11 (− 0.11–0.32) 0.06 0.16 (− 0.10–0.40)

WM ROIs (bilateral)

Uncinate fasciculus 0.18 0.16 (− 0.08–0.38) 0.42 0.03 (− 0.24 to − 0.30)

Superior longitudinal fasciculus 0.61 0.04 (− 0.19–0.26) 0.68  − 0.11 (− 0.30–0.08)

Inferior longitudinal fasciculus 0.16 0.19 (− 0.05–0.41) 0.11 0.21 (− 0.05–0.44)

Cingulum (hippocampus) 0.09 0.24 (0.014–0.45)d 0.19 0.12 (− 0.12 to − 0.35)

Cingulum (cingulate gyrus) 0.16 0.14 (− 0.07–0.35) 0.29 0.21 (0.01–0.40)d

Forceps major 0.62 0.06 (− 0.18–0.29 0.055 0.38 (0.16–0.60)d
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cut-offs or Aβ42/Aβ40 and p-Tau cut-offs were used. 
These results suggest that NODDI neuroimaging metrics 
add clinically useful information to disease prediction 
above and beyond A and T status.

Altered microstructure that is linked to AD processes 
among cognitively unimpaired participants has been 
observed in other studies. In a comparison of AD poly-
genic risk scores (PRS), Foley et al. [65] found altered cin-
gulum microstructure among individuals with a higher 
PRS. In a study of autosomal dominant AD, Caballero 
et  al. found that mutation carriers had altered diffusivity 
in the forceps major, forceps minor, as well as inferior and 
superior longitudinal fasciculi prior to the development 
of dementia [66–68]. A microstructural imaging study by 
Montal et  al. that examined cMD in gray matter, found 
that cMD was increased for A + , but decreased among 
A + T + , in cognitively unimpaired participants [15]. Addi-
tionally, a previous study from our center has shown an 
interaction between CSF amyloid and tau on gray matter 

neurite density, but not cortical thickness, in cognitively 
unimpaired individuals [25], suggesting the possibility of 
a protracted neurodegenerative process in AD that spans 
several years, but that may have been underappreciated 
prior to the application of diffusion-weighted imaging. 
cMD has also been shown to have a synergistic interac-
tion with A + T + burden, as assessed by PET imaging, 
on a cognitive slope [63]. These findings concur with our 
results suggesting that preclinical microstructural neuro-
degeneration follows amyloid and tau deposition and that 
diffusion-weighted imaging metrics may show promise for 
characterizing N in the AT(N) framework when used in 
conjunction with markers of amyloid and tau.

Limitations
While promising, these results are cross-sectional, 
and longitudinal analyses are expected to better define 
the spatial patterns of neurodegenerative change over 
the course of AD progression. We capitalized on the 

Fig. 4 Distribution of NODDI metric z-scores across CU A − T − and A + T + CST AT status participants for all ROIs. For cognitively unimpaired 
participants, boxplots display the median, 25th quartile, and 75th quartile NDI or ODI z-scores and NDI or ODI values, respectively, for each 
ROI across A − T − or A + T + CSF A/T status groups. NODDI-NDI and NODDI-ODI z-scores were developed using robust normative analysis in R 
as described. CSF A/T status cutoffs were determined by ROC analysis as described. Box plot color corresponds to CSF A/T status (gray = A − T − ; 
blue = A + T +). ODI or NDI z-scores are labeled on the left Y-axis. On the right Y-axis are the raw NDI or ODI values corresponding to each z-score 
quartile. * indicates a significant difference in NDI z-score distribution between clinical diagnosis groups. “*” = P < 0.05, “**” = P < 0.01, “***” = P < 0.001, 
Kruskal–Wallis)
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opportunity to examine preclinical disease in a popula-
tion of participants characterized on A and T status, 
comparisons by clinical status were limited by the few 
participants with impaired clinical disease statuses. The 
lack of amyloid or tau PET imaging in our cohort is a lim-
itation, as the spatial/topographical relationship between 
molecular pathology and neurodegeneration was not 
assessed here. Furthermore, replication in additional 
cohorts is needed. Additionally, the CSF A + /T + cogni-
tively unimpaired group size was small (n = 28). Given 
these methodological weaknesses, our findings with 
regards to improving the diagnostic prediction accuracy 
of AD need to be interpreted with caution and should be 
viewed as primarily exploratory in nature.

Conclusion
In conclusion, we address a notable gap in AD research—
defining “normal” and “abnormal” neurodegeneration in a 
preclinical population—by utilizing robust norm z-score 
analysis with metrics of NODDI ODI and NDI. Our find-
ings suggest NODDI—and likely other multi-compart-
ment models of diffusion—hold promise for detecting 
preclinical neurodegeneration. We show for the first time 
that NODDI NDI and ODI capture early, neurodegenera-
tive AD pathology processes. We also provide evidence 
that including metrics of tissue microstructure indicative 
of neurodegeneration with CSF A/T status is more inform-
ative for predicting AD-clinical status than relying on CSF 
A/T status alone. This suggests that the neurodegeneration 
(N) captured by microstructural imaging, such as NODDI, 
may increase the clinical sensitivity of CSF A and T bio-
markers. However, due to small sample sizes, we reiter-
ate that our findings need to be interpreted with caution 
and should be viewed as exploratory in nature. While fur-
ther work is needed to define N within the AT(N) frame-
work, we demonstrate that diffusion-weighted imaging 
has potential as a future neuroimaging biomarker for the 
detection of preclinical neurodegenerative changes in AD.
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