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Abstract—This paper aims to present a simple multiple access
scheme for massive connectivity that enables a large number of
mobile user equipments (UEs) to occupy the same time-frequency
channel without the need of precoding and power control at the
base station (BS) and interference cancellation at each UE. The
proposed approach does not even require the UEs to know their
signal-to-interference ratios (SIRs) and each UE also needs only
two radio-frequency (RF) chains to operate. The proposed scheme
is inspired by the emerging concept of fluid antenna system (FAS)
which enables high-resolution position-changeable antenna to be
deployed at each UE. Instead of activating only one port of FAS
for reception, each UE activates an ultra massive number of ports
to receive the signal. The activated ports are chosen to ensure that
the in-phase and quadrature components of the desired signal at
the ports are added constructively while the interference signals
superimpose randomly. This approach is referred to as compact
ultra massive antenna array (CUMA) which can also be realized
by deploying a dense, fixed massive antenna array at each UE.
We derive the exact probability density function (pdf) of the SIR
of a CUMA UE which leads to the data rate analysis. Simulation
results demonstrate that even with mutual coupling and under
finite scattering, more than 10 UEs can be supported by having
a 25×13-port FAS of size 15 cm×8 cm at each UE. Considering
quadrature phase shift keying (QPSK), CUMA delivers a network
data rate of 10.7 bps per channel use serving 10 UEs at 26 GHz,
and the rate is risen to 15.1 bps per channel use if 20 UEs are
accommodated at 40 GHz with a 40× 21-port FAS at every UE.
In the case without mutual coupling and under rich scattering,
CUMA can even handle hundreds of UEs per channel use.

Index Terms—Compact ultra massive antenna array, FAS, fluid
antenna, massive connectivity, multiple access, rate.

I. INTRODUCTION

FORWARD looking beyond the fifth-generation (5G), one
ambitious goal is extreme massive connectivity, demand-

ing to support 107 devices/km2 [1]–[4]. To realize this ambi-
tion, we require a multiple access technology that permits an
enormous number of user equipments (UEs) to share the same
time-frequency channel. In the current 5G, massive connectiv-
ity relies on the use of massive multiple-input multiple-output
(MIMO) at the base station (BS) [5]. The super-directivity of
massive MIMO in the spatial domain means that many users
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can occupy the same channel but be separated in space. There
has already been suggestion that the sixth-generation (6G) will
be heading to an ultra massive MIMO era, benefiting from an
even greater number of antennas at the BS [6].

However, is it that simple, we can just increase the number
of antennas at the BS to keep up our ever-increasing connectiv-
ity demands? A close look reveals a more complex situation.
In 5G, massive MIMO with 64 BS antennas is not designed to
serve more than 12 UEs on the same channel. This is because
the codebook-based Type II New Radio (NR) multiuser MIMO
precoding adopted in 5G is not simple [7]. It certainly looks
more complex than the matched filtering precoding, originally
envisioned in [8]. Upscaling connectivity via massive MIMO
causes severe overhead for acquiring the channel states from a
large number of UEs and immense complexity for optimizing
the precoding matrices. Moreover, MIMO is not an upgrade-
friendly solution and any change in the number of BS antennas
needs to be carefully addressed in standardization activities.

On the other hand, non-orthogonal multiple access (NOMA)
[9], [10] and rate-splitting multiple access (RSMA) [11]–[13]
have emerged to offer greater capacity. Due to their aggressive
approach to handling multiuser signals, many regard them as
a rising massive connectivity solution. However, NOMA and
RSMA still require the channel state information (CSI) at the
BS for user clustering and power control optimization. Worse,
both necessitate UEs to carry out interference cancellation to
mitigate the inter-user interference, which is a major obstacle.
It seems inconceivable that they will be commanded to deal
with more than 3 UEs sharing the same radio channel.

Evidently, we are in need of a much simpler, more scalable
multiple access scheme capable of massive connectivity. There
is a recent concept, referred to as fluid antenna system (FAS),
that can contribute to this [14]–[17]. FAS takes advantage of
the recent advances in reconfigurable, flexible antennas such
as liquid-based antennas [18] and pixel-based antennas [19]–
[21], to envisage that the point of reception over the available
space of a UE (i.e., position, also referred to as ‘port’) can be
adaptively and finely changed to improve system performance,
e.g., [22]–[25]. In short, FASs include all forms of movable
and non-movable flexible-position antenna systems.1

Towards massive connectivity, FAS can be used to achieve
multiple access in a novel manner. Fast fluid antenna multiple
access (FAMA) [26], [27] advocates to switch the port of each
UE on a symbol-by-symbol basis in order to receive the signal

1FAS is a concept and does not specify how it is made. In fact, techniques
for implementing FAS vary. Some used soft materials as a radiating element
and shifted it nearly continuously in space either using electric field or small
pumps while others investigated the use of a large number of small pixels to
form switchable antennas in space with high resolution. Discussion of FAS
regarding implementation approaches can be found in [14].
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where the instantaneous sum-interference plus noise cancels.
The results in [26], [27] demonstrated that tens of UEs could
be easily supported but fast FAMA remains highly theoretical
because of practical challenges.2 Recent work in [28] therefore
proposed slow FAMA where each UE switches its port once
during a coherence time period, to the one in which the signal-
to-interference and noise ratio (SINR) can be maximized. Slow
FAMA is a lot more practical and can still handle several UEs
sharing the same radio channel. Note that the advantage over
massive MIMO, NOMA and RSMA is that FAMA does not
require CSI at the BS for precoding, user clustering and power
control and that the UEs need only single-user decoding. Most
recently, [29] investigated the use of opportunistic scheduling
for enhancing FAMA. Overall, however, slow FAMA is quite
limited in connectivity and the network rate will hit a ceiling
if there are too many UEs sharing the same channel.

Motivated by this, in this paper, we propose a novel multiple
access scheme which is referred to as compact ultra massive
antenna array (CUMA). From the antenna design viewpoint,
CUMA can be considered as one form of approximating FAS
by packing many antennas compactly in space. By turning on
and off some of these antennas, CUMA mimics the effects of
switching the antenna positions with high resolution, resem-
blance to FAS. For multiple access, CUMA can be understood
as a variant of slow FAMA. Like slow FAMA, CUMA requires
each UE to switch its position only when the channel changes.
Instead of activating only one position in the FAS, each UE
in CUMA turns on a massive number of selected ports3 for
reception. The signals from the selected ports are aggregated
to produce the received signal for decoding. With the hope of
realizing massive connectivity, simplicity is our priority.

In the proposed technique, a CUMA UE needs only two
radio-frequency (RF) chains,4 and no complex signal process-
ing is performed to combine the signals from the selected
ports. The great performance comes from selecting the correct
ports such that the in-phase and quadrature components of
the desired signals superimpose constructively whereas the
interference signals add randomly. With the increase in the
number of activated ports, the interference immunity of a UE
improves. Our results will demonstrate that the network rate
of CUMA increases with the number of UEs and outperforms
slow FAMA greatly. In addition to methods for selecting the
ports for activation, we derive the probability density function
(pdf) of the signal-to-interference ratio (SIR) for an average
UE in the CUMA system. This in turn permits the evaluation
of the data rate and ergodic rate of the CUMA network.

2Fast FAMA requires the antenna position to be optimized on a symbol-by-
symbol basis. While [27] has presented methods to estimate the best position
of FAS for maximizing the ratio of the instantaneous energy of the desired
signal to that of the sum-interference plus noise signal, the proposed methods
require the FAS to observe all the possible ports for the estimation. Knowing
that fast FAMA needs a large number of ports (hundreds to even a thousand)
to work well, this could be problematic in practice.

3In this paper, the terms ‘position’ and ‘port’ are used interchangeably.
4In fact, CUMA can work with only one RF chain at a UE but it will be

shown in Section III that having two RF chains is the most natural choice to
deal with both in-phase and quadrature signals.

II. CONVENTIONAL FAMA NETWORK MODEL

In this paper, we consider a downlink model in which a
BS with Nt fixed antennas transmits to U UEs on the same
time-frequency channel. The BS antennas are sufficiently far
apart to be spatially independent. For convenience, the UEs
are assumed to have identical specifications and each UE is
equipped with a two-dimensional (2D) FAS of physical size
W̄ = W1λ × W2λ where λ is the wavelength of radiation.
The FAS has totally N = N1 × N2 ports evenly distributed
over the space W̄ . Each port represents a physical position at
which a signal can be received if the port is on. Note that the
ports can be closely spaced so their channels are correlated.

Hypothetically, if all the ports are activated, the received
signals at UE u in vector form can be written as

ru = Hubusu +

U∑
ũ=1
ũ6=u

Hubũsũ + ηu,

≡ gu,usu +
U∑
ũ=1
ũ6=u

gũ,usũ + ηu, (1)

where Hu ∈ CN×Nt denotes the complex channels from the
BS to the ports of UE u, bu ∈ CNt denotes the precoding or
beamforming vector for transmitting UE u’s signals, gũ,u =
Hubũ ∈ CN denotes the effective channel vector from UE ũ
to the ports of UE u, su represents the information symbol for
UE u, and ηu is the complex additive white Gaussian noise
vector at the ports of UE u whose elements are independent,
identically distributed (i.i.d.) and have zero mean and variance
of σ2

η . Precoding {bu} at the BS is chosen as any orthonormal
basis spanning the range of an Nt × Nt complex space and
needs no optimization with the CSI. As explained in [30], if the
channel has limited scatterers, channel randomization via {bu}
becomes essential to inject sufficient channel differentiation
between the UEs for FAS to work. On the other hand, note that
in (1), vectorization has been used to convert the 2D channel
matrix into a one-dimensional (1D) channel vector, with an
appropriate mapping between the (n1, n2)-th port and the k-
th port, i.e., k = map(n1, n2). Specifically, we have

n1 =

{
N1 if k mod N1 = 0,

k mod N1 otherwise,
(2)

and

n2 =


⌊
k

N1

⌋
if n1 = N1,⌊

k

N1

⌋
+ 1 otherwise,

(3)

where bxc returns the largest integer that is smaller than or
equal to x. In this paper, for convenience, we set Nt = U .

We consider a finite scatterer channel model [31] so that

[Hu]t =

√
K

K + 1
ejδũ,ua(θ

(ũ,u)
0 , φ

(ũ,u)
0 )

+
1√
Np

√
1

K + 1

Np∑
`=1

κ
(ũ,u)
` a(θ

(ũ,u)
` , φ

(ũ,u)
` ), (4)
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where [·]t returns the t-th column vector of the input matrix,5

K is the Rice factor, δũ,u is the phase of the line-of-sight (LoS)
component, κ(ũ,u)

` represents the complex channel coefficient
of the `-th scattered component, Np is the number of non-LoS
paths, and a(θ, φ) is the steering vector given by

a(θ, φ) =

[
1 e

j
(

2πW1
N1−1

)
sin θ cosφ · · · ej2πW1 sin θ cosφ

]T
⊗
[
1 e

j
(

2πW2
N2−1

)
sin θ cosφ · · · ej2πW2 sin θ cosφ

]T
, (5)

where ⊗ denotes the Kronecker tensor product, θ and φ are,
respectively, the azimuth and elevation angle-of-arrival of the
corresponding path, and the superscript T is transposition. In
addition, we denote the channel power as Ω = E[|[gũ,u]k|2]
where [·]k returns the k-th entry of the input vector.

A popular special case is the rich scattering scenario where
K = 0 and Np → ∞. In this case, precoding is unimportant
for FAMA and the precoding matrix [b1 · · ·bU ] can be set
as an identity matrix. Also, [gũ,u]k will be complex Gaussian
distributed. If 1D FAS is used at the UE under 2D scattering
environments, then we have

%k−m , E
[
[gũ,u]k ([gũ,u]m)

∗]
= ΩJ0

(
2π(k −m)W̄

(N − 1)λ

)
,

(6)
in which J0(·) denotes the zeroth-order Bessel function of the
first kind [32]. For the case of 2D FAS under 3-dimensional
(3D) scattering, the covariance between any two ports can be
derived as [33], [34, Lemma 2]

%k−m , E
[
[gũ,u]k=map(n1,n2)

(
[gũ,u]m=map(n3,n4)

)∗]
= ΩJ0

2π

√(
(n1 − n3)W1

N1 − 1

)2

+

(
(n2 − n4)W2

N2 − 1

)2
 ,

(7)

where J0(x) = sin(x)
x denotes the spherical Bessel function.

Notice that the effects of blockages and path loss are not
included in our model. The main reason is that with blockages,
it would be difficult to understand the interference mitigation
capability of the proposed CUMA scheme, since the random
blockages and path loss would affect the SINR considerably.
The results based on our model without blockages could also
be interpreted as a conservative look on the performance when
the interfering signals are always present and strong.

For slow FAMA [28], only the best port that maximizes the
received SINR is activated. For UE u, we have

k∗u = arg max
k

σ2
s |[gu,u]k|2

σ2
s

∑U
ũ=1
ũ 6=u
|[gũ,u]k|2 + σ2

η

, (8)

where σ2
s = E[|su|2] is the symbol power. After the port has

been selected, the estimated symbol can be found from

s̃u =
[ru]k∗u

[gu,u]k∗u
. (9)

5Note that if the input is a vector, this gives the t-th entry of the vector.

For benchmarking, the average received signal-to-noise ratio
(SNR) for each UE is defined as Γ , σ2

sΩ
σ2
η

.

III. CUMA

A. Signal Model

In this paper, we propose a new FAS receiver architecture
for FAMA, referred to as CUMA. Fig. 1 illustrates a downlink
system with a MIMO BS communicating to several CUMA
UEs. In CUMA, the main difference compared to the conven-
tional FAMA system is that at each user, say UE u, it activates
N̄ out of the available N ports to obtain the received signal.
Let us say the ports that are selected for activation have their
indices stored in the set K, hence N̄ = |K|. How to determine
the set K for each UE will be addressed in Section III-C. Also,
we will first focus on strengthening the in-phase component
of the resultant signal here before we include the quadrature
component for a full design in Section III-D.

Upon receiving the signals from the activated ports (i.e., the
sampled ports) given in the set K, they will be aggregated to
produce the resulting received signals

rI
u =

∑
k∈K

real
(
r

(u)
k

)
,

rQ
u =

∑
k∈K

imag
(
r

(u)
k

)
,

(10)

in which r(u)
k , [ru]k in (1). They correspond to the in-phase

and quadrature components of the aggregated signal. Denoting
the complex information symbol as su = sI

u + jsQ
u , we have

rI
u =

[∑
k∈K

real ([gu,u]k)

]
sI
u +

[
−
∑
k∈K

imag ([gu,u]k)

]
sQ
u

+
∑
k∈K

real


 U∑
ũ=1
ũ 6=u

gũ,usũ + ηu


k

 (11)

and similarly,

rQ
u =

[∑
k∈K

imag ([gu,u]k)

]
sI
u +

[∑
k∈K

real ([gu,u]k)

]
sQ
u

+
∑
k∈K

imag


 U∑
ũ=1
ũ 6=u

gũ,usũ + ηu


k

 . (12)

Note that to obtain rI
u and rQ

u , UE u simply needs to retrieve
the in-phase and quadrature components of the superposition
of the received signals from the activated ports. No scaling
nor phase shifting is required before aggregation, so only one
RF chain suffices to obtain the output signal for detection.

B. Detectors

In this paper, the CSI, i.e., the channel vector gu,u con-
taining the channel coefficients over all the available ports, is
assumed known at UE u. The channels from other interfering
users are not needed. Recently, a channel estimation frame-
work for FAS has been presented in [35]. In order to estimate
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Fig. 1. A downlink system in which a fixed-position MIMO BS communicates to several FAS-enabled UEs. Multiple access is achieved using CUMA at
each UE. A massive number of ports sharing the same RF chain at the FAS are activated to receive and aggregate the signals for detection at the UE.

gu,u regardless of the value of N , it has turned out that only
Np + 1 samples in space are needed [36] which aligns with
the conclusion for MIMO in the millimeter-wave band in [37].
Note that in the millimeter-wave and terahertz bands, Np is
small and thus, estimating gu,u for very large N is simple. The
channel estimation process can also benefit from easy angle-
of-arrival estimation by a programmable metasurface [38].

In the case of rich scattering, i.e., Np → ∞, it does not
require an infinite bandwidth to estimate the channels of FAS.
In particular, given the space of FAS, there can only be a finite
number of possible independent channels, which depends on
the numerical rank of the spatial correlation matrix. For FAS
with size 0.5λ × 0.5λ, the complexity of estimating the FAS
channel is the same as that with Np = 4. If the size is increased
to 2λ× 2λ, then the complexity will be equivalent to the case
with Np = 25. For details, see [33, Table II].

With the knowledge of gu,u, we can have coherent detection
for the UE symbol su , [sI

u s
Q
u ]T . The most straightforward

way to do so is Direct Detection which treats interference as
noise and attempts to detect sI

u (the in-phase symbol) from rI
u

and sQ
u (the quadrature symbol) from rQ

u , respectively, i.e.,

s̃u =

[
s̃I
u

s̃Q
u

]
=

1∑
k∈K real ([gu,u]k)

r̃u, (13)

where
r̃u ,

[
rI
u

rQ
u

]
. (14)

A more effective detector will be to perform Matrix Inverse
to obtain the estimates from rI

u and rQ
u so that

s̃u = G−1
u r̃u, (15)

where

Gu =

[ ∑
k∈K real ([gu,u]k) −

∑
k∈K imag ([gu,u]k)∑

k∈K imag ([gu,u]k)
∑
k∈K real ([gu,u]k)

]
.

(16)

C. Multi-port Activation Schemes

A first glance of the signals, rI
u and rQ

u , might suggest that
there is no benefit of activating many ports for reception since
the signals will be superimposed randomly. However, the result
can be very different if K is chosen carefully. In particular,
we propose to activate those ports, k1, . . . , kN̄ , such that

sign (real ([gu,u]k1
)) = sign (real ([gu,u]k2

)) = · · ·
= sign

(
real

(
[gu,u]kN̄

))
(17)

so that the activated ports can be sure to add constructively to
strengthen the desired signal. Evidently, it does not matter if
the activated ports lead to all positive in-phase channels, or all
negative ones as long as they have the same sign. To decide
which set of ports to select, one can perform∣∣∣∣∣ ∑

k∈K+

real ([gu,u]k)

∣∣∣∣∣K+

≷
K−

∣∣∣∣∣ ∑
k∈K−

real ([gu,u]k)

∣∣∣∣∣ , (18)

in which K+ represents the set of port indices for all positive
in-phase channels and K− for the negative in-phase channels.
The set K chooses between K+ and K− according to (18).

Presumably, since N is normally very large, the number of
ports in K, i.e., N̄ , can be very large. For practical reasons, one
may prefer to reduce the value of N̄ . Here, we propose two
ways to do so. First, we introduce the parameter 0 < ρ ≤ 1
which sets the minimum required level of the in-phase channel
to be on. Specifically, the k-th port is selected only if

real ([gu,u]k) ≥ ρ max
m∈K+

real ([gu,u]m) . (19)

The above has considered that k ∈ K+ and similar should be
done in the case of k ∈ K−. The final set K can be obtained
using the criterion (18) but this time only those satisfying (19)
is summed. One might feel that a large ρ should be chosen to
maximize the network performance. However, it is important
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Fig. 2. An example illustrating how smart port sampling works when the FAS
at the UE is assumed 1D with length of 18λ, and has 1000 ports. Samples
in yellow are for ρ = 0.4 while the samples in green consider ρ = 0.9. The
red samples are for ρ = 0.4 with Nmax = 20.

Fig. 3. The pmfs of the number of sampled ports for different values of ρ.

to recognize that strong in-phase channels of gu,u at the ports
do not imply eventual desirable performance as performance
depends on the interference as well. It therefore would be too
risky to choose the ports entirely based on the strengths of the
desired channel and a smaller ρ tends to perform better due
to diversity. Another way to reduce N̄ is by setting a limit so
that N̄ ≤ Nmax. Fig. 2 illustrates an example of the in-phase
channel for a 1D FAS with N = 1000 ports and W̄ = 18λ,
highlighting the ports that are selected for different values of
ρ. Additionally, Fig. 3 shows the probability mass functions
(pmf) for the number of selected ports for different ρ.

D. Doubling Down CUMA

So far, the idea has been to ensure that the resultant signal of
a CUMA UE has an aligned in-phase channel component for
reception by finding the set K1. However, same can be done
for maximizing the quadrature component of the channel. In
particular, we can use the method in Section III-C by focusing

on the quadrature component of the channel instead to obtain
another set K2. With the two port sampling sets, we can obtain
the received signals given by (11) and (12), rI

u,1 and rQ
u,1 using

K1, and rI
u,2 and rQ

u,2 for K2. By applying the Matrix Inverse
method, the estimated symbol can be obtained by

s̃u =


A −a
a A
b −B
B b


−1 

rI
u,1

rQ
u,1

rI
u,2

rQ
u,2

 , (20)

where pseudo-inverse is required, and
A =

∑
k∈K1

real ([gu,u]k) , a =
∑
k∈K1

imag ([gu,u]k) ,

B =
∑
k∈K2

imag ([gu,u]k) , b =
∑
k∈K2

real ([gu,u]k) .
(21)

Remarkably, |A| and |B| should be large by the design of
K1 and K2 for aligning the in-phase and quadrature channels,
respectively, while a and b are a lot smaller as the correspond-
ing channels are not aligned and they mix randomly. Also, the
inclusion of K2 provides a diversity signal (rI

u,2, r
Q
u,2) that will

greatly improve the quality of detection.

E. Mutual Coupling

Since there are a large number of radiating elements closely
located to each other, mutual coupling does exist regardless of
whether the ports are on or not. According to [39], the received
signal vector with mutual coupling can be expressed as

r̃u = SKΓmcSKru, (22)

where ru is given in (1), SK denotes a diagonal matrix with the
diagonal element being ‘1’ specifying the activated port and
‘0’ for the unselected port according to the set K = K1

⋃
K2,

and Γmc is the mutual coupling matrix given by

Γmc = ZT (Z + ZT I)−1, (23)

where ZT is the termination impedance (typically 50 ohms)
and Z is the mutual impedance matrix that is well known for
antennas such as dipole and slot antennas [40, p. 417]. When
the ports are not too close to each other, Γmc ≈ I.

With mutual coupling, CUMA will work exactly in the same
way by considering the effective channel g̃u,u = ΓmcSKgu,u
in place of gu,u for detection in (20). Note that Γmc can be
pre-computed offline given the antenna technologies used.

It is worth pointing out that the state-of-the-art can provide
isolations of more than −20 dB even if the adjacent elements
are as close as 0.12λ apart [41]. Latest technologies have
further improved the isolations to more than −30 dB [42]. The
mutual coupling model in (23) above provides a conservative
model assuming no advanced isolation methods.

Note that if fluid-material-based movable antennas are used,
then mutual coupling will be much less and achieve better
performance for CUMA. Nonetheless, movable antennas will
be of limited use because to influence the physical layer, it will
require a position change in the order of 10 cm in milliseconds,
which equates to having an acceleration of 2× 105 ms−2. As
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a reference, a bullet might exist from a gun at an acceleration
of 2000 ms−2. Ignoring whether such unreal acceleration is
practically possible, such antenna would be too dangerous to
be allowed on a handset or even BS. For this reason, the more
realistic option for implementing FAS is using pixel antennas,
or packing a lot of sub-wavelength metamaterial-based small
antennas in space. As a result, to make sure that our results
are relevant, we prefer considering packing a huge number of
antennas compactly in space instead. While this causes more
mutual coupling which is undesirable, this makes possible the
switching of the antennas with no time delay.

IV. PERFORMANCE ANALYSIS

A. Assumptions and Notations

In this section, our objective is to analyze the performance
of CUMA. As the UEs are all i.i.d., it suffices to focus on the
performance of any typical UE in the analysis. Furthermore, as
the performance depends on the amount of interference each
UE suffers, our main effort will be on characterizing the SIR
by deriving its pdf before we present the rate analysis.

To make the analysis tractable, we consider a specific type
of CUMA where ρ = 0 (i.e., ports are selected regardless of
their channel strengths)6 and that K = K+; as a result, only
those ports with positive in-phase channels are selected in K1.
Same goes to K2 for the quadrature channels. Direct detector
is assumed at each UE. Overall, this particular CUMA can be
viewed as a conservative approach in terms of the achievable
performance. Evidently, N (hence also N̄ ) is assumed to be
extremely large. Furthermore, for simplicity, we assume real-
valued modulation such as binary phase shift keying (BPSK),
i.e., su = sI

u ∈ {−σs, σs} and sQ
u = 0. Hence, we have only

rI
u,1 and rQ

u,2 because rQ
u,1 and rI

u,2 are too noisy to be useful
for reception. As rI

u,1 and rQ
u,2 are i.i.d., the following analysis

will focus upon rI
u,1 first and we then replicate the argument

for rQ
u,2 to complete the analysis by considering diversity of

having two signals. Also, rich scattering is assumed, i.e., K =
0, Np =∞ and the effect of mutual coupling is ignored.

As we focus on a typical UE, the user index is unimportant
and will be omitted. We also like to simplify our notations by
considering the following definitions:

Xk , real ([gu,u]k) , (24a)

X+
k , max{0, Xk}, (24b)

αI ,

(
N∑
k=1

X+
k

)2

, (24c)

Y
(i)
k , real ([gi,u]k) , (24d)

Ỹi ,
N∑
k=1

tkY
(i)
k , (24e)

βI ,
I∑
i=1

Ỹ 2
i , (24f)

6Note that a smaller (or larger) ρ does not imply better or worse perfor-
mance. Our simulation results in Section V will reveal that there is an optimal
value for ρ that results in the best performance.

where I , U − 1 and tk ∈ {0, 1} denotes an i.i.d. Bernoulli
random variable with equal probability, for modelling the on-
off characteristics of a given port k. According to the above,
the SINR for a UE based on rI

u,1 only is given by

SINRI =
σ2
sαI

σ2
sβI +

N̄σ2
η

2

≈ αI

βI
, (25)

in which the approximation is accurate when σs � ση and/or
I � 1, i.e., an interference-limited scenario. Note that we will
also have SINRQ based on rQ

u,2 when the quadrature signal
components are considered. The final analysis will combine
the two SINRs to complete the rate analysis.

B. Main Results

In this section, we derive the pdf of the SIR, αI

βI
, before we

get the network rate expression assuming a binary symmetric
channel. To this end, we first present the analytical result that
characterizes the covariance of the channels {X+

k }.
Theorem 1: The covariance of X+

k is given by

cov(X+
k , X

+
m) =

(1− ρ2
k,m)

3
2 Ω

4π
− Ω

4π

+
ρk,m

2
√
πΩ
W

(
−
√

2

1− ρ2
k,m

ρk,m√
Ω
,

1

Ω
,

1

2

)
, (26)

where ρk,m with k = map(n1, n2) and m = map(n3, n4) is
the correlation coefficient of Xk given by7

ρk,m = J0

2π

√(
(n1 − n3)W1

N1 − 1

)2

+

(
(n2 − n4)W2

N2 − 1

)2
 ,

(27)
and

W(a, b, c) = −
aΓ
(

2c+3
2

)
√

2πb
2c+3

2
2F1

(
1

2
,

2c+ 3

2
;

3

2
;−a

2

2b

)
+

Γ(c+ 1)

2bc+1
, (28)

where Γ(·) is the gamma function and 2F1(·, ·; ·; ·) denotes the
Gauss hypergeometric function. Note thatW(a, b, c) originates
from a special integral of the Q function [43, (2)].

Proof: See Appendix A.
Theorem 2: If N is sufficiently large,

√
αI =

∑N
k=1X

+
k is

approximately Gaussian with mean

E[
√
αI] =

N

2

√
Ω

π
(29)

and variance

var[
√
αI] =

NΩ

4

(
1− 1

π

)
+ 2

N∑
m=2

m−1∑
k=1

cov(X+
k , X

+
m). (30)

where cov(X+
k , X

+
m) is given by (26).

7In the case of having a 1D FAS, ρm+k,m = J0

(
2πkW̄

(N−1)λ

)
.
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Proof: See Appendix B.
Theorem 2 indicates that the number of ports, N , at the

FAS of each UE improves the performance by increasing the
mean of the desired channel gain, see (29).

Lemma 1: Given a Gaussian random variable X with mean
µ and variance σ2, the pdf of Z = X2 is given by

fZ(z) =
1

2σ2

(
z

µ2

)− 1
4

e−
z+µ2

2σ2 I− 1
2

( µ
σ2

√
z
)
, z ≥ 0, (31)

where Ir(u) is the modified Bessel function of the first kind
and order r [46, (2.13)].

Proof: See Appendix C.
Theorem 3: The pdf of αI is given by

fαI
(α) =

1

2σ2
1

 α(
N
2

√
Ω
π

)2


− 1

4

× e
−
α+

(
N
2

√
Ω
π

)2

2σ2
1 I− 1

2

(
N

2σ2
1

√
Ω

π

√
α

)
, α ≥ 0, (32)

where σ2
1 , var[

√
αI] which is given by (30).

Proof: The result is obtained by applying Theorem 2 and
Lemma 1 together, with the fact that N is very large.

Theorem 4: For sufficiently large N , Ỹi is approximately
Gaussian with zero mean and

σ2
2 , var[Ỹi] =

Ω

4

(
N +

N∑
m=2

m−1∑
k=1

ρk,m

)
. (33)

Proof: See Appendix D.
Corollary 1: The variable β̃I = 1

σ2
2
βI is central chi-square

distributed with I degrees of freedom and has the pdf

fβ̃I
(β̃) =

1

2
I
2 Γ
(
I
2

) β̃ I2−1e−
β̃
2 , β̃ ≥ 0. (34)

Proof: According to Theorem 4, we realize that 1
σ2
Ỹi is

a standard Gaussian random variable. Therefore, β̃I is a sum
of I i.i.d. squared standard Gaussian random variables, which
gives a central chi-square random variable with I degrees of
freedom having the pdf (34) [46, p. 24].

Theorem 5: The pdf of ZI = αI

β̃I
is given by (35) (see top

of next page), where Ma,b(t) is the Whittaker M function
given by [47, Section 9.220 on p. 1024]

Ma,b(t) = tb+
1
2 e−

t
2φ

(
b− a+

1

2
, 2b+ 1; t

)
, (36)

where φ(·, ·; ·) is the confluent hypergeometric function.
Proof: See Appendix E.

Lemma 2: The bit error rate (BER) of a typical CUMA UE
using BPSK is given by

pe =
1

2

∫ ∞
0

erfc

(√
z

σ2

)
fZ(z)dz, (37)

where erfc(·) is the complementary error function and

fZ(z) =

∫ z

0

fZI(x)fZI(z − x)dx, (38)

in which fZI
(z) is given in (35) by Theorem 5.

Proof: Given the channels fixed and ignoring the additive
noise, the received in-phase and quadrature signals at a typical
UE (dropping the UE index) are, respectively, given by{

yI =
√
αIs+ η̃I,

yQ =
√
αQs+ η̃Q,

(39)

where η̃I and η̃Q are, respectively, the resulting additive noises
for the in-phase and quadrature components. From Theorem
4, they are independent Gaussian distributed with zero mean
and variances of σ2

sβI and σ2
sβQ.

The optimal receiver for detection is to employ maximal-
ratio combining (MRC) to mix yI and yQ which results in the
equivalent output signal

y =

(√
αI

βI
+
αQ

βQ

)
s+ σsη, (40)

where η is a standard Gaussian random variable.
As a result, the BER for a given channel is found as

ε
(a)
≈ 1

2
erfc


√√√√σ2

s

(
αI

βI
+

αQ

βQ

)
σ2
s


(b)
=

1

2
erfc

(
1

σ2

√
αI

β̃I

+
αQ

β̃Q

)
,

(c)
≡ 1

2
erfc

(
1

σ2

√
ZI + ZQ

)
,

(d)
≡ 1

2
erfc

(√
Z

σ2

)
, (41)

in which (a) utilizes the standard BER expression for BPSK
in additive white Gaussian noise (AWGN) channels [49], and
(b) adopts the definition in Corollary 1. Note that ZI and ZQ

in (c) are i.i.d. and each has the pdf (35). The random variable
in (d), Z = ZI +ZQ, hence has the pdf given by (38). Finally,
the average BER expression is obtained by averaging (41) over
the pdf given in (38), which completes the proof.

Corollary 2: With a binary symmetric channel, the data rate
for a U -user CUMA network using BPSK is given by

R = U

[
1− pe log2

1

pe
− (1− pe) log2

1

1− pe

]
,

(bits/channel-use), (42)

where pe is found by (37) in Lemma 2.
Proof: Since the UEs are all i.i.d., the network rate is the

product between the number of UEs, U , and the data rate of
a typical UE. Assuming a binary symmetric channel, the data
rate of a typical UE can be obtained using [50, p. 15].

Corollary 3: For high SNR, the ergodic rate of the CUMA
network can be found as

Ce = U

∫ ∞
0

log2

(
1 +

z

σ2
2

)
fZ(z)dz (bits/channel-use).

(43)
Proof: The output SIR of a CUMA UE is z

σ2
2

which has
the pdf given by (38). Therefore, the ergodic rate of the whole
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fZI
(z) =

Γ
(
I+1

2

)
Γ
(
I
2

)
Γ
(
I
2

) ( 1

2
I
2

)(
N

2

√
Ω

π

)− 1
2

z−
3
4 e
− 1

4σ2
1

(
N
2

√
Ω
π

)2
(

2σ2
1+z

σ2
1+z

)

×

(
2

1 + z
σ2

1

) 2I+1
4

M− 2I+1
4 ,− 1

4


(
N
2

√
Ω
π

)2

z

2σ2
1 (σ2

1 + z)

 , z ≥ 0, (35)

CUMA network with i.i.d. UEs is given by (43). Note that (38)
is valid as long as a real-valued modulation scheme is used.
Also, achieving (43) would require the BS to adapt the coding
rates to the UEs accordingly.

Corollary 4: The ε-outage rate of the CUMA network can
be obtained by

Cout = U log2 (1 + γth) (bits/channel-use), (44)

where γth satisfies the following condition for a given ε:∫ σ2
2γth

0

fZ(z)dz = ε. (45)

Proof: By definition, the outage rate is given by (44) such
that the outage probability satisfies

Prob

(
z

σ2
2

< γth

)
= ε. (46)

With the pdf of z in (38) and after some simplifications, (46)
can be rewritten as (45), which completes the proof.

V. SIMULATION RESULTS

In this section, computer simulation results are reported to
understand the effectiveness of CUMA in the downlink setting.
The parameters used in the simulations are given in TABLE I
considering typical scenarios. For example, the size of the 2D
FAS at each UE was assumed to be 15 cm× 8 cm. Each port
represents a fixed half-wavelength dipole so that the mutual
coupling matrix in (23) can be obtained. Also, the termination
impedance was set to be ZT = 50 ohms. The 6 GHz case is
meant to represent the 5G Mid-band while the 26 GHz and
40 GHz cases are motivated for the upcoming 5G millimeter-
wave bands. Notice that the channel parameters (K,Np) are
carefully chosen to reflect the characteristics of the frequency.

The average SNR, Γ , σ2
sΩ
σ2
η

, was set to be 50 dB, meaning
that we focused on the interference-limited scenarios in which
noise had a negligible effect. In addition, our attention will be
on the large-U massive connectivity cases. Results for slow
FAMA without mutual coupling are provided as a benchmark
for comparison [28]. It is worth pointing out that both CUMA
and slow FAMA do not need any CSI at the BS. Nevertheless,
the CSI requirement at each UE for both schemes is slightly
different. For slow FAMA, each UE needs to know the SINR
at all of its ports for selecting the best one for reception while
for a CUMA UE, it only needs to know its local CSI at all
the ports to find the set K for reception. Orthogonal multiple
access (OMA) is another benchmark which divides the whole
bandwidth into U sub-bands so that all UEs see no inter-user

interference. For this reason, OMA has the same data rate as
a single-user system. Figs. 4 and 5 assume QPSK before we
consider other modulation schemes in Figs. 6, 8 and 9.

A. Rate Performance under Finite Scattering

The results in Fig. 4 are provided to investigate the average
data rate performance of CUMA at different frequencies. Note
that the conditions of the channels considered reflect the finite
scattering phenomenon at those frequencies and the effect of
mutual coupling between the antenna ports is fully considered.
We like to begin by commenting the results in Fig. 4(a) that
at 6 GHz (and lower frequencies), CUMA does not work well
and slow FAMA prevails. The relatively poor performance of
CUMA is due to the fact that at this frequency, the effective
size of FAS is too small, rendering the received signals at
the ports too strongly correlated. That said, intriguingly, the
data rate of CUMA does not seem to drop when the number
of UEs increases. The same cannot be said for slow FAMA
whose rate falls if there are too many UEs to deal with. Also,
the results show that slow FAMA at this frequency is able to
cope with 3 UEs. Another observation is that the data rate of
OMA remains constant regardless of the number of UEs since
the more the UEs the less the bandwidth each UE gets. Both
slow FAMA and CUMA are also shown to outperform OMA
though supporting a large number of UEs is still not viable.

Fig. 4(b) and 4(c) illustrate the data rate results at 26 GHz.
In Fig. 4(b), the results assume CUMA to have the antenna
ports with the minimum separation of half of the wavelength
while Fig. 4(c) considers the compact case where the antenna
ports are more densely packed. Now, if we focus on the results
in Fig. 4(b) first, we see that CUMA performs brilliantly and
much better than slow FAMA. While the rate of slow FAMA
drops if the number of UEs becomes too large, that of CUMA
continues to increase although it seems to plateau when the
number of UEs is very large. The results also reveal that ρ =
0.4 appears to perform best and having the limit Nmax = 200
does not seem to degrade the rate performance. The superior
performance of CUMA over slow FAMA can be explained by
the fact that it is more effective to use a massive number of
ports to average out the interference than find a port in which
the aggregate interference suffers from a deep fade.8 On the
other hand, in Fig. 4(c), we place the results of the compact
case on top of that of the non-compact case (the latter results
are shown in light grey colour), to contrast their performance.

8This comment is only valid when CUMA is compared to slow FAMA. If
fast FAMA is to be compared, this comment will not be true as it is a lot
more likely to find the interference null in fast FAMA.
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TABLE I
SIMULATION PARAMETERS FOR CUMA UNDER FINITE SCATTERING SCENARIOS

f (GHz)
6 26 40

Wavelength, λ (cm) 5 1.15 0.75

Size, W̄ ‡ 3λ× 1.6λ 13λ× 7λ 20λ× 10λ
Ports, N 150 × 3 25 × 13 64 × 13 40 × 21

Rice factor, K 0 7
No. of non-LoS paths, Np 50 2

Dipole§
Length 0.5λ
Width 0.005λ

RowSpacing] 0.02λ 0.5λ 0.2λ 0.5λ
ColumnSpacing 0.5λ

‡Regardless of the frequency, the actual size of the 2D FAS is set to 15 cm × 8 cm which is roughly the size of a typical mobile phone.
§A rectangular array of dipoles is assumed to form the UE’s 2D FAS. Other types of antennas such as slot antenna are also possible. The parameters
follow from the handle of Antenna Toolbox in Matlab. The commands such as sparameters and rfparam are used to compute Z, in (23).
]Note that different level of compactness is considered by different distances of RowSpacing.

TABLE II
SIMULATION PARAMETERS FOR CUMA UNDER RICH SCATTERING

SCENARIOS

Compactness or port density, N1 ×N2

I II III

f (GHz)
6 7 × 3 31 × 3 61 × 3
26 27 × 13 131 × 13 261 × 13
40 41 × 21 201 × 21 401 × 21

The size of the 2D FAS is still 15 cm×8 cm regardless of the frequency.
Case I is the non-compact case with minimum spacing of 0.5λ.
Case II is the compact case with minimum spacing of 0.1λ.
Case III is the very compact case with minimum spacing of 0.05λ.

The results illustrate that packing denser antenna ports at the
UE does not seem desirable nor harmful as the performance in
both cases is very similar. This indicates that mutual coupling
does not cause any issue in CUMA. Finally, it is important to
realize that the electrical size of the FAS plays a crucial role,
which gives rise to the performance difference at 6 GHz and
26 GHz. The results in Fig. 4(d) further confirm this point as
we can observe that the rate increases at 40 GHz. Overall, it
is astonishing to see that with sufficient electrical size of FAS,
CUMA can support tens of UEs on the same channel without
CSI at the BS nor multiuser detection at the UEs.

Fig. 5 evaluates how the performance of CUMA changes for
different values of Nmax while we study the scenarios of dif-
ferent modulation schemes in Fig. 6. The results demonstrate
that evidently, the performance improves as Nmax increases
and Nmax = 100 appears sufficient to get close to the best
performance. On the other hand, we see from the results that
CUMA is not particularly effective if higher-level modulation
is considered and the rate performance drops quite clearly.

B. Theoretical Performance under Rich Scattering

In this subsection, we consider the rich scattering scenarios
(i.e., K = 0 and Np = ∞) and apply the analytical results
to assess the performance of CUMA. Note that even in the
millimeter-wave bands where multipath is few, it is advocated
in [17] that in the reconfigurable intelligent surface (RIS) era,
there can be a huge number of artificial scatterers, converting
the channel into a rich scattering environment. In other words,
the rich scattering situation is actually relevant. Our interest
will be to study the impact of compactness or port density at
each FAS-aided UE on the rate performance. In TABLE II,

we detail the configurations considered.

Fig. 7 displays the pdfs obtained from Monte Carlo simu-
lations and the analytical expression in (38) (and hence (35))
for different combinations of the system parameters. Here, the
1D FAS case with 2D scattering was considered. The results
confirm that the analytical results are correct and accurate.

The results in Fig. 8 are provided for the average data rate
of CUMA when BPSK is considered. As can be observed,
when the size of FAS increases (i.e., at higher frequency), the
rate performance improves greatly, as expected. Besides, if the
number of antenna ports, N , increases, the results reveal that
there will be a significant jump in the rate performance which
is not seen in the results of Fig. 4 when Np is very small. In
other words, under rich scattering, packing the antenna ports
more densely indeed is beneficial. Note that for Case II, the
adjacent antenna ports are only 0.1λ apart while Case III is the
very compact case, pushing the spacing to as small as 0.05λ
apart. The compactness of FAS appears to be a key ingredient
for the extraordinary performance of CUMA although there
will be a diminishing return by further increasing the level of
compactness, as observed in Fig. 8 at all the frequencies. On
the other hand, note that under this setting, the upper limit of
the average data rate of the CUMA network is U . The results
illustrate that CUMA with a good level of compactness (i.e.,
0.1λ spacing) and size of FAS can get close to the rate limit.
Additionally, in the millimeter-wave band, we see that CUMA
can handle hundreds of UEs or more on the same channel, with
the rate increasing monotonically with the number of UEs.

Fig. 9 shows the ergodic rate results which further reinforce
our understanding in the superiority of CUMA. It should be
noted that as far as the ergodic rate is concerned, capacity-
achieving codec is assumed but in our case, only real-valued
coding is considered due to the analysis of (38). The results
in this figure clearly illustrate that the ergodic rate of CUMA
improves considerably if the size and/or the resolution (i.e.,
compactness) of FAS at the UEs increases. Moreover, as seen
previously, the rate of CUMA keeps increasing as the number
of UEs increases, suggesting that CUMA can be the massive
connectivity solution that requires no CSI at the BS nor fancy
interference cancellation at each UE. Besides, comparing the
results to that in Fig. 8, ergodic rates are much higher and the
benefits of compactness appear to be more dramatic.
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(a) f = 6 GHz (extremely compact) (b) f = 26 GHz

(c) f = 26 GHz (extremely compact) (d) f = 40 GHz

Fig. 4. The rate performance of CUMA at different frequencies.

C. Further Discussion

We conclude this section by highlighting several interesting
facts about CUMA. First, some may wonder why the proposed
approach is named ‘CUMA’ even if apparently, some results in
Fig. 4 considered antenna ports with minimum distance of half
wavelength apart. It should be pointed out that a separation of
half-λ is still compact in the case with few multipaths. For
example, in those results with Np = 2, the spatial correlation
is much stronger than what is expected in rich scattering. Thus,
a half-λ separation does not ensure independent signals at the
antenna ports. This is why such antenna port distribution is still
regarded as compact. Besides, under rich scattering, compact
antenna ports appear to excel, as already shown in Figs. 8 and
9. Another useful fact for CUMA is that its performance is
dependent on but insensitive to the change of the interference
signals. The reason is that CUMA relies upon no knowledge
of the interference’s CSI and the interference is mitigated by
being averaged over a massive number of antenna ports at
the UE. In addition, there is no repercussion if the antenna

ports are overly compact because mutual coupling between the
ports does not seem too detrimental to CUMA. Of particular
importance is the case of rich scattering in which CUMA has
been shown to be able to accommodate hundreds of UEs per
channel use if the spacing between adjacent antenna ports is
as small as 0.1λ. In this case, the mutual coupling effects can
be well addressed by the state-of-the-art [41], [42]. Motivated
by the encouraging results under rich scattering, future work
should look into ways, e.g., [17], to convert finite scattering
environments into rich scattering ones so that we obtain the
full benefits of CUMA for massive connectivity.

VI. CONCLUSION

This paper proposed a new open-loop massive connectivity
scheme that could support tens or even hundreds of UEs on the
same channel without requiring precoding optimization at the
BS nor fancy interference cancellation receivers at the UEs.
The proposed approach is based on adopting a large compact
antenna array, likening FAS, referred to as CUMA, at each UE.
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Fig. 5. The rate performance of CUMA with different values of Nmax under
the channel parameters (K,Np) = (7, 2), ρ = 0.4 and QPSK modulation.

Fig. 6. Rate comparison of CUMA for different modulation schemes (i.e.,
with different values of b) with (K,Np) = (7, 2), Γ = 50 dB and ρ = 0.4.

We proposed schemes that cleverly activate certain antenna
ports to ensure the desired signal is added constructively while
the interference is aggregated randomly. We provided the SIR
and rate analysis of CUMA. Our numerical results confirmed
the great potential of CUMA as a massive connectivity solu-
tion, especially in rich scattering environments.

APPENDIX A
PROOF OF THEOREM 1

We first present the following useful lemmas.

Lemma 3: I1 =
∫∞

0
xe−

(x−µ)2

σ2 dx can be evaluated as

I1 =
σ2

2
e−

µ2

σ2 +
√
πµσQ

(
−
√

2µ

σ

)
, (47)

Fig. 7. Empirical and analytical pdfs for CUMA with 1D FAS.

where Q(·) denotes the Q function.
Proof: We start by rewriting I1 as

I1 =

∫ ∞
0

(x− µ)e−
(x−µ)2

σ2 d(x− µ) + µ

∫ ∞
0

xe−
(x−µ)2

σ2 dx.

(48)
Then if we integrate the first term and also recognize that the
second term can be expressed as some form of the Q function,
we obtain (47), which completes the proof.

Lemma 4: I2 =
∫∞

0
y2c+1e−by

2

Q(ay)dy is given by

I2 =
W(a, b, c)

2
, (49)

where W(a, b, c) is given in (28).
Proof: Given the function W(a, b, c) defined in [43, (2)],

we have

W(a, b, c) =

∫ ∞
0

Q(a
√
x)e−bxxcdx (50)

which can be rewritten by substitution
√
x = y as

W(a, b, c) = 2

∫ ∞
0

y2c+1e−by
2

Q(ay)dy, (51)

which gives (49). Note that (28) comes from [43, (8)].
We start off the proof by recognizing that the two random

variables, x = Xk and y = Xm, are jointly Gaussian but are
correlated with the correlation coefficient given by

ρk,m =
E [(Xk − 0)(Xm − 0)]√

Ω
2

√
Ω
2

= J0

2π

√(
(n1 − n3)W1

N1 − 1

)2

+

(
(n2 − n4)W2

N2 − 1

)2
 ,

(52)

where k = map(n1, n2) and m = map(n3, n4) according to
the 2D geometry of the FAS. Hence, the joint pdf of x and y
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(a) f = 6 GHz

(b) f = 26 GHz

(c) f = 40 GHz

Fig. 8. Average data rate performance of CUMA with BPSK modulation in
the absence of mutual coupling and under rich scattering.

(a) f = 6 GHz

(b) f = 26 GHz

(c) f = 40 GHz

Fig. 9. Ergodic rate performance of CUMA assuming real-valued Gaussian
signling in the absence of mutual coupling and under rich scattering.
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can be found as

fXY (x, y) =
1

πΩ
√

1− ρ2
k,m

e
− 1

1−ρ2
k,m

(
x2−2ρk,mxy+y2

Ω

)
.

(53)
As a result, we have

E[X+
k X

+
m] =

∫ ∞
0

∫ ∞
0

xyfXY (x, y)dxdy, (54)

which can be evaluated by

E[X+
k X

+
m] =

∫ ∞
0

ye−
y2

Ω

πΩ
√

1− ρ2
k,m

∫ ∞
0

xe
−

(x−ρk,my)2

(1−ρ2
k,m

)Ω dxdy.

(55)
Using Lemma 3 to express the inner integral, we can write

E[X+
k X

+
m] =

√
1− ρ2

k,m

2π

∫ ∞
0

ye
− y2

(1−ρ2
k,m

)Ω dy

+
ρk,m√
πΩ

∫ ∞
0

y2e−
y2

Ω Q

(
−
√

2

1− ρ2
k,m

ρk,m√
Ω
y

)
dy. (56)

The first term of the above can be evaluated using the identity∫∞
0
ye−

y2

σ2 dy = σ2

2 while the second term can be found using
the result in Lemma 4, which gives

E[X+
k X

+
m] =

(1− ρ2
k,m)

3
2 Ω

4π

+
ρk,m

2
√
πΩ
W

(
−
√

2

1− ρ2
k,m

ρk,m√
Ω
,

1

Ω
,

1

2

)
. (57)

Finally, the mean of the rectified Gaussian random variable is
E[X+

k ] = 1
2

√
Ω
π [44, p. 90]. As a result, we can obtain

cov(X+
k , X

+
m)

= E

[(
X+
k −

1

2

√
Ω

π

)(
X+
m −

1

2

√
Ω

π

)]

= E[X+
k X

+
m]− 2E[X+

k ]

(
1

2

√
Ω

π

)
+

Ω

4π

= E[X+
k X

+
m]− Ω

4π
. (58)

Substituting (57) into (58) gives the final result (26).

APPENDIX B
PROOF OF THEOREM 2

First, (29) is obtained by knowing that E[X+
k ] = 1

2

√
Ω
π .

Then the variance of
√
αI can be derived using

var[
√
αI] = Nvar[X+

m] + 2

N∑
m=2

m−1∑
k=1

cov(X+
k , X

+
m), (59)

which is the classical result for finding the variance of a sum
of dependable random variables. Using [44, p. 90], we have

var[X+
m] =

(
0 +

Ω

2

)(
1− 1

2

)
+ 0−

(
1

2

√
Ω

π

)2

=
Ω

4

(
1− 1

π

)
. (60)

After substituting (60) into (59), we get (30).
The remaining task is to show that under common condi-

tions, when N is very large,
√
αI is approximately Gaussian.

Since {X+
m} are dependent random variables, we will use the

Lyapunov or Lindeberg version of the Central Limit Theorem
(CLT) [45]. To achieve this, we argue that for reasonably large
W̄ , the random variables X+

m far apart from one another are
nearly independent. According to the definition in [45, p. 364],
the sequence {X+

m} is said to be m-dependent (the concept
to characterize the level of independency). Then under the
condition of a finite twelfth moment, i.e., E[(X+

m)12] < ∞,
[45, Theorem 27.4] adopted the Lyapunov condition to prove
that the series

√
αI is asymptotically normal.

APPENDIX C
PROOF OF LEMMA 1

Let Z be a standard Gaussian random variable, i.e., X̄ ∼
N (0, 1). Then Y = (ξ+X̄)2 is a noncentral chi-square random
variable with one degree of freedom, with the pdf [46, p. 26]

fY (y) =
1

2

(
y

ξ2

)− 1
4

e−
y+ξ2

2 I− 1
2
(ξ
√
y), y > 0, (61)

where Ir(u) is the modified Bessel function of the first kind
and order r. From the definition in this lemma, we have

Z = X2 = σ2
(µ
σ

+ X̄
)2

= σ2Y. (62)

As fZ(z) = 1
σ2 fY

(
z
σ2

)
, (35) is obtained by utilizing (61) with

the substitution ξ = µ
σ , which completes the proof.

APPENDIX D
PROOF OF THEOREM 4

To start with, we write

Ỹi =

N∑
k=1

tkY
(i)
k ≡

√
Ω

2

N∑
k=1

tkȲ
(i)
k ≡

√
Ω

2

N∑
k=1

t̃
(i)
k , (63)

in which t̃(i)k , tkȲ
(i)
k , tk is a Bernoulli random variable with

probability 0.5, Ȳ (i)
k is a standard Gaussian random variable,

and tk and Ȳ (i)
k are independent of each other.

The mean of t̃(i)k can be easily found as

E[t̃
(i)
k ] = E[tk]× E[Ȳ

(i)
k ] = (0.5)(0) = 0. (64)

To find var[t̃
(i)
k ], we know that the pdf of t̃ (with the indices

k and i omitted for conciseness) is given by

fT̃ (t̃) =


1

2
δ(t̃), if t̃ = 0,

1

2
√

2π
e−

t̃2

2 , if t̃ 6= 0,
(65)
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where δ(·) is the Kronecker delta function. Then the variance
of t̃ can be obtained by

var[t̃] = E[T̃ 2]− (E[T̃ ])2

= E[T̃ 2]− 02

=

∫ ∞
−∞

t2fT̃ (t)dt

=

∫ 0−

−∞

t2e−
t2

2

2
√

2π
dt+

∫ ∞
0+

t2e−
t2

2

2
√

2π
dt

(a)
=

1

2
√

2π

√
π

2
+

1

2
√

2π

√
π

2
=

1

2
, (66)

where (a) has used the result in [47, p. 336].
As a result, we can obtain

var[tkY
(i)
k ] =

Ω

2
var[t̃

(i)
k ] =

Ω

4
. (67)

Also, the covariance of each term in Ỹi can be derived by

cov
(
tkY

(i)
k , tmY

(i)
m

)
=

Ω

2
E[t̃

(i)
k t̃(i)m ]

(a)
=

Ω

2
E[tktm]E[Ȳ

(i)
k Ȳ (i)

m ]

(b)
=

Ω

2
E[tk]E[tm]ρk,m

(c)
=

Ω

2

(
1

2

)2

ρk,m =
Ωρk,m

8
, (68)

where (a) uses the fact that tk and Ȳ (i)
k are independent, (b)

recognizes that {tk} are i.i.d. and E[Ȳ
(i)
k Ȳ

(i)
m ] = ρk,m comes

directly from the correlation structure of the FAS, and (c) uses
E[tk] = 1

2 . Now, we compute the variance of Ỹi by

var[Ỹi] = Nvar[tkY
(i)
k ]

+ 2

N∑
m=2

m−1∑
k=1

cov
(
tkY

(i)
k , tmY

(i)
m

)
. (69)

Substituting (67) and (68) into (69) gives (33). On the other
hand, it is easy to see that E[Ỹi] = 0 due to (64). Finally,
we can use the argument in Appendix B to conclude that the
series Ỹi is asymptotically normal.

APPENDIX E
PROOF OF THEOREM 5

Given the pdf of αI in Theorem 3 and that of β̃I in Corollary
1, we here derive the pdf of ZI = αI

β̃I
. It is known that

fZI(z) =

∫ ∞
−∞
|β̃|fα,β̃(zβ̃, β̃)dβ̃,

(a)
=

∫ ∞
0

β̃fα,β̃(zβ̃, β̃)dβ̃,

(b)
=

∫ ∞
0

β̃fα(zβ̃)fβ̃(β̃)dβ̃, (70)

where (a) comes from the fact that β̃I > 0, and (b) is due to
the independence between αI and β̃I. Now, after substituting
(32) and (34) into (70) and some simplifications, we get

fZI
(z) =

(
µ2

z

) 1
4

e
− µ2

2σ2
1

2
I
2 +1Γ

(
I
2

)
σ2

1

×
∫ ∞

0

β̃
2I−1

4 e
−
(

1+ z

σ2
1

)
β̃
2
I− 1

2

(
µ

σ2
1

√
zβ̃

)
dβ̃, (71)

where µ = N
2

√
Ω
π and σ2

1 = var[
√
αI] is given in (30). To

proceed further, we need the following lemma.
Lemma 5: We have the integral identity [47, p. 709]∫ ∞

0

xψ−
1
2 e−ζxI2ν(2ϑ

√
x)dx

=
Γ
(
ψ + ν + 1

2

)
Γ(2ν + 1)

ϑ−1e
ϑ2

2ζ ζ−ψM−ψ,ν
(
ϑ2

ζ

)
, (72)

where Ma,b(t) is the Whittaker M function.
Proof: See [48, p. 45].

To obtain the integral in (71), we apply Lemma 5 by setting
2I−1

4 = ψ − 1
2 , ζ = 1

2

(
1 + z

σ2
1

)
, 2ν = − 1

2 and 2ϑ = µ
√
z

σ2
1

.
After simplifications, we get (35) which completes the proof.
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