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ABSTRACT

We examine the tension between academic impact – the volume of citations received by publications
– and scientific disruption. Intuitively, one would expect disruptive scientific work to be rewarded
by high volumes of citations and, symmetrically, impactful work to also be disruptive. A number of
recent studies have instead shown that such intuition is often at odds with reality. In this paper, we
break down the relationship between impact and disruption with a detailed correlation analysis in
two large data sets of publications in Computer Science and Physics. We find that highly disruptive
papers tend to be cited at higher rates than average. Contrastingly, the opposite is not true, as we do
not find highly impactful papers to be particularly disruptive. Notably, these results qualitatively hold
even within individual scientific careers, as we find that – on average – an author’s most disruptive
work tends to be well cited, whereas their most cited work does not tend to be disruptive. We discuss
the implications of our findings in the context of academic evaluation systems, and show how they
can contribute to reconcile seemingly contradictory results in the literature.

Keywords scientific impact · scientific disruption · scientific careers

1 Introduction

In an increasingly competitive academic environment, the performance of researchers is constantly monitored, quantified,
and ranked in a variety of dimensions. Some of these can be measured rather objectively (e.g., productivity, ability to
attract funding, etc. [1, 2, 3]), while others are more elusive, such as the ability to innovate and/or to produce impactful
research [4, 5]. Conventionally, these dimensions are often measured as a function of the citations received by published
work [6, 7], either via simple citation counts or via more sophisticated bibliometric indicators, such as the well-known
h-index [8], g-index [9], or indicators of an author’s performance relative to their field (see, e.g., [10]). These indicators
reflect the extent to which research outputs are recognized by the scientific community. However, they also play an
increasingly pervasive role in research evaluation systems, as they influence research rankings, grant attributions, tenure
and promotion decisions [11, 12, 13, 14, 15].
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Breaking down academic impact and scientific disruption

Given the significance of citation metrics in academic evaluation, a growing number of studies have been devoted to
investigating the factors shaping the number of citations received by a paper. Among these factors, interdisciplinarity
has a considerable influence on scientific impact [16, 17]. Indeed, it has been found that ‘long-distance’ interdisciplinary
research on average attracts citations at higher rates [?], but there exists an interdisciplinarity ‘tipping point’ beyond
which highly interdisciplinary publications tend to have lower impact [?, 18]. In fact, papers that are more likely to be
highly cited tend to draw heavily from conventional combinations of existing research while still integrating unusual
combinations [19]. The accumulation of citations and its determinants are also studied from the viewpoint of authors
and their career progression. For instance, it is well known that scientific careers are characterized by the so called
‘random impact rule’, i.e., each paper within a authors’s publication sequence has the same likelihood of becoming their
most-cited work [20]. Nevertheless, authors can experience ‘hot streak’ periods during which they produce a series of
high-impact papers [21, 22].

Citation-based bibliometric indicators have been increasingly scrutinized by the academic community and have become
somewhat controversial [11, 23, 24, 25, 26]. One of the major concerns is that such indicators — and citations in
general — are not a comprehensive proxy of scientific innovation [6, 27, 28, 29]. To better quantify the innovativeness
of scientific outputs, the CD index, also known as the disruption score, has been put forward [30, 31]. This indicator has
been applied as a measure of innovation in a variety of studies [31, 32, 33, 34], and it has been proven to be effective at
distinguishing between disruptive and developmental works. Despite its surging popularity, the disruption score has
been criticized for being temporally biased and easily distorted by citation inflation [35]. We anticipate that in this
paper we will adopt a variant of the disruption score to mitigate these potential biases (see Methods).

A number of studies have leveraged the disruption score to explore scientific dynamics that cannot be explained by
citations or impact. For instance, papers with a larger number of authors are more likely to be cited [36]. However,
papers authored by large teams tend to be developmental, disruptive research tends to be produced by smaller teams [31].
A recent study investigated the relationship between productivity, innovation, and impact, showing that the authors
typically produce more innovative work during periods of low productivity. Conversely, high-impact publications tend
to be produced during stretches of high productivity [37]. Another very recent paper found that papers and patents are
becoming less disruptive over time [33].

The above findings show that scientific impact and innovation exhibit rather different patterns, almost to the point that
they should be treated as two distinct concepts [27]. Yet, the combination of such two concepts has also been shown
to be effective, e.g., as a way to identify revolutionary scientific contributions. In fact, Nobel Prize-winning papers
generally obtain more citations and achieve higher disruption scores [34]. However, such a result seems to contradict
the findings by Zeng et al. that disruptive papers in science are losing impact [38].

Motivated by these observations, in this paper we seek to fully explore the relationship between scientific impact and
innovation. We begin by breaking down the correlation between disruption scores and citations across each percentile
of the top disruptive papers. Then we uncover the full picture of the relationship between disruption scores and citations
by investigating whether the most cited papers in a field are also disruptive. Finally, we extend our paper-level findings
to the context of career analysis, showing that the relationship between disruption scores and citations also holds at the
level of entire careers.

2 Results

We collect papers published between 1986 and 2015 in Computer Science and and Physics from the AMiner citation
network dataset (version 12) and the Web of Science database, respectively (see Methods). We associate a disruption
score to each paper, which characterizes a paper as more disruptive when ensuing publications in the same field cite
such a paper at a higher rate than the publications in its bibliography (see Methods). We quantify scientific impact as the
citations accumulated over the first five years after publication, which is a customary proxy in the literature [33, 38, 39].
Overall, our analysis comprises 898,624 papers in Computer Science and 1,236,016 papers in Physics.

2.1 A detailed breakdown on the correlations between disruptions and citations

We begin our analysis with a detailed breakdown of the correlation between scientific disruption and impact. Namely,
we rank all the papers in our dataset based on their disruption scores and their impact. In the following, we shall refer to
the rankings computed via disruption scores and citations as the ‘disruption rank’ and the ‘impact rank’, respectively.
We select all papers in the top 1% of the disruption rank, and compute the Kendall correlation coefficient with their
positions in the impact rank. We then repeat this process for papers in the top 2%, top 3%, etc, until all papers in
Computer Science (898,624 papers in total, 8,986 papers in each percentile) and Physics (1,236,016 papers in total,
12,360 papers in each percentile) have been included.
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Breaking down academic impact and scientific disruption

In Fig. 1 (a)-(c) we plot the aforementioned correlation coefficients as a function of percentiles of the disruption
distribution in Computer Science and Physics. We observe a positive correlation coefficient between disruption and
impact for papers in the top percentiles of the disruption distribution. Such correlation increases as we incorporate
more percentiles into our analysis, reaching a peak value around the top 25th percentile, then declining to negative
values. To explain such a pattern, in Fig. 1 (b)-(d) we report the proportion of citations received by papers in each
percentile of the disruption distribution. We find that the papers receiving the lowest share of citations are those around
the 25th percentile, i.e., where we observe the peak in correlation between disruption and impact. After that, less
disruptive papers progressively become more cited, which causes the correlation coefficient to decrease. Eventually,
the correlation coefficient becomes negative when we consider a large enough portion of papers in our dataset, which
supports the result by Zeng et al. on the negative correlation between disruption and impact.

Fig. 1 (b)-(d) also show that the most disruptive papers are quite well recognized, as evidenced by the relatively higher
proportion of citations received by the most disruptive papers in both Computer Science and Physics, although with
remarkable differences. In fact, highly disruptive papers in Computer Science are cited at a rate which is much higher
than one would expect from a random baseline (i.e., all percentiles receiving a 1% share of all citations). The same
cannot be said for Physics, where the most disruptive papers are cited at a rate which is slighlty lower than the random
baseline. These differences are responsible for the positive (negative) correlation between disruption and impact
observed in the top percentiles of the disruption distribution in Computer Science (Physics).

We test the robustness of the aforementioned results in three different ways. First, we split all papers in our dataset
into three groups based on their publication year, namely 1986-1995, 1996-2005, and 2006-2015, and then repeat the
above experiment for each group. The aim of this test is to illustrate that our results are robust over different periods.
As can be seen in Fig. 1 (a) and (c), we find consistent patterns across the three groups. Second, we standardize the
disruption score (see Methods) of each paper to account for the fact that papers tend to become less disruptive over
time [33]. We perform the same experiment with the standardized disruption scores, obtaining consistent results across
the two disciplines (see Appendix Fig. 5). Third, we run the same experiments with a null model created by reshuffling
the 5 years of accumulated citations received by each paper while keeping their disruptions intact. By reshuffling
citations, we randomize the position of top disruptive papers in the impact rank, thus the new correlation coefficients
are calculated under the null model. We find that the correlation patterns cannot be explained by the null model, and the
correlation coefficients across different percentiles of disruptive papers are around 0 (see Appendix Fig. 6).

2.2 Most-cited papers are relatively less disruptive

After examining the relationship between disruption and impact across various percentiles of the disruption distribution,
we now explore the relationship from the opposite perspective, i.e, by analysing different percentiles of the impact
distribution. Similar to the procedure described in the previous section, we choose the top 1% most cited papers in
the impact rank and identify their respective positions in the disruption rank. We calculate the correlation coefficient
between these two position vectors and repeat the procedure for the top 2%, 3%, up to all the papers in both disciplines.

As shown in Fig. 2, a negative correlation coefficient is apparent across most percentiles of the impact rank in both
Computer Science and Physics. The negative correlation strengthens as we incorporate more percentiles into our
analysis. Such a pattern indicates that the most-cited papers tend to be less disruptive, and vice versa. Moreover, in both
disciplines, the correlation coefficients are generally higher for papers published between 1986 and 1995. In particular,
we can find a positive correlation coefficient in the top 1%-30% of the most-cited Computer Science papers. By contrast,
for papers published in more recent decades (1996-2005, 2006-2015), the correlation trajectory is not only negative
over the entire distribution, but the negative correlation becomes even more pronounced. To further corroborate these
results, we perform the same experiment with the standardized disruption scores and with the null model, through the
same methods described in the previous section. Our results are valid under both robustness tests (see Appendix Fig. 7).

2.3 The relationship between disruptions and citations in scientific careers

Given the aforementioned results, a natural extension of our research is to investigate the relationship between disruption
and impact in scientific careers. To construct an author-centred dataset, we first match each paper in our datasets with
its respective authors, and then identify long-lived researchers with an active publication record. Specifically, we only
include in our analysis authors who started their careers between 1980 and 2000 and had an academic career of at
least 20 years. Among these authors, we retain only those who published more than 10 papers, with a publication
frequency of at least one paper every 5 years (in line with [40]). Based on these selection criteria, we are left with
27,598 Computer Scientists and 34,527 Physicists (see Methods).

We first seek to generalize the findings concerning the disruptive papers to our pool of researchers. Following the
method described in 2.1, we start by creating a disruption rank and an impact rank for papers published during a
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Breaking down academic impact and scientific disruption

Figure 1: (a) Correlation coefficient across different percentiles of disruptive papers in Computer Science. The thick
blue curve is derived from all the papers in our datasets, while dashed lines represent the correlation coefficients
corresponding to the 1986-1995, 1996-2005, and 2006-2015 groups. (b) The proportion of citations received by each
percentile of Computer Science papers. The correlation pattern observed in (a) can be explained by the proportion of
citations received as shown in (b). (c) and (d) are the equivalent versions of the correlation trajectory and the proportion
of received citations in Physics. They can be interpreted in a similar way to (a) and (b).

Figure 2: Correlation coefficient across different percentiles of the most-cited papers in Computer Science (left) and
Physics (right). The patterns of correlation coefficients are very similar in both disciplines, which indicates that the
most-cited papers tend to be less disruptive.

scientific career. We then locate the top 1% disruptive papers within both disruption and citation rank, and compute the
correlation coefficient between these two sets of ranks. For this analysis, we do not calculate the correlation coefficient
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for each top percentile of papers because doing so can produce an excessive number of repeated values due to the
relatively small amount of publications in the publication sequence of an author. Instead we repeat such a process
exclusively for the top 1%, 5%, 10%, 15%, and so on. Finally, we collate the correlation coefficients for the same top
percentile across all authors in Computer Science and Physics, and plot the mean values of each top percentile in Fig. 3
(a) and (c).

Similar to section 2.1, we also show the proportion of citations received by each percentile of papers in disruption
distributions at the author level Fig. 3 (b) and (d). We observe that the overall trends in panels (b) and (d) are comparable
to the trends in the paper-level results. It is noted that the curves in (b) and (d) achieve higher values compared to
the results in the paper datasets. This happens because the same papers can fall within different percentiles when
considering less prolific authors. When we restrict our scope of investigation to researchers who have more than 100
publications, i.e., no overlaps between percentiles, our results are very much similar to the paper-level results (see
Appendix Fig. 8).

Figure 3: (a) The mean value of correlation coefficient across different percentiles of disruptive papers in the careers of
Computer Scientists. (b) The average value of the proportion of citations received by papers at each percentile in the
publication sequence of Computer Science researchers. Again, the correlation pattern observed in (a) can be explained
by the proportion of citations received as depicted in (b). (c) and (d) are the equivalent version of (a) and (b) in Physics.
We can observe that in both disciplines, our paper-level results are consistent in the career-level analysis.

As can be seen in Fig. 3, the findings we obtain here are fairly similar to those we observe at the paper level. Specifically,
the most disruptive papers in the careers of Computer Scientists and Physicists still attract a relatively high proportion
of citations. The correlation trajectories in scientific careers also display a pattern of initial increase followed by a
decrease, and such a trajectory can also be explained by the proportion of citations received by each percentile of papers
published in a career. Furthermore, we observe a negative correlation coefficient when considering all papers in a
career, indicating that the overall negative relationship between disruption and impact persists at the career level. The
only significant difference between our findings in academic publications and scientific careers is that the correlation
coefficients for the most disruptive papers are now positive in both disciplines. This suggests that the most disruptive
papers within a career are well rewarded in terms of impact by their respective scientific communities.

We then expand our results regarding the correlations for the most-cited papers to the context of scientific careers. To
achieve this, we follow the steps outlined in 2.2 and compute rank-rank correlations over an increasing number of
percentiles of the impact distributions obtained at the career level. The results are illustrated in Fig. 4. In line with our
results at the paper level, we can still observe negative correlation coefficients across each impact percentile in the
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careers of both Computer Scientists and Physicists. This reinforces our conclusion that the most-cited papers tend to be
less disruptive.

Figure 4: Correlation coefficient across different percentiles of the most-cited papers in the careers of Computer Science
(left) and Physics (right). It can be seen that our paper-level results hold true in scientific careers.

In order to further substantiate these findings, we repeat the aforementioned experiments using the standardized
disruption score and obtain consistent results (see Appendix Fig. 9 and Fig. 11). Moreover, we construct two null
models in a similar manner to the previous experiments by reshuffling the disruption score and the 5-year accumulated
citations in each author’s publication sequence. We then reapply the career-level analysis utilizing these null models,
and find that our conclusions cannot be explained by these null models (see Appendix Fig. 10 and Fig. 11). Based on all
these results, we believe that our paper-level conclusions regarding the relationship between disruptions and citations
still hold in scientific careers.

3 Discussion

We examined the relationship between scientific innovation and impact, measured in terms of disruption scores and
citations, respectively. Our aim is to fully capture the relationship between such two dimensions through two main
research questions, namely (1) are disruptive papers highly cited?; and (2) are high-impact papers disruptive?

To answer the first question, we analyzed the correlation coefficients between disruption scores and citations across
different percentiles of papers ranked by their disruption scores. In both Computer Science and Physics, we find that the
correlation varies when we observe different samples of disruptive papers, and that the variations in the correlation
coefficients can be explained by the proportion of the citations received by each percentile of papers. Our results
reconcile the seemingly contradictory conclusions between Wei et al. [34] and Zeng et al. [38]. Specifically, papers
with higher levels of disruption exhibit a positive correlation between disruption scores and citations. This pattern is
consistent with the finding, e.g., that Nobel Prize-winning papers typically receive more citations and are characterized
by higher disruption scores [34]. However, as we incorporate more percentiles in the disruption score distribution,
the correlation coefficient gradually shifts from positive to negative values, and ends up with a negative correlation
when we include most of the papers in our analysis, in line with findings by Zeng et al. [38]. Concerning the second
question, we find a negative correlation between disruption scores and citations in both disciplines, which suggests that
the most-cited papers tend to be less disruptive. Moreover, we observe that such a negative correlation intensifies over
time.

Having determined the relationship between disruption scores and impact at the level of academic publications, we then
expand our results to the careers of Computer Scientists and Physicists, concluding that the aforementioned results
remain equivalent at the level of careers. Our results suggest that there are two strategies researchers might adopt to
maximize their citation rates. The first strategy aims to publish truly disruptive papers. This strategy is beneficial to the
development of science as a whole but requires researchers to accumulate research experience, go through periods of
focus and low productivity [37], and undertake the risk of receiving only a limited number of citations. The second
strategy is to produce papers that attract a large number of citations. Such a strategy favors the career progression of
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individual researchers. However, it may also incentivize researchers to focus excessively on popular research topics and
incremental work, which can be detrimental to the overall diversity and innovation of scientific research [41].

A common criticism of the disruption metric is that the score of a paper can be distorted upward by receiving only a
small number of citations [33], i.e., high scores do not indicate high research quality but might simply reward papers that
are less appreciated by citations. However, our results show that the top 1% of disruptive papers not only achieve high
disruption score levels but also attract a high proportion of citations. These findings are consistent in both Computer
Science and Physics, and apply to both paper-level and career-level analysis. Therefore, such a criticism does not apply
to papers with very high disruption scores.

The evaluation of research outputs is often based on bibliometric indicators of scientific impact [42]. Our study
reveals that when research assessment relies excessively on citations, papers that stand out in this regime tend to
be less disruptive. Similarly, if evaluations were to be purely based on disruption scores, some high-scoring papers
may also exhibit limited scientific impact. A more effective approach would integrate both innovation and impact as
complementary dimensions. Such an approach would enable us to identify papers that are both disruptive and impactful.
Papers that excel under those criteria are typically recognized as work of very high quality [34]. Therefore, we advocate
that scientific evaluation should be carried out through a comprehensive analysis of publications [27, 43].

4 Methods

4.1 Data

We collect publication and citation data pertinent for Computer Science from the AMiner citation network dataset
(version 12). The AMiner dataset extracts papers published between 1960s to 2020 from DBLP, ACM, MAG, and other
sources in Computer Science [44], and it records a total of 4,894,081 papers and 45,564,149 citation relationships. The
AMiner dataset has been utilized in a variety of bibliometric studies [45, 46, 47, 37].

For publications in Physics, we retrieve data from the Web of Science (WOS) database. We extract the papers published
by long-lived researchers who maintain an active publication record, along with the citation network related to their
publications. In total, we collect 1,619,039 papers and 12,621,175 citation relationships from 1985 to 2020. It is
important to note that the WOS database does not provide unique author identifiers. To link authors with their respective
publications, we employ the method proposed by Caron et al. to disambiguate author names [48]. This method
determines a similarity score between pairs of authors by considering various attributes, such as ORCID identifiers,
names, affiliations, emails, coauthors, grant numbers, etc. If a pair of authors has a higher similarity score, they are
more likely to be identified as the same person. The effectiveness of this method has been validated by a recent study
with precision and recall scores higher than 90% [49].

In our analysis, we only calculate disruption scores for papers published before 2016, thereby allowing papers in our
pool to accumulate citations for at least 5 years. We set filtering criteria for researchers in line with [40], performing our
career analysis on a total of 27,598 and 34,527 researchers in Computer Science and Physics, respectively.

4.2 The disruption score

We employ the disruption score to quantify the disruption level of each paper in our datasets. The fundamental idea
of the disruption score is that a highly disruptive publications can overshadow preceding papers in the same field.
The subsequent papers are more likely to cite the disruptive work over the references listed in its bibliography. The
disruption score is particularly useful in differentiating between disruptive and developmental pieces of work, and it has
been validated using data from academic publications, patents, and software products [30, 31, 33].

To be more specific, we create a citation network centered on a focal papers, combined with its references (preceding
papers) and subsequent papers. The subsequent papers can be further categorized into three groups: papers citing only
the focal paper, those citing both the focal paper and the references, and those citing only the references of the focal
paper. Let us assume that the number of subsequent papers in the three groups are ni, nj and nk, respectively. Then the
disruption score can be determined as

D =
ni − nj

ni + nj + nk
(1)

where ni − nj quantifies the extent to which the focal paper has eclipsed attention towards preceding papers, and
ni + nj + nk represents the total number of subsequent papers within the citation network.
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According to the above definition, the disruption score spans from -1 to 1. A positive score indicates that the focal
paper draws more attention from subsequent publications than its references. By definition, such a focal paper is more
disruptive. If a focal paper is disruptive enough, then its disruption score D should be close to 1. Conversely, a negative
score implies that the focal paper is more likely to be developmental. The focal paper exhibits an increasing degree of
its developmental character as its disruption score approaches to -1. Overall, the disruption score not only allows us to
quantify the disruption of each paper, but also to compare the disruption level among different publications.

We also note that the disruption score can be represented by an alternative formula given as

D =
1

n

n∑
i=1

−2fibi + fi (2)

where n denotes the total number of subsequent papers in the citation network, i represents the collection of subsequent
works that cite the focal paper and/or the focal paper’s references, fi = 1 if i only cites the focal paper and 0 otherwise,
and bi = 1 if i cites any predecessors of the focal paper and 0 otherwise.

These two expressions of the disruption score are mathematically equivalent. For the second expression, if a subsequent
paper i cites only the focal paper, i.e., belonging to the ni group, then −2fibi + fi = 1 as −2fibi = 0. When a
subsequent paper cites both the focal paper and its predecessors (within the nj group), then the value of −2fibi + fi
will be -1. If a subsequent paper belongs to the nk group, then −2fibi + fi equals 0. By summing the −2fibi + fi
terms across all the subsequent papers in the citation network, the result equals to the difference between the number of
ni papers and nj papers, which is the ni − nj term in the first formula.

A major concern about the disruption metric is that the disruption level of a paper can be inflated by receiving a small
number of citations. To solve this problem, we do not impose any restrictions on the period of investigation, and
we include all the subsequent papers within the citation network to compute the disruption score. Nevertheless, this
approach may cause other biases, such as the overall decline in papers’ disruptions over time, the changing citation
behaviours for papers published at different times, and the reduced comparability of the disruption metric across years.
To mitigate these biases, we standardize the disruption score of each paper with respect to its year of publication.
Specifically, we group papers by their respective publication years, and then standardize their disruption levels by
incorporating the mean and standard deviation of that year’s distribution of disruption scores (i.e., transforming into
z-scores). In this paper, our findings remain consistent in both the original and standardized disruption scores, which
further corroborates the validity of our results.
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Appendix

Appendix A. A detailed break down on the correlations between disruptions and citations: additional details

We investigate the correlation coefficients between disruption scores and citation counts across different percentiles of
top disruptive papers. Our results are obtained using the original disruption score, which is calculated directly from its
defining formula. To further validate our results, we firstly run the experiments as described in 2.1 with standardized
disruption scores. Then we repeat the experiment with randomised null models. The outcomes are illustrated in Fig. 5
and Fig. 6, respectively. As illustrated in these figures, the correlation trajectories in both Computer Science and Physics
remain consistent with our main results under the standardized disruption metric, and the observed correlation patterns
cannot be explained by the null models.

Appendix B. Most-cited papers are relatively less disruptive: additional details

In this section, we provide robustness checks for our results on the correlations between disruptions and citations across
various percentiles of most-cited papers. We first replicate the main results with standardized disruption scores (see
the left column of Fig. 7). One should note that standardizing the disruption score changes the order of papers within
the disruption rank, which can lead to different correlation coefficients. In addition, we run the experiment with null
models (see the right column of Fig. 7) as well. Here the null models are constructed by reshuffling the disruption
scores achieved by papers in our datasets. Again, we find that our main results in 2.2 still hold with the standardized
scores in both disciplines, and our results are significantly different from the outcomes derived from the null models.

Appendix C. The relationship between disruptions and citations in scientific careers: additional details

In the main text, we demonstrate that the paper-level results on the relationship between disruptions and citations remain
equivalent in scientific careers. The major difference in the career settings is that in Fig. 3 (b) and (d), the values of the
curves are inflated when compared to the results from the paper datasets. To explain such a phenomenon, we illustrate
the proportion of citation curves for researchers who have published more than 100 papers in Fig. 8. The new curves
are verisimilar to our paper-level results.

Moreover, we further corroborate our career-level results by adopting standardized disruption scores and by comparing
our original results to the results of the null model. According to Fig. 9, Fig. 10, and Fig 11, we find that our career-level
results still hold with standardized disruption scores and that these results are robust against null models.
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Figure 5: The robustness check for Fig. 1 under the standardized disruption score. Left column: Correlation coefficients
across different percentiles of top disruptive papers as measured in standardized disruption scores in Computer Science
(top) and Physics (bottom). Right column: The proportion of citations received by each percentile of Computer Science
(top) and Physics (bottom) papers.

Figure 6: The robustness check for Fig. 1 under the null model. We create the null model by reshuffling the 5-year
accumulated citations received by each paper. Under the null model, the left column represents correlation coefficients
across different percentiles of top disruptive papers in Computer Science (top) and Physics (bottom), and the right
column presents the proportion of citations received by each percentile of Computer Science (top) and Physics (bottom)
papers.

12



Breaking down academic impact and scientific disruption

Figure 7: The robustness check for Fig. 2. Left column: Correlation coefficients across different percentiles of
most-cited papers in Computer Science (top) and Physics (bottom) under the standardized disruption score. Right
column: Correlation coefficients across different percentiles of most-cited papers in Computer Science (top) and Physics
(bottom) under the null model.

Figure 8: Mean values of proportion of received citations for each percentile of disruptive papers in the careers of
Computer Science (left) and Physics (right). Here the figures are constructed based on researchers who have more than
100 publications. We can see that these figures are similar to the curves in (b) and (d) of Fig. 1.
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Figure 9: The robustness check for Fig. 3 under the standardized disruption score. Left column: mean values of
correlation coefficients across different percentiles of top disruptive papers as measured in standardized disruption
scores in the careers of Computer Scientists (top) and Physicists (bottom). Right column: mean values of proportion of
citations received by each percentile of papers in the publication profile of Computer Scientists (top) and Physicists
(bottom).

Figure 10: The robustness check for Fig. 3 under the null model. Left column: mean values of correlation coefficients
across different percentiles of top disruptive papers in the careers of Computer Scientists (top) and Physicists (bottom).
Right column: mean values of proportion of citations received by each percentile of papers in the publication profile of
Computer Scientists (top) and Physicists (bottom). It is apparent that our results in Fig. 3 cannot be explained by the
null models.
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Figure 11: The robustness check for Fig. 4. Left column: mean values of correlation coefficients across different
percentiles of most-cited papers papers in the careers of Computer Scientists (top) and Physicists (bottom). Here the
correlation coefficients are computed based on standardized disruption scores. Right column: mean values of correlation
coefficients across different percentiles of most-cited papers in Computer Science (top) and Physics (bottom) under the
null model.
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