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Abstract

Introduction:While the Dominantly Inherited Alzheimer Network Trials Unit (DIAN-

TU) was ongoing, external data suggested higher doses were needed to achieve

targeted effects; therefore, doses of gantenerumab were increased 5-fold, and

solanezumab was increased 4-fold. We evaluated to what extent mid-trial dose

increases produced a dose-dependent treatment effect.

Methods: Using generalized linear mixed effects (LME) models, we estimated the

annual low- and high-dose treatment effects in clinical, cognitive, and biomarker

outcomes.

Results: Both gantenerumab and solanezumab demonstrated dose-dependent treat-

ment effects (significant for gantenerumab, non-significant for solanezumab) in their

respective target amyloid biomarkers (Pittsburgh compound B positron emission

tomography standardized uptake value ratio and cerebrospinal fluid amyloid beta

42), with gantenerumab demonstrating additional treatment effects in some down-

stream biomarkers. No dose-dependent treatment effects were observed in clinical or

cognitive outcomes.
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Conclusions:Mid-trial dose escalation can be implemented as a remedy for an insuffi-

cient initial dose and can be more cost effective and less burdensome to participants

than starting a new trial with higher doses, especially in rare diseases.

KEYWORDS

autosomal dominant Alzheimer’s disease, Dominantly Inherited AlzheimerNetwork, dose escala-
tion, gantenerumab, solanezumab

Highlights

∙ We evaluated the dose-dependent treatment effect of two different amyloid-

specific immunotherapies.

∙ Dose-dependent treatment effects were observed in some biomarkers.

∙ Nodose-dependent treatment effectswere observed in clinical/cognitive outcomes,

potentially due to the fact that the modified study may not have been powered to

detect such treatment effects in symptomatic subjects at a mild stage of disease

exposed to high (or maximal) doses of medication for prolonged durations.

1 INTRODUCTION

The Dominantly Inherited Alzheimer Network Trials Unit (DIAN-TU)-

001 is a phase II/III randomized, double-blind, placebo-controlled,

cognitive endpoint, international study of potential disease-modifying

therapies (gantenerumab and solanezumab) in individuals with dom-

inantly inherited Alzheimer’s disease (DIAD) mutations. The design1

of this trial incorporated several innovative strategies such as: a plat-

form trial with a master protocol to concurrently and sequentially

investigate multiple drugs,1,2 a shared placebo group between active

arms allowing for a 3:1 randomization in each arm, extended follow-

up with a common-close design for all participants instead of a fixed

study duration (4 years up to 7 years in the placebo-controlled period),

the use of a multivariate cognitive endpoint; an interim biomarker

analysis, and dose escalation. The main findings of the primary and

secondary analyseswere a lackof cognitive benefit but significant amy-

loid beta (Aβ) target engagement of gantenerumab (fibrillar Aβ) and
solanezumab (soluble Aβ).3 In addition, gantenerumab had a signifi-

cant effect on downstream biomarkers (e.g., decreased cerebrospinal

fluid [CSF] measures of phosphorylated tau [p-tau], total tau, and

neurofilament light chain [NfL]).3 Based on these findings, the trial

continued in an exploratory open label extension for gantenerumab

at the higher dose used in the double-blind period. The goal of this

report is to: (1) present details of the dose escalation procedure and

(ii) evaluate and quantify the dose-dependent effects of gantenerumab

and solanezumab in clinical, cognitive, imaging, and CSF biomarker

endpoints. We hypothesized dose-dependent treatment benefits for

gantenerumab and solanezumab in clinical, cognitive, imaging, andCSF

biomarker outcomes.

2 METHOD

2.1 Study oversight

The study was conducted in accordance with the Declaration of

Helsinki and the International Council for Harmonisation of Technical

Requirements for Pharmaceuticals for Human Use Good Clinical Prac-

tice guidelines and had ethics committee approval at each participating

site. All participants provided written informed consent.

2.2 Study participants

The details about the trial participants have been reported previously.3

Briefly, 194 participants enrolled in DIAN-TU-001, of whom 144 were

DIAD mutation carriers (52 on gantenerumab, 52 on solanezumab,

and 40 on placebo). These participants were either cognitively normal

(Clinical Dementia Rating [CDR= 0]) or had early-stage disease (CDR

0.5 or 1 representing verymild or mild dementia) at enrollment.

2.3 Dose escalation

The initial dose in the DIAN-TU-001 study was 225 mg of gan-

tenerumab administered subcutaneously every 4 weeks, and 400 mg

of solanezumab administered intravenously every 4 weeks. Midway

through the DIAN-TU-001 study, results of concurrent phase II and

III trials with the same drugs in sporadic Alzheimer’s disease (AD)

were made public,4,5 and indicated the initial doses for both drugs in
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the DIAN-TU-001 trial were unlikely to yield sufficient reduction in

amyloid deposition or demonstrate significant clinical/cognitive ben-

efit at these doses. Therefore, dose escalation was proposed as a

potential remedy. After obtaining regulatory approval, all active par-

ticipants in the study at that time initiated dose escalation. Because

amyloid-related imaging abnormalities (ARIAs)weremore common for

gantenerumab compared to solanezumab in previous studies, the dose

escalation and safety magnetic resonance imaging (MRI) schedules

were drug specific: the gantenerumab dose was increased stepwise

every 8 weeks to a maximum dose of 1200 mg (titrating up after

two doses at each of the following dose levels: 225, 450, 675, and

900mg), or the highest dose that an individual can tolerate, with safety

MRIs scheduled at each step (Table 1). The solanezumab dose was

increased stepwise every 4 weeks to a maximum dose of 1600 mg

(titrating up from 400 mg to 800 mg every 4 weeks for two doses, to

1600mg every 4 weeks), or the highest dose that an individual can tol-

erate, with a safety MRI scheduled after the second dose of 800 mg

(Table 1).

2.4 Clinical, cognitive, imaging, and CSF
biomarker outcomes

The clinical outcomesanalyzed included theCDR-SumofBoxes6 (CDR-

SB) and Functional Assessment Scale (FAS)7; the cognitive outcomes

included the Mini-Mental State Examination (MMSE),8 the Wechsler

Memory Scale-Revised Logical Memory Delayed Recall Test (Logical

Memory),9 the Wechsler Adult Intelligence Scale Digit Symbol Substi-

tution Test (Digit Symbol),9 and the International Shopping List Test

(ISLT) Delayed Recall score;10,11 the imaging and CSF biomarker out-

comes includedPittsburgh compoundBpositron emission tomography

(PiB-PET) composite standardized uptake value ratio (SUVR), fluo-

rodeoxyglucose (FDG)-PET SUVR, MRI-derived volumetrics, CSF total

Aβ42 (defined as free plus bound Aβ42) for solanezumab, CSF Aβ42
for gantenerumab, CSF total tau, CSF p-tau181, and CSF NfL. Meth-

ods used for imaging biomarkers were described previously.12–14 CSF

biomarker methods are described in the supporting information.

2.5 Statistical analysis plan

Because dose escalation was initiated while the study was ongoing

and at different times for gantenerumab and solanezumab arms, each

participant had a variable duration of exposure to the high doses

(defined as any dose higher than the initial dose) depending on how

long that individual had already been on the low dose (the initial dose).

In some instances, participants withdrew from the study before dose

escalation. To accommodate the individual-specific low- and high-dose

treatment durations, generalized linear mixed effects (LME) models

were used to estimate the annual rates of change in each outcome dur-

ing the low- and high-dose periods simultaneously in a single model

including the gantenerumab, solanezumab, and placebo arms.15 The

placebo arm included the pooled placebos from both gantenerumab

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the litera-

ture using traditional (e.g., PubMed) sources and meeting

abstracts and presentations. Publications related to dose

escalation forAlzheimer’s disease clinical trials have been

identified and properly cited.

2. Interpretation: The Dominantly Inherited Alzheimer

Network Trials Unit (DIAN-TU)-001 platform trial suc-

cessfully and safely implemented a dose escalation pro-

cedure for both study drug arms based on results from

concurrent studies in sporadic ADwhile the trial was still

ongoing. To optimize participant safety and characterize

the safety profile of the higher doses, participants were

carefully monitored during dose escalation. Compared to

the initial dose, the high doses led to larger treatment

effects in each drug’s biomarker of target engagement

of amyloid beta (Aβ; 90% more decrease in Pittsburgh

compound B positron emission tomography standardized

uptake value ratio with high-dose gantenerumab, 41%

more increase in totalAβ42withhigh-dose solanezumab).

3. Future directions: Future AD clinical trials with an insuf-

ficient initial dose may use the DIAN-TU approach to

conduct dose escalation during the trial as a remedy.

Additional measures may be needed to facilitate the

treatment effect evaluation after mid-trial dose escala-

tion such as “re-start the clock” of the follow-up duration

to increase the high-dose exposure and enroll additional

participants to account for the early dropouts.

and solanezumab. Statistical inference on treatment efficacy in each

outcome was made by comparing the annual rates of change of each

treatment arm to that of the placebo arm, whereas the gantenerumab

arm and the solanezumab arm were not to be compared per protocol.

For clinical and cognitive measures, all data collected until the conclu-

sion of this common-close study were included in the model, whereas

for biomarker measures, data were collected only up to year 4. The

LME models included random intercepts and random slopes at the

individual level to account for the correlation among repeated mea-

sures. The variances of these random effects and the residual variance

were modeled separately for asymptomatic (CDR 0 at baseline) and

symptomatic (CDR 0.5–1 at baseline) participants (Statistical Supple-

mental Materials for details). The normality assumption was examined

using the residual plots from the LME models. When the assumption

was determined to not be sufficiently met, a log transformation was

applied.

All analyses were conducted with the use of SAS software, ver-

sion 9.4. Nominal P-values were presented from two-sided t-tests

with type I error of 0.05. All confidence intervals (CIs) were 95%

CIs.
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3 RESULTS

3.1 Demographics

Thedemographics at baselinewere reportedpreviously3 andwerewell

balanced among the gantenerumab arm, the solanezumab arm, and the

placebo arm. Gantenerumab started dose escalation an average of 1.8

(standard deviation [SD] 0.61) years after baseline, and 47 out of 52

(90%) had at least one high-dose administration with an average dura-

tion of 2.4 (SD 0.55) years; solanezumab started an average of 3.2 (SD

0.67) years after baseline, and 37 out of 52 (71%) received at least

one high-dose administrationwith an average duration of 1.3 (SD 0.42)

years.Of the52gantenerumabparticipants, 43 (83%) receivedanaver-

age of 26.3 (SD 9.9) administrations of the maximum dose (1200 mg)

and 37 (71%) of the 52 solanezumab participants received an aver-

age of 18.6 (SD 4.8) administrations of the maximum dose (1600 mg).

Table 2 shows the differences in clinical/cognitive outcomes at base-

line andat visits closest (either beforeor after) to dose escalation. Table

S1 in supporting information presents the clinical/cognitive/biomarker

outcomes before the dose escalation (the last visit on low dose) and

after the dose escalation (the last visit on high dose).

3.2 Low- and high-dose treatment effects for
clinical and cognitive outcomes

The estimated annual treatment effects for cognitive and clinical out-

comes (defined as the difference in the annual change between the

treatment group and the placebo group) before and after dose esca-

lation are shown in Figure 1 and Table S2 in supporting information.

Compared to the placebo, neither the low- nor the high dose of either

study drug armyielded significant improvement on any of the cognitive

or clinical outcomes except that the gantenerumab low dose slightly

improved the Digit Symbol Substitution Test by 1.89/year with 95% CI

0.11, 3.68 compared to the placebo arm (Figure 1 and Table S2). Analy-

ses of participantswho completed at least 4 years of treatment showed

similar results (Figure S1 in supporting information).

3.3 Low- and high-dose treatment effects for
imaging and CSF biomarker outcomes

Figure 2 demonstrates the estimated annual treatment effects before

and after dose escalation (see Table S3 in supporting information for

more details) for imaging and CSF biomarker outcomes relative to the

placebo. Compared to the placebo, gantenerumabproduced significant

treatment effects in both low and high doses for PiB-PET composite

SUVR, CSF Aβ42, and CSF p-tau181; and in high dose only for CSF

total tau; and no significant treatment effects in CSF NfL, MRI hip-

pocampus volumes, and MRI precuneus thickness (Figure 2 and more

statistical details in Table S3). However, the gantenerumab treatment

effect difference between the low dose and the high dose were only
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F IGURE 1 Demonstration of the estimated annual low- and high-dose treatment effects and 95% confidence interval (CI) relative to the
placebo. A bar with 95%CI covering 0 indicates a non-significant treatment effect for a type I error of 0.05. Better, better than placebo; CDR SB,
Clinical Dementia Rating Sum of Boxes; Digit Symbol, Digit Symbol Substitution Test; FAS, Functional Assessment Scale; Gant, gantenerumab; ISLT,
International Shopping List Test-Delayed Recall; Logical Memory, Logical Memory Delayed Recall Test; MMSE,Mini-Mental State Examination;
Sola, solanezumab;Worse, worse than placebo.

significant in PiB-PET composite SUVR and CSF p-tau181. The gan-

tenerumab high dose reduced the PiB-PET composite SUVR by 0.101

more per year than the lose dose (P-value = 0.0095, 95% CI [−0.177,

−0.025]), and reduced CSF p-tau181 by 5.20 pg/ml more per year

(P-value= 0.010, 95%CI [−9.15,−1.25]).

Compared to the placebo, solanezumab produced significant treat-

ment effects in both low and high doses for CSF total Aβ42 (free plus

bound Aβ42); no significant treatment effects in PiB-PET composite

SUVR, CSF p-tau181, CSF total tau, andMRI precuneus thickness; and

significant worsening effects in low dose for CSF NfL and in high dose

for MRI hippocampus volumes (Figure 2 and more statistical details in

Table S3). The solanezumab high dose did not significantly improve the

treatment effect in any imaging or CSF biomarker outcomes compared

to the low dose although the increase in CSF total Aβ42 approached

significance. The solanezumab high dose increased CSF total Aβ by

115.4 pg/ml more per year than the lose dose (P-value = 0.0785. 95%

CI [−13.3, 244.1]).

Tables S4 and S5 in supporting information demonstrate the treat-

ment effects for the low dose and the high dose by baseline disease

status (asymptomatic vs. symptomatic). Neither treatment showed

significant beneficial treatment effect for asymptomatic cohort or

symptomatic cohort in clinical and cognitive outcomes. Compared to

the placebo, gantenerumab produced similar treatment effects in both

low and high doses for PiB-PET composite SUVR for both cohorts,

larger treatment effect in high dose for asymptomatic cohort and sim-

ilar, non-significant treatment effect in both low and high doses for

symptomatic cohort for CSF p-tau181 and for CSF total tau; and no

treatment effects in CSF NfL, MRI hippocampus volumes, MRI pre-

cuneus thickness, and FDG-PET composite SUVR. Compared to the

placebo, solanezumab produced significant treatment effect in both
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F IGURE 2 Demonstration of the estimated annual low- and high-dose treatment effects and 95% confidence interval (CI) relative to the
placebo. A bar with 95%CI covering 0 indicates a non-significant treatment effect for a type I error of 0.05. Better, better than placebo; CSF total
Aβ42, cerebrospinal fluid free plus bound amyloid beta 42; FDG-PET, fluorodeoxyglucose positron emission tomography; Gant, gantenerumab;
MRI, magnetic resonance imaging; NfL, neurofilament light; PiB-PET SUVR, Pittsburgh compound B positron emission tomography standardized
uptake value ratio; p-tau, phosphorylated tau; Sola, solanezumab;Worse, worse than placebo.

low and high doses for both asymptomatic and symptomatic cohorts

in CSF total Aβ42 (free + bound Aβ42) and the high dose had larger

treatment effect than the low dose in both cohorts; and produced no

consistent treatment effects in either cohort for PiB-PET composite

SUVR, CSF p-tau181, for CSF total tau, CSF NfL, MRI hippocampus

volumes, MRI precuneus thickness, and FDG-PET composite SUVR.

Because of the small sample size for each categorical combination

(ranging from 8 to 10 for symptomatic high dose to 16 to 24 for

asymptomatic low dose) and the larger dropout in the symptomatic

group, the estimated treatment effects should be interpreted with

caution.

4 DISCUSSION

The DIAN-TU-001 platform trial successfully and safely implemented

drug-specific dose escalation procedures mid-trial based on results

from concurrent studies in sporadic AD.4,5 Results fromgantenerumab

trials indicated that the 225 mg dose was not fully removing amy-

loid plaque, and that the dose used had acceptable safety profile to

further increase the dose. For solanezumab, the completed phase 3

study indicated a lack of substantial cognitive benefit, while having a

safety profile that would allow further increase. To optimize partic-

ipant safety and characterize the safety profile of the higher doses,

participants were carefully monitored during dose escalation, and the

schedule of dose escalation and safety assessment was designed to

ensure participants’ safety. The dose escalation achieved its intended

goal for both drugs by demonstrating dose-dependent treatment

effects in target engagement (fibrillar Aβ for gantenerumab and solu-

ble Aβ for solanezumab). Compared to the initial dose, the high doses

led to larger treatment effects in each drug’s Aβ target biomarker

(90% more decrease in PiB PET SUVR with high-dose gantenerumab,

41% more increase in CSF total Aβ42 [free + bound] with high-dose

solanezumab). The differential treatment effect between low- and

high dose was statistically significant for gantenerumab, but not for

solanezumab. The lack of significance for solanezumab can be poten-

tially attributed to the shorter duration on high dose (e.g., an average

of only 0.8 years before the year-4 biomarker assessment), smaller

sample size for high dose due to early dropout, and ceiling effect (e.g.,

CSF total Aβ42 [free + bound] had been restored to normal or close

to normal level during the low-dose treatment period and high dose

yielded diminishing treatment effect). Additionally, compared to its
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low dose, the gantenerumab high dose also resulted in larger treat-

ment effects in downstream biomarkers such as CSF total tau and

CSF p-tau181. Although gantenerumab did not achieve significant

treatment effect in the reduction of the annual CSF NfL (log scale)

change, the accumulated treatment at year 4 reached significance.3

This dose-dependent response indicates a possible causal relationship

between amyloid reduction and prevention of downstream biomarker

progression. However, the augmented high-dose treatment effect

demonstrated in biomarkers did not translate into cognitive or clinical

outcomes in the double-blind portion of the trial compared to placebo.

The slight improvement over placebo in Digit Symbol Substitution Test

observed during the gantenerumab low-dose period needs to be inter-

pretedwith caution given the relatively small sample size as well as the

magnitude of improvement. The faster decline over placebo observed

during the solanezumab high-dose period in CDR-SB, MMSE, Digit

Symbol SubstitutionTest, LogicalMemoryDelayedRecall Test anddur-

ing the solanezumab low-dose period in ISLT, as noted previously,16

was contrary to the trend toward clinical and cognitive benefits seen in

three large phase III solanezumab trials in sporadic AD,5,17 and might

be attributed to the small sample size and the more severe disease

progression around dose escalation compared to placebo (14% partici-

pantswithCDR>1 in solanezumab vs. 6% in placebo, Table 2), the drug

worsening progression in DIAD, or other unknown factors.

These findings suggest that dose escalation can be implemented

during an ongoing phase IIb/III trial when concurrent studies indicated

the initial dose may have been insufficient. Although the ideal is to

maintain the same dose or to prespecify dose escalation for clinical

trials, escalating the dose to achieve greater target engagement18,19

based on new data is a better alternative than continuation of the

trial without any change or restarting the trial due to futility given the

logistical and financial burdens to launch a new trial. This is especially

critical for clinical trials in rare disease such as the DIAN-TU-001 plat-

form trial with limited enrollment capacity. A potential improvement

for future trials with a similar situation is to “re-start the clock” of the

follow-up duration at the initiation of dose escalation instead of main-

taining the pre-planned overall trial duration. Re-starting the clock

increases high-dose drug exposure to amplify the potential treatment

effect and ameliorates the exposure difference among participants,19

which will likely increase the power of the study. However, to main-

tain similar power levels, additional enrollment would be needed for

the increased dose period.

There are some noticeable limitations of the dose escalation proce-

dure. First, variability in individual high-dose durations and participant

dropout preceding the administration of high doses will make the

evaluation of both the low- and high-dose treatment effects less inter-

pretable. Second, the disease progression of symptomatic participants

could diminish the observed treatment effect of the high dose at the

group level if the investigational drug is most efficacious at earlier dis-

ease stages. Third, the variable low- and high-dose durations limit the

types of statistical models that can be used to analyze the treatment

effects. For instance, the popular mixed model for repeated measures

with the time variable being categorical is less appropriate than the

LMEmodel for estimating the treatment effect accurately.

The lack of clinical and cognitive treatment effects in the presence

of larger Aβ biomarker target engagement at the higher dose can be

attributed to several reasons as explained previously, including but

not limited to the lack of clinical and cognitive decline in the asymp-

tomatic cohort, the heterogeneous and short durations of high-dose

exposure, the small sample size, and the practice effects of some tests

(e.g., Logical Memory Delayed Recall Test) in the asymptomatic group.

These are also the overall limitations of the DIAN-TU-001 study. Fur-

thermore, due to the small sample size, the results by disease status

(asymptomatic vs. symptomatic) should be interpreted with caution.
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