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The “time-varying loudness (TVL)” model calculates “instantaneous 
loudness” every 1 ms, and this is used to generate predictions of short-term 
loudness, the loudness of a short segment of sound such as a word in a 
sentence, and of long-term loudness, the loudness of a longer segment of 
sound, such as a whole sentence. The calculation of instantaneous loudness is 
computationally intensive and real-time implementation of the TVL model is 
difficult. To speed up the computation, a deep neural network (DNN) has 
been trained to predict instantaneous loudness using a large database of 
speech sounds and artificial sounds (tones alone and tones in white or pink 
noise), with the predictions of the TVL model as a reference (providing the 
"correct" answer, specifically the loudness level in phons). A multilayer 
perceptron with three hidden layers was found to be sufficient, with more 
complex DNN architecture not yielding higher accuracy. After training, the 
deviations between the predictions of the TVL model and the predictions of 
the DNN were typically less than 0.5 phons, even for types of sounds that 
were not used for training (music, rain, animal sounds, washing machine). 
The DNN calculates instantaneous loudness over 100 times more quickly than 
the TVL model. 

INTRODUCTION  
Glasberg and Moore (2002) described a model for predicting the loudness of time-
varying sounds: the time-varying loudness (TVL) model. A block diagram of the 
model is shown in Figure 1. The model includes a sequence of stages to simulate the 
transmission of sound to the eardrum (Shaw and Vaillancourt, 1985), the transmission 
of sound through the middle ear (Aibara et al., 2001), the frequency analysis that takes 
place in the cochlea (resulting in an auditory excitation pattern) (Glasberg and Moore, 
1990), the creation of a specific loudness pattern (including the effects of the 
compression that occurs in the cochlea) (Moore and Oxenham, 1998), and summation 
of specific loudness across characteristic frequencies (CFs) (Zwicker and Scharf, 
1965) to give instantaneous loudness. Within the model, frequency is transformed to 
the ERBN-number scale, which has units Cams (Glasberg and Moore, 1990; Moore, 
2012). This is a perceptually relevant scale comparable to a scale of distance along 
the basilar membrane. Instantaneous loudness is assumed to be an intervening 
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variable, not available to conscious perception, although it has been shown that certain 
cortical regions show activity that is correlated with the instantaneous loudness 
calculated using the model (Thwaites et al., 2016).  

 
Fig. 1: Block diagram of the TVL model of Glasberg and Moore (2002). 

The instantaneous loudness is smoothed over time to calculate short-term loudness, 
which is meant to represent the loudness of a short piece of sound such as a single 
word in a sentence or a note in a piece of music. The short-term loudness is itself 
further smoothed over time to calculate the long-term loudness, which is meant to 
represent the overall loudness of a longer stretch of sound, such as a whole sentence 
or a musical phrase. The peak value of the long-term loudness gives good predictions 
of judged loudness for a variety of sounds, including amplitude compressed speech 
(Moore et al., 2003), sonic booms and impact sounds (Marshall and Davies, 2007), 
machinery sounds (Rennies et al., 2015), and speech processed to have increased or 
decreased dynamic range (Zorila et al., 2016). The model forms the basis of a 
proposed ISO standard (ISO 532-3, 2019), although the model used in the standard 
includes additional stages to account for the way that loudness is combined across 
ears (Moore and Glasberg, 2007). 
Computationally, the most time-consuming stage of the TVL model is the calculation 
of the excitation pattern, which is estimated from the short-term spectrum of the sound 
and is used to calculate instantaneous loudness at 1-ms intervals. The excitation 
pattern is defined as the output of the auditory filters as a function of centre frequency 
(Moore and Glasberg, 1983). It is estimated by calculating the outputs of an array of 
level-dependent auditory filters in response to each component of the input signal 
(after outer- and middle-ear filtering) (Glasberg and Moore, 1990; Moore et al., 1997). 
The time taken to calculate instantaneous loudness makes it difficult to implement the 
TVL model in real time. This paper describes the development and training of a deep 
neural network (DNN) to speed up the computation of instantaneous loudness, 
allowing real-time implementation. The DNN was trained to predict instantaneous 
loudness using a large database of speech sounds and artificial sounds (tones alone, 
bandpass filtered and notched noises, and tones in white or pink noise), with the 
predictions of the TVL model as a reference (providing the “correct” answer, 
specifically the loudness level in phons).   
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STRUCTURE AND TRAINING OF THE DNN 
The stimuli used for training had a sampling rate of 16 kHz. Spectra were initially 
calculated using a 1024-point discrete Fourier Transform, with successive windows 
being shifted by 560 samples. Then bins were grouped to form 61 bands with centre 
frequencies up to 8 kHz, with one bin per band for centre frequencies up to 0.2 kHz 
and 1/9th-octave wide bands for higher centre frequencies. The limit of 8 kHz was 
chosen due to the sampling rate of the training material. The magnitude of the 
spectrum was expressed in decibels.  
Both accuracy and computation speed were important considerations when choosing 
the design of the DNN. The DNN was a multilayer perceptron that consisted of an 
input layer with 61 units (corresponding to the 61 frequency bands), three hidden 
layers with 150 units each, and a single output unit with linear activation. The output 
of the DNN was a single loudness level in phon. This was chosen because of its 
similarity to the input scale. Both scales range roughly from 0 to 110, and the just 
noticeable difference in loudness is roughly constant on these scales. This facilitated 
the DNN in developing the mapping from input to output without the need for scale 
transformations. Simple “rectified linear unit” activations (Nair and Hinton, 2010) 
were used. Alternative architectures were also considered. Convolutional neural 
networks did not achieve the same accuracy, probably because the input scale used 
(logarithmic frequency) did not allow the network to simulate filters that were valid 
over the whole range of the ERBN-number scale that is used in the TVL model.  
 
The DNN was optimized with regard to the root-mean-square (RMS) error from the 
predictions of the TVL model. The Adam optimizer (Kingma and Ba, 2014) was used 
with its default parameters. All weights were initialized randomly. Three sets of 
training data were used. First, 500,000 spectra were calculated from the LibriSpeech 
corpus (Panayotov et al., 2015) from the “clean” development set. The sounds were 
scaled to have an RMS level of 60 dB SPL. Second, about 700,000 pure tones with 
levels ranging from 15 to 110 dB SPL and various levels of background noise (from 
inaudible up to 10 dB below the level of the pure tone) were generated. Third, about 
500,000 spectra of bandpass filtered noises and noises with spectral notches were gen-
erated. They had various overall levels, bandwidths, notch widths and spectral 
gradients. To check for “over-fitting”, the performance of the DNN was assessed after 
training for 220, 1000 and 5000 epochs, where an epoch is a complete pass over the 
entire dataset one time.  

ASSESSMENT OF THE DNN 

Predictions for speech and everyday sounds 
Loudness was predicted for two further sets of data from the LibriSpeech corpus, 
“clean” set and “other” set (not used for training). Each of them consisted of 500,000 
spectra and they were scaled to have an RMS level of 60 dB SPL. Loudness was also 
predicted for 250,000 spectra derived from the ESC-50 corpus (Piczak, 2015). This 
corpus contains 50 categories of environmental sounds, for example rain, animals, 
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aircraft, keyboard typing or a washing machine. The sounds were again scaled to have 
an RMS level of 60 dB SPL. Finally, loudness was predicted for 100,000 spectra from 
20 popular songs of the 1960s, which were scaled to have an RMS level of 70 dB 
SPL. Table 1 shows the RMS error in phons between the predictions of the TVL model 
and the predictions of the DNN after training for 220, 1000, and 5000 epochs. After 
1000 epochs, the RMS error was below 0.5 phons for all classes of sounds. After 5000 
epochs the RMS error increased slightly for the LibriSpeech “other” and ESC-50 
sounds, which is a sign of “over-fitting”. Therefore, in what follows, we focus on the 
results achieved after training for 1000 epochs.  

 
 Number of epochs 

Test material 220 1000 5000 
LibriSpeech “clean” 0.35 0.27 0.28 
LibriSpeech “other” 0.55 0.45 0.47 
ESC-50 0.56 0.45 0.47 
Songs from the 1960s 0.38 0.35 0.31 

 
Table 1: RMS error in phons between the predictions of the TVL model and 
the predictions of the DNN for sounds not used for training. The error did not 
vary systematically with the predicted loudness level and the errors had a 
Gaussian distribution. 

Predictions for pure tones 

Fig. 2: Loudness level in phons predicted by the DNN as a function of sound 
level for pure tones with frequencies of 100, 1000, and 3000 Hz. 
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Figure 2 shows loudness levels predicted by the DNN for pure tones in quiet as a 
function of input sound level for frequencies of 100 (dotted line), 1000 (solid line) 
and 3000 (dashed line) Hz, assuming free-field presentation with frontal incidence. 
The predictions are consistent with empirical data (Hellman, 1976) and are almost 
identical to the predictions of the TVL model. For the 1000-Hz tone, by definition the 
loudness level in phons is equal to the physical level in dB SPL. The predictions of 
the DNN show this relationship almost exactly. The loudness level is greater for the 
3000-Hz than for the 1000-Hz tone because 3000 Hz is close to the resonant frequency 
of the ear canal, so the sound level at the eardrum is boosted relative to that in free 
field (Shaw and Vaillancourt, 1985). The loudness level is lower at 100 Hz than at 
1000 Hz partly because of the attenuation characteristic of the middle ear and partly 
because less gain is applied by the active mechanism in the cochlea at low frequencies 
(Cooper, 2004; Moore et al., 1997). Both of these effects are simulated in the TVL 
model. 

Predictions for noises as a function of bandwidth 
Figure 3 shows the loudness level of bandpass filtered pink noise centred at 1 kHz, 
plotted as a function of bandwidth, as predicted by the TVL model and by the DNN. 
For small bandwidths, the loudness level predicted by the DNN is slightly below that 
predicted by the TVL model. The predictions of the DNN are actually more consistent 
with recent empirical data on the loudness of narrowband sounds (Hots et al., 2013), 
although this is probably just a coincidence.  

 
Fig. 3: Loudness level in phons predicted by the DNN (solid line) and by the 
TVL model (dashed line) as a function of bandwidth. 
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Note that the sounds whose loudness is predicted in Figures 2 and 3 were included in 
the sounds used during training, so the accuracy of the predictions is not surprising. 
Nevertheless, the results show that the inclusion of speech sounds in the training 
material did not adversely affect the accuracy of the predictions for the artificial tone 
and noise sounds.  

DISCUSSION 
The predictions of the DNN for the environmental sounds and music are remarkably 
accurate. This is noteworthy, since the DNN was trained only using speech and 
synthetic sounds. This suggests that the DNN generalises well to real-world sounds, 
and would do so for sounds other than those tested here. The predictions for music 
were accurate despite the fact that the music test sounds were scaled to have an RMS 
level of 70 dB SPL, which is higher than the level of 60 dB SPL that was used with 
the speech sounds used for training. This shows that the DNN works well for sounds 
with levels that it was not exposed to frequently during training. The good 
generalisation across level and across types of sounds is probably a consequence of 
training using tones and noises with a wide range of levels and frequencies as well as 
with speech sounds. It might be possible to achieve even better generalisation by using 
an adversarial approach (Szegedy et al., 2013), in which a second DNN tries to find 
sounds for which the predictions of the first DNN are inaccurate, with the first DNN 
then adapting in order to achieve more accurate predictions for the problematic 
sounds. We leave this for a future study. 
The gain in computation speed of the DNN relative to the TVL model was a factor 
greater than 100. This would allow real-time implementation. It is possible with a 
modern PC (with Intel i7 6th generation central processing unit) to analyse a 24-hour 
recording at 1-ms intervals in a few minutes.  
Potential applications of the DNN include development of a real-time loudness meter 
and real-time control of levels in broadcasting to ensure (among other things) that the 
advertisements are not louder than the main programme material (Moore et al., 2003). 
The DNN could be extended to predict loudness for people with hearing loss (Moore 
and Glasberg, 1997; 2004). In principle this could be used for on-line control of 
loudness in hearing aids so as to restore loudness perception more nearly to normal 
(Launer and Moore, 2003) 

CONCLUSIONS 
The DNN gave accurate predictions of loudness for environmental sounds and music 
despite training using speech and synthetic sounds only. This shows good 
generalisation and suggests that the DNN will give reasonably accurate predictions 
for a wide variety of everyday sounds. Most predictions were accurate within 0.5 
phons, a difference in loudness level that would not be detectable. The DNN calculates 
instantaneous loudness more than 100 times faster than the TVL model, making real-
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time implementation possible. This opens up potential applications in broadcasting 
and in the on-line control of loudness in hearing aids. 
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