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Abstract

In this paper, a class of interconnected systems is considered, wienertiinal isolated subsystems are fully nonlinear and
non-minimum phase. A decentralized Extended Kalman Filter-Extended Giign Observer (EKF-EHGO) is designed to observe
the system states. Then, a systematic backstepping design proceduggddgezl to develop a novel decentralized robust adaptive
output feedback control, in which the adaptive law is designed to courgeefthcts of the interconnections and uncertainties.
The proposed decentralized dynamic output feedback control schamguarantee that all the signals in the closed-loop system
are uniformly ultimately bounded (UUB). Both interconnections and uaggres are allowed to be unmatched and bounded by
an unknown high-order polynomial, which is a more general form wdwnpared with existing work. Two MATLAB simulation
examples are used to demonstrate the effectiveness of the propetfsmtinmcluding a system comprising translational oscillator
with rotating actuator (TORA) sub-systems.

Key Words: Decentralized robust adaptive control; Non-minimum phase; Nonlisgatems; Dynamic output feedback;
Backstepping control.

I. INTRODUCTION

Increasingly complex requirements are producing engingeaystems which are formed from multiple sub-systems laalip
into nonlinear large-scale interconnected systems [1],38ch systems include networked microgrids [3], powetesys [4]
and mechanical systems [5]. In addition, non-minimum plesgacteristics may appear in nonlinear interconnectstes)s,
such as chemical networks composed of multiple non-mininpimase continuous stirred tank reactors [6] and mechanical
systems formed by multiple one-link flexible manipulatork [The control of non-minimum phase interconnected systam
thus strongly motivated by the needs of practical applicesti

In addition subsystem uncertainties will not only affeceithown performance, but also affect the performance of the
other subsystems through interaction. Managing the iaterections and uncertainties is an important issue in cbuafr
interconnected systems [8]. For non-minimum phase noalimgerconnected systems, the problem becomes more aatguli
since the control not only needs to guarantee the stabifith@ external dynamics, but also realize the convergencief
unstable internal dynamics. It should be noted that theaimiléy of the zero dynamics cannot be changed by the additio
of feedback, so the control of non-minimum phase nonlinateréonnected systems is much more difficult than that df the
minimum phase counterparts. To the best of the authors’ leuwye, there is currently no solution to the stabilizatioakpem
for this class of interconnected systems, where the nonsoéted subsystems are fully nonlinear and non-minimumsph

Interconnected systems may require high online computowep to implement controllers. This may be undesirable and
has resulted in the development of decentralized contrategfies [9] in which local control design only needs sutmsys
information. A decentralized control approach may imprbeth the computational efficiency and the overall securftyhe
system; control computations are locally performed andrédwgiirements for data exchange are reduced. These adgantag
have made decentralized control a popular choice for ioterected systems. Adaptive control is generally consitigrde an
effective method to deal with uncertainties due to its decglperformance characteristics and relatively simpkigteprocess
[10], [11]. This has motivated study to apply decentraliagidptive techniques to nonlinear interconnected systantsmany



interesting results have been obtained [12], [13], [14FHbuld be noted that these contributions all require thatnibminal
isolated subsystems are minimum phase.

Research on non-minimum phase nonlinear systems is a ehitgproblem from the perspective of both control theorg an
engineering application. By assuming the existence of ahjo stabilizing controller for an auxiliary system, a slmjand
very useful design tool has been proposed for non-minimuas@monlinear systems in [15]. The method proposed in [15] is
pioneering for the stabilization problem of non-minimunaph nonlinear systems and many related dynamic compethssted
output feedback control methods have been proposed [18], [18]. However the assumption that the auxiliary systean c
be globally asymptotically stabilized by a known dynamiengeensator may be difficult to satisfy for interconnectedeys.
The backstepping technique is also a good candidate to ddaklve non-minimum phase nonlinear systems in normal form
or strict-feedback form [19]. Based on the reduced-ordeseoker proposed in [20] and the small-gain technique, apubut
feedback backstepping control has been designed for a afassnlinear systems. However the considered system must be
affine in the internal state [21]. Note that these methodusdl a centralized control approach. Although such cenémli
control methods can be used to control non-minimum phasénean systems, the interconnection terms are not coresider
and this limits their applicability to non-minimum phasentinear interconnected systems [22].

For a class of interconnected systems with non-minimum elsdated nominal subsystems, a robust decentraliseditoutp
feedback sliding mode controller has been designed to thigesystem to a composite sliding surface and maintain aglid
motion on it thereafter [23]. Although the interconnectgdtems considered in [23] were allowed to be non-minimumspha
and had unmatched interconnections and uncertaintiesyahenal isolated subsystems were linear. Note that whenimadm
isolated subsystems are fully nonlinear, neither the oesaror the control method proposed in [23] are applicable wuthe
existence of unstable nonlinear internal dynamics.

In summary, when the nominal isolated systems of the coraidmterconnected system are nonlinear and non-minimum
phase, problems arise from the nonlinear non-minimum pbhagacteristics, the interconnections and uncertainfiedecen-
tralized dynamic output feedback robust adaptive backsétgpcontrol is proposed in this paper to tackle these probleA
decentralized state observer is first designed as a prsitegiar dealing with the nonlinear non-minimum phase ctiaréstics.
When the interconnections and uncertainties with unknovghériorder nonlinear bounds are considered, this incseiee
difficulty with observer design. Adaptive terms are desijbe offset not only the interconnections and uncertainitiethe
considered system itself, but also deal with the destamgirzerms coming from the state observation error dynantgsally
stability of the system is addressed. The convergence ofsthie observation error, system states and adaptive terms i
guaranteed. In light of [24], [25], a decentralized Extah#@liman Filter-Extended High Gain Observer (EKF-EHGO) iistfi
designed to observe the states of a class nonlinear nomaonimiphase interconnected systems. By transforming thénatig
stabilization problem into a time-varying tracking prailethe backstepping design procedure is employed to deweloprel
decentralized robust adaptive control to deal with the inear non-minimum phase characteristics, in which the tappw
is used to counteract the effects of the interconnectiomksuarcertainties, thereby reducing the conservatism andreiig
the robustness. A Lyapunov approach is used to addresditgtabi

In the control of nonlinear interconnected systems, asgtitpstability or even exponential stability are often exteel
results. To this end, various constraints are imposed orcdhsidered systems, such as that the bounds on the untiegain
and interconnections are all known functions as in [26],],[228]. In the case of output feedback control, the restic
imposed on the systems will be more severe, such as that patft of the interconnections are required to be known as in
[8], [23] or even that the uncertainties are also known in.[2® addition, the limitation of the constrained Lyapunawplem
(CLP) is often required in static output feedback contr@][331] and dynamic output feedback control [23]. In orderé¢lax
such restrictions, the results obtained in this paper eelwmiformly ultimately bounded (UUB) stability rather thasymptotic
stability. Effectively a trade-off is made between achigysystem stability and the generality of the system to whtiehresults
may be applied. Note that UUB can already meet productionisi@e practical industrial applications. There have alsenbe
many UUB results developed for nonlinear interconnectestiesys, such as [12], [13], [14], [32], although the minimuhage
assumption is required.

In comparison with the existing decentralised adaptivarebmethods [12], [13], [14], the interconnected systemssidered



in this paper are allowed to be non-minimum phase, whichnelgeboth the potential practical application and theoaétic
development. In comparison with decentralised sliding enoohtrol [23] for non-minimum phase linear interconnecigstem,
the nominal isolated subsystems considered in this papeiully nonlinear. The interconnections and uncertaintiessidered
are allowed to be unmatched and bounded by an unknown higr-grolynomial, which has a more general form when
compared with most of the existing other control methods [[A]1]. The main theoretical contributions of this paperline:

(i) a decentralized full order observer is designed for as<laf non-minimum phase nonlinear interconnected largkesc
systems; (i) an adaptive backstepping method is proposedkal with the non-minimum phase characteristics, higleor
interconnections and uncertainties; (iii) sufficient cibietis are given to guarantee the considered system is UUB.

The remainder of the paper is organized as follows. Secfidorinulates the problem and gives some assumptions that
will be used in the following sections. In Section I, a detalized EKF-EHGO based robust adaptive backsteppingr@on
is designed and the stability proof of the closed-loop sysi® given. Two simulation examples are presented to vaitia
proposed approach in Section IV while the conclusions arengin Section V.

Notation: For a square matrigl, Apin (4) and Apax (A) denote the minimum and maximum eigenvalue respectively.

Il. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

Consider a class of uncertain nonlinear interconnectettsys
2 =w; ( z7, Z1) + AG; (t, 2) +ZJ#1 H;; ( 21, jl)
o =zh+Afu(t, Zz)+23 1F171 ( Zj g1>
iy =2+ Afin (t,2i) + Z] 1 Lijo ( Zjs _]1)

1)
’égri = 5 ( 2 zl) + i ( ?1)ui + Af”’q (tv ZZ) + ZIJ\;—Zl Fijﬁ: (Zé)’ Z}ll)
JFL

Yi = 2
wherez; := col ( 205280, 2 ) € 7Z; € R",u; € R,y; € R are the state, input and output of tH& subsystem respectively
with i =1,2,--- N, y:=col (y1, - ,yn), 2* :==col (z},--- , 2% ) with z0 € R"~" € X;, Z; andX; are neighborhoods of
the origin, z := col (21, - ,2n) € Zi=Zy x -~ x Zy and Y 5=y Hij (-), 32521 Tijn (), -+, 2051 Tijmi—1 () denote the

J#i J#i J#i

unmatched interconnectiongj}le Ty;r, (-) denote the matched interconnectiodsy; (-), Afi1 (-), -+ ,Afir,—1 () denote

J#i
the unmatched system uncertaintiesf;,, (-) denote the matched system uncertainties. The nonlineatidms w; (2!, z¢, ),

7971
& (b, z%) andy; (2¢) are all smooth enough and known, whesg(z; ) represents the nonlinear gain function of the control
input.

For simplicity, denotes; (-) = Z] 1 Hij (25,29)) and Ay (1) = ZJ 1 Fuz( 2b,2%,). Without loss of generality, all
subsystems are assumed to have tﬁe same uniform relativeedeg.,r; Eh r,1 < i < N. Then system (1) can be written in
the following form
2 =wi (20, 28) + AS; (t,2) + 6

20 = Az¢ +B{€l( 27, 11) + i (28 ul}—|—AfZ (t,z;) + A (2)
Yy = Czf
wherez{ ;= col (28,--+ ,22) € R", Af; (t,2;) := col (Afin, -+ ,Afir), A; :=col (Aj1,--- ,Ay) and
o 1 --- 0 0
A= B = ®)
0 0 1 0
0 -«- -+ 0
rXT rx1

withc=[1 0 .. oL .
X7



Remark 1. It should be noted that the nonlinear interconnected sy¢igman be obtained from a general affine nonlinear
interconnected system by local coordinate transformatiod feedback linearization [27], [33], [34]. In additiogb in (1)
can be viewed as unmodeled dynamics or dynamic uncerta®®y Hence system (1) is commonly seen in the literature
across both centralized and decentralized control and rpeastical systems can be modeled as (1), such as the Tianslat
Oscillator with Rotating Actuator (TORA) system [24].

Remark 2. In existing work on nonlinear interconnected systems, mimh phase requirements are necessary, i.e. the zero
dynamicsz? = w; (2%,0) is asymptotically stable [36] or exponentially stable [26]the corresponding internal dynamics is
input-to-state practically stable [12], [14], [37]. Theassumptions are not needed in this paper.

The following Assumptions are imposed on system (1).

Assumption 1. pu; (28) # 0.

Remark 3. Assumption 1 is a common assumption in the study of nonlisgatems, as seen in [12], [38], [39], [40]. In
addition, Assumption 1 is always satisfied for many prattsystems, such as the triple inverted pendulum system [40] a
TORA systems [41].

Assumption 2. The uncertainties satisfy

pi k
1A (¢, 2:) || < i ||27| +Zk:1 Tiik |1 211 | (4)
qil k
1A fir (8 20) || < wia || 27| + Zk:l ik || 2751l (5)
wherel =1,--- ,r, the parameters;;, w;;;, Tiir andwvg;, are all unknown.

Assumption 3. The interconnections satisfy

1#55 (22, 200 | < i 12801+ D20 rign || ©)
Pt (25, 20| < wige 1220+ D20 wigue [1264]" @)

where the parametets;, w;ji, 75, anduv;;;, are all unknown.

Note thatp;;, piji, pi, ga in Assumptions 2-3 are allowed to be unknown and only the tifyapg = max {p;;, piji, Pi, ¢ir }
with 1 <! <randl <1i,j < N needs to be known.

Assumption 4. The functionsw; (zf, zfl) satisfy the Lipschitz condigion with respect to (w.r.ty) uniformly for 2% in the
considered domain, that is, for amyl (27, 2¢,) € X; x R andcol (zf, 2,;1) € X; x R, there exists a nonnegative continuous

function £, such that
a
i (2, 28) = s (20, 20) | < £ (1) |

Assumption 5. The functionsg; (zf, zgl) are continuously differentiable with local Lipschitz dexives.
Assumption 6. There exist a set of smooth functiofis (¢, 2?) € R and Vi (¢, 2?) : Rx R"~" — R and positive constants
Ci1, " ,Ci4 such that

a

a
Zi1 T R4l

(8)

cal2f]]” < Vio (¢ 28) < caall2

8‘/ 8V 2
820 82}0 w; (25’7 F; (t7 zzb)) < —Ci3||2'zl')H Q)
ov;
|5 <eaten

and the functiond; (t, zf) satisfy the Lipschitz condition w.r.t? and uniformly fort € R* in the considered domain. That

b
is, for anycol (¢,2%) € RT x X; andcol <t, 51') € Rt x X;, there exists a nonnegative continuous functin (¢) such that

b
’ F; (t,2}) — F; (t, 2) H < Lr, ()

Remark 4. In most existing decentralized control studies for nordinenterconnected systems, only weak coupling is
considered, whereby the nonlinear interconnections onmhtain the outputs of other subsystems, as seen for exampi]i,

b

b
R T %

(10)




[43], [44]. Although there has been some research on the @fis&rong interconnections, there are many limitations. Fo
example, in the system considered in [45], the nominal isdlgubsystems are fully linear and in strict feedback formiera
minimum phase requirement is typically necessary in allhmes$ on strong coupling, as seen in [45], [46], [47]. It skiobé
noted that the coupling considered in this paper is strotiger the general weak coupling, because the effect of theodetad
dynamics,zj? from the other subsystems on the interconnection has atso censidered. The interconnections and uncertainties
considered in this paper as shown in Assumptions 2-3 have gemeral forms than in other work; the terfg; andé; are

not considered in [12], [13] and all the parameters of thenbed functions must be known in [21], [23], [27], [31]. These
constraints are not required in this study.

Remark 5. Assumptions 4-5 require that the nonlinear terms(zl, ﬂ) and &; (zl,zﬂ) satisfy Lipschitz conditions as
often appear in the relevant results concerning obsenercantroller design for nonlinear systems, such as [24]].[25

Remark 6. Assumption 6 shows there exists a known smooth functionahatexponentially stabilize the dynamic equation
2 =w; (22, 28, which is relatively straightforward to achieve, and samiassumptions can be seen in [21], [48], [49].

The difficulty from the control perspective with system (&pults from the nonlinear non-minimum phase charactesisti
i.e. 22 = w; (2,0) is unstable, as well as the interconnections and uncegaintith unknown higher-order nonlinear bounds,
as shown in Assumptions 2-3. In view of these challengespHtjective of this paper is to design a decentralised fulleord
observer and a robust adaptive backstepping control tdligealthe origin of the system (1) using the measured output a
observed states.

The following key lemmas are listed below.

Lemma 1. [27] v v v v

Zi:l Zj:l @ij - Zi:l Zj:1 Gji (11)
where©;; denotes any function.
Lemma 2: [50]

la+b* < 2871 |a* + | (12)

wherea € R, b€ R andk > 1.
Lemma 3. [38]

(X o) < (X, a2) (X, ) 13)

wherep > 1, ap € R andb, € Rwith 1 < k < p.

IIl. A DECENTRALIZED EKF-EHGOBASED ROBUST ADAPTIVE BACKSTEPPING CONTROL
A. The decentralized full order observer design

This section aims to design a decentralized full order ofesefor system (2). Inspired by [24], [25], the following
decentralized EKF-EHGO is proposed as

,é‘? = Az + B(6; + pi (28)us) + Hi () (y; — C2%)
b sa Ni,r4+1 sa
E’L ( Zis 1) + 5‘7‘—"—1 (y’L - CZZ ) (14)
-b

2i:W2(faAza1)+L()( fz(faﬁ))

where §; (2¢,2¢) = gﬁb (2,50 )wl( bam) + ai‘l (= 20)252, g; > 0 are small parameters, the EHGO gaif) (¢;) =
il 1741
T . .
[ ”;: Z’ig"’ ?: } and n;1,- - ,Mir, Mir+1 are designed such that the polynomials™ + ;5" + -+ + ;41

are all Hurwitz, the EKF gairl; () = P; (¢) C‘i(t)TR,jl and P; (t) is generated by the following Riccati equation

P = AP, + PAT +Q; - 2Pichi_1ciPi (13)



where the initial valueP, (to) > 0, 4; (t) = 9% (2!, 24) andC; (t) = gj (20, 2¢) are time varying matrices; andQ; are
symmetric positive definite matrices.

b_ b 5 220 i _ - —
Definezl = 22— 2%, 20 = 20— 28, xy = srlﬂ,f with! =1,2,--- ;randy;,+1 =& ( z7, 11) Giy i = col (Xi1, "+ s Xir) »

T
Xi ‘= [ <piT Xr+1 } , then
D; (i) pi = Dj (4) xi = Z{' (16)

where D; (g;) = diag [¢},--- ,&;] and D; (g;) = [ D, (gi) Opx1 }
It follows from (2) and (14) that

€1X1 — Asz + &j [Blqu + BQ (Afz + A )] (17)
2 =wi (20, 28) —wi (80,28) — Li (¢) (65 — & (2,2%4)) + AG; + 6 (18)
whereA¢; = fl ( ,y) -& (25’723) with &; (z ,y) = az,. {wl ( 27, ll) + Ad; + 6 }_|_ 351 2 [ (2% + Afin + A1),
T ~ T 77741
By |: 015, 1 :| , By = |: Irwr 0Opx1 :| ,and
[ —ma 10 0]
-n2 0 1 0
A= : Lo e (19)
—Nir 0 0 . 1
—Mi 1 o 0 --- 0 |
Since A; is stable, for any symmetric matriX; > 0, the Lyapunov equation
QFA; + ATQ; = -7y (20)
has uniqgue symmetric solutio;, > 0.
For the state observation error dynamics (17), considetyapunov function candidate
Vit (x:) = xi Qixi (21)
where(2; is defined in (20).
For the state observation error dynamics (18), considetyapunov function candidate
Vi (t,2}) = (2}) P'2 (22)

where P; is defined in (15).

Proposition 1: Suppose Assumptions 1-6 are satisfied and there exist corp@a®; € R™ ", containing the origin, which
are the attraction region of the error dynamics (18). Therafty 2 € X;, y; € R™™! andz; € Z;, when||C; (¢)|| is bounded
and there exist positive constanisandp; such that the solutiong; (¢) of (15) satisfyp;I,,, ., < Pfl (t) < piln,—r, there
exist constantsy;s, a;g such that

Vit (xi) + Viz (£,77) < 04115||5§’||2 +aislxill* + Ei (2%, y) (23)

where=Z; = AN SV (%szu SR R SR [l ) + 28 SO0 (w2 + SR v SR ) + 20
ZFI Sy ( ”lebH + 3L vl ok ||zj1||2k), which represents the possibly destabilizing terms cabyeithe inter-
connections and uncertainties.

Proof :



The time derivative of;; along the trajectories of (17) is given as

. 1

Vit (xi) = _;X?Ti){i +2x7Q; [BiA& + BoaD M (Afi 4+ AY)] (24)
It follows from Assumptions 4-5, there exist positive cambsq;, a2 such that

867 Wi (Zb Za) agy Zq 851 s (éb éa) _ afz
82’3 (zb z“l) ' v azll ( ) 2 62 (z 21) ' v azgl

Zio| < apn HQSH + iz [ xil| (25)
(22.22)

It follows from the definition ofA¢; and (25),

N N
[AG] < an ngbH + a2 [[xal| + pin Zj:1 (Cij HZ;)H + Z:il TukHZﬁHk> + pi2 ijl (Wijl HZ?H + quzl 'UijlkHZ;‘LlHk)

’ (26)

. 1
‘/7;1 (XL) S {_8)\min (T ) (1 +pz1 +p12) HQ || + QQLQ ||Q H + HQ B2 1“ } HXLH + aleZbH
N 2 Pq N 2 Pq Pq o
2N Y (A Y e Y ™) 2N Y (I Y e > )
N T
+ 2N’I“ Zj:l Zl:l (wZQJlHZ;)H + Zk Zjlk Zk 1 H J1H )

The time derivative of;; along the trajectories of (18) is given as

&
0zf)

wherep;; (20, 28) = gg (st and p;s (20, 28) =

It follows from Assumptlons 2 3 and (24)-(26),

(2b,2%)

(27)

Via (£,77) = 2(20) P {0 (88, 5%, 20, xan t) + AS; + 6} + (20) T Prta (28)

where©; (szm Z,)(Z,t) £ w; (zf’,zﬂ) — w; (zf,zll) L; (¢ )( SL( 2, 11))
Considering Assumptions 4-5, the Riccati equation (15) thedboundedness chCi (t)H, the following inequalities can be
easily derived from [24], [25]:

2(%) PO (22,28, 20 xan t) + (2?)Tpi_12? < *O%HffHZ + aillxal? (29)

where«;s, a4 are positive constants. Detailed proof of (29) is given ia Appendix.
It follows from Assumptions 2-3 and (28)-(29),

. N k
Via (t,77) < —aus|| 22| + aualbaal® + 2| 22| DI (gijuzg\uz”_ Tin || 24| )

(30)
N 2k
< (ot ) [ sl 523 {30 X (0 ) (S0 1))
Hence, Proposition 1 follows from the inequalities (27) 48d) with
s = —uz + Py + ajy
(31)

1 _
Qg = —;Amm (T5) + (L4 pfy + p3s) 117 + 202 || + HQiBzD;lHQ + g

Based on Proposition 1, the stability proof of the proposedeover (14) will be given in the subsequent proof which
considers the behaviour of the closed-loop system.

Remark 7. The observers developed in [24], [25] do not consider ther@annections and uncertainties, hence exponential
convergence of the observer can be obtained. However, wigennmatched interconnections and uncertainties aredsmesi
as in this paper, as shown in (23), possibly destabilizimmsehave arisen in the observer error dynamics (17) and &8).
adaptive law will be designed to deal with these terms in thiewing subsection to ensure that the observer error isited.

Remark 8. It should be pointed out that the observer (14) does not uleniation from other subsystems and it is
completely decentralized. This means all the interconoestremain in the observation error dynamics, bringinglehges to
the controller design, especially the stability proof. bmee decentralized dynamic output feedback control schemesder



to decouple the observation error dynamics and the inteexttions, the observer design has used output informa@dhdr
reference signals [29] from other subsystems so that fgrtlacentralized filters (observers) have been constducte

Remark 9. Note that the EKF is usually used in the study of nonlineactsistic systems (see, [51]). However, it should be
noted that there are also many researchers who directlyhesEKF as an observer for nonlinear deterministic systems, (s
e.g., [24], [25], [52]). In this paper, inspired by [24], [R3he EKF has been used to deal with the system internal digsam
relating to the partial system state’s due to its simplicity and applicability to a wide range of tinear systems.

B. The decentralized robust adaptive backstepping control design

This section aims to design an output feedback control basethe step-by-step recursive backstepping algorithm to
guarantee the closed-loop system is UUB.

Step 1
Define (;; = 2% — w1 with ¢;; = F; (¢, 2?). Consider thel;; dynamics:
éil = zjp + Afin + A — 1@'1 . (32)
= Zi5 + Zip + Afi + A — Y
. X 3b . b)) .
where;; = an((r,? /) + BFB(:’ ’)25.
Then define(;; = 2§, — ;2. For system (2), (17), (18) and (32), a Lyapunov functionhesen as:
N b b 2 1( A 2
Wy = Zi:l {Vio (t,Zi> + Vi1 (xi) + Viz (t,fi) +G¢1+T7 (5z‘ - 5:) } (33)

where Vo is defined in Assumption 6V;; is defined in (21),V;, is defined in (22),r; is a positive constant anﬁi is a
time-varying adaptation gain that will be designed latecdanter the effects of the possibly destabilizing termssediby the
interconnections and uncertainties. Note thatis its desired value.

The time derivative ofi¥; along the trajectories of (32) is given as:

W ZN { Vio (¢, Zi-’)A-i- Vi (Xi) + Via (£,2%) + 2¢a (wiz +Gio+ 2 + Afir + A — 1/.11‘1) } (34)
=1 (8- 81) 5
Then designgs = —\aCin — Bi SobL, 22F-2¢2F~1 4 4h;; where\;; > 0 is a design parameter and the adaptive law is
designed as:
Bi=md o Py, (35)

where~; is a positive constant and the initial valie(to) > 0.
For the termV;, (t,z?) in (34), it follows from Assumptions 2-4 and Assumption 6,

Vi (t,20) = 35;0 + aav’f i (20, 28) + %Vf (AS; + ;)
o a‘/zO a i0
=i+ G (043
+ 68‘;? {w; ( 20, 28) +w; (zf,Fi (t,zf)) — w; (zf,FZ (t,zf)) +w; (zf,Fi (t,éf)) — w; (Zf7Fz (té‘f))}

i

< —eall2t|* + e |2 {£o

Zgl — L (t’ég) wi
L2 L2 LT
(~ein2 s ) o+ o+ B

+2N{Z;V_ A Bk +ZJ 1<Z wk) <Z:q—1 HZ?IH%)}

N pq k
DN CTETES A EA

IN

(36)



It follows from Lemma 3, (27), (30) and (34)-(36) that

W, < Zl<—c13+2+ >|"H +Z (a13+pz+0@1+ )HbH

Amin (Y3) + (1 +p21 +Pz2) [1€2; || + 200 ||9%]] + HQ B2D 1“ + g + HD || } ||Xz||2

+Zz 1{6NZ S AN S Bl 2Ne S S Rl
y ’ 37
{wz“ r 2 ) (S0 e ) + av S, (2 o) (S ™) | @7

+2Nr Zj:l Dot (qu:1 U?jlk) (Ziqzl 1251 HQI€

L
< 221 +2+ 144%) 31+2C¢1Ci2}

+Z¢:1 {2 (@_ 75;) (qu: 92k=22k %Bz> 2% qu 92k—2 121k}
For the final term, it follows from the inequality-2+;3; (Bz — B;*) — (ﬁL - ﬁ;‘) + 7832,

2 (5 ) (X007, 20 =) —2A ST ot = 2 S s (- )
g Z 92k—1,2k %(@-5:)24-%3?2

Defined; = ZJ LDy T i = Z?f:l Sorl, viiy, andm; = ijl Doim1 2oty Vi It follows from Lemmas 1-2,
(37)-(38) that

. ﬁ
Wy < 211 <—Clg+2+ ) | bH +Z (-Oéig —&-ﬁ?—i—a?l—&- Cia ) H bH

N 1 _ _
20 L S (T (L 68+ ) I + 2 ]+ Hszz-BzDﬂF +aus+ D3]}l

i

N
+Z4 {6NZ ngszH +4NZ—1 J”HZbH +2NTZ—1Zl 1 ”le H }

Zl 12 {2% V(6Nd; + 4Nh; + 2Nrm;) <||<2-1||2’“+Hwﬂ||2’“)}
2
+ 21:1 {( 221 +2+ “f% ) ¢+ 2@‘1@‘2}
+ZZV—1{ B Z 221 _’Yz(/éi—ﬂf)z‘f'%ﬁfz}

It can be seen from (39) that the interconnections and wiiogigs in the considered system itself and the destatujjizi
terms arising from the state observation error dynamicatepresented in the Lyapunov function. This motivatesdlsign
of an adaptive law to offset these effects.

Remark 10. It should be noted that the adaptive law (35) proposed inghger may not produce the true parameter values.
In fact, in adaptive control, it is usually unnecessary teigie adaptive laws to obtain/estimate the true parametaesasee
for example, [12], [38], specifically when UUB is consideréddthough there are many parameter estimation methodsctrat
be used to obtain the true value of corresponding parametgmng restrictions are needed on the considered system (s
e.g., [53], [54], [55)).

Step 2

Consider the(;> dynamics:

- 12 - awﬂ
Gi2 = 23 + —5 2}
3 52 11 a<7

(38)

(39)

31/%2 ( +Afz1 +A21) 3%2

9 o5, —= B —da (40)

(1/%2 + G2 — 1/%1) -



10

Define w;s (Ci1,55275i7¢i1,1/}i17¢i1> = %éw and

JURPN P N2 .q  OVi2 : 0o 5
Wi2 (Cihziz,ﬁu%h%hﬂm) = g«zil o (1/112 + G2 — %1) - Y —2B; =i (41)
A Lyapunov function is chosen as:
Wy =W +ZN ¢ (42)
2 = 1 im1 72
The time derivative ofiV, along the trajectories of (40) is given as:
. N G —a
Wo=W;+2 Zi:l Giz {2f5 + wiz +wia (Z + Afin + Ain)} (43)

For the term2 vazl CiawinZ%, it follows that
23" Gawnih <30 whth+ Y, [1Di]x (44
For the term2 >N | Ciowia (Afir + Ayy), it follows that
Z Gizwiz (Afix + A1) < Z winClh + 2N Zil Z;il {wzzﬂHngQ + qu wlkzk Al ]1H }
ED DN AN DA B 11 S S ol "

Then define;s = 2% — 13 and designp;s = —X\iaCio — Ci1 — @iz — w2 Wherel;s > 0 is design parameter. It follows
that

(45)

WZ S Wl + 22 <L2 {<z3 - zZCzZ - Czl} + Z Xz
N
Ny Zj:l WZall=t]|” + 2N Zi:l hizkzl BN
It follows from (39) and (43)-(46) that
. [: £2
o< 30 (mein b2t S) el + 0, (a2 e SR

N 1 _ _
+> {—sAmin (o) + (14 p3 + %) 1917 + 200 || + HQiBQDi_1H2 + aa + ZHDZ-HQ} Ibll”

+Z”1{6N2 AT IR0 DS N EIRREIYD DA SN 1 1
#300 ST L oNd; + 6N+ 2Nrm) (6l + gal ™) )
+Zi_1{< 201 +2+ 145‘2“1)@1—2/\1-2 §2+2¢i2@3}

+Zjv_1{ Gy 2 - w(éi—@)zmﬁf}

Stepm(3<m<r—1)
Consider the(;,,, dynamics:

(46)

(47)

Cim = 2 mt1 T @im (Cﬂ»ﬁfzw“ »égm73i7¢i17 e 71/%(1")) + wWim (Cﬂ»ffz,“' aéﬁmaéivwilv" 1/1(m)> (Ziy + Afin + Aqn)

(48)
S ~ 1 .
where Cim = Z?m - wim (Cile;lQa ) 1 m— 17ﬂ7,71/)117 te z(In )) with 1/)1'77” = _/\i,m—lgi,m—l — Ci,m—2 — Wim—1 —
Q’m,lwim_l, wim andw;, can be obtained by iteration Where the specific expressimngiagen by
wim =~ e
im 5 2] im ] -1 o im 2 2] im 15} 33 (49)
Wim = "zn 21“1 31#&"1 (1/)12 + (o — 1!&1) — ZT:Q ( 8@%%@) q/f B Z] 1 (81#;?*‘1) w(]))

A Lyapunov function is chosen as: N
Wi = W1+ G (50)
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The time derivative ofiV,,, along the trajectories of (48) is given as:
. . N
Wi = Wpo1+2 Zi:l Cim {2 my1 + @im + wim (Zh + Afa + Ai)} (51)

DefineCim+1 = 2 11— Yim+1 and designd; m+1 = —XimCim — Cim—1— @im — Cimw?,, Where);,, is design parameter.
It follows that

. 2 2 L2 L2

N 1 _ _
+y {—akmin (To) + (14 p2 + ) 19017 + 202 || + | B2 D || + cvua + m||D1H2} hll®

%

N 2 N r 2
ORI SARCAEI IEILERIRD SARENEIREEITS SIS S 51

(52)
+ 30 S L9M T 6N, + 2 (m o+ 1) Nha + 2Nrme) (11l + v |*) }
L, m
+ Zizl { ( 2N +24 ) Gi=2) . N+ 2<img—,m+1}
N ~ 2
s {a S o (- o) +usi?)
Step r
Based on the above analysis,
%‘,r = */\i,r—lQ,r—l - Ci,r—z — Wir—1— Ci,r—lwir_l (53)
2 L2
(—czs+2+ LYt + 57, (o497 + 0+ HERER)
1
S0 i (T (14 0+ ) 1907 + 20 2+ [ B0 |+ v+ = ) 94
r 2
+ Z. {GNZ CAEIRRT2Y SRS A E1 EE IS DI DN A B "
+30 S 9 6N+ 2rNh+ 2Nrml) (Gt + a1 }
+ Zi:l {( 2Mi1 +2+ ch w’) G 22 ijCiZj + 2§imCi,m+1}
N * *2
+Zi_1{ By Z 221 %(61 Bi) + 78 }
Then consider thé;,. dynamics:
Cir = Gitps (28 Ui+ @ir (Cil,éfg, e 28 B, 7¢§I))+ww (Cihé?% e 28 B, 7%(;)) (Zi5 + Afir + Aq)
(55)
with Cir = 2?7_ - {lpir (Cih 2;‘127 e 72&—1731'71/%1, ce ,Zﬁ(r 2 )
A Lyapunov function is chosen as: v
W=W,_1+ Zi:l CET (56)
The time derivative ofi¥’ along the trajectories of (55) is given as:
W=W,_1+2 Zj\;l Gir 160 + i (21 wi + @ir + wir (Zy + Afir + As1)} (57)
Then design the output feedback control:
U = — ! = (61‘ + @ir + XirGir + Gir—1 + wierir) (58)
i (25) ’

where ;. > 0 is a design parameter.
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It follows from (54)-(58) that
N r
W<ZZ_ (—c23+2+ +6NZ [Shit2(r+1) NZ §i1+2Nij_1 Zl_lw;.l> 1122
L‘Q
( s + 2+ 0, + )y|~bH o {( oA +24 wz) G2y }

mm<m+(1+pzl+pﬂ) 1] + 202 |4 + (|2 B2D7 Y| + i + 7| D }xiw (59)

+Z7 1{ E;
+Zz 12 {22k L(6Nd; + 2 (r +1) Nh; + 2Nrm;) (||gi1||2’“+u¢i1\|2k)}
+ ZZ . { Z:q . 2RI — (Bz - ﬂz*) + ’y,-ﬂ;*z}

Theorem 1: Suppose Assumptions 1-6 are satisfied. In the considereaiddihe ®; and z; € Z;, all signals in the closed-
loop system formed by system (1) and the state observersa@sticiated with the control (58) are UUBHf> 0 with &
defined by

k= lgll,i<HN (min {_Hﬂ)\max(Qi)ila —KiaD , —Ri3Crty —Kids 2Nig, - - 72>\¢r,%‘7¢}) (60)
where/m = 751 Amin (Y3) + (1+p21+p12) 1192 || + 209 ||€2; ||+HQ BsD 1“ +az4+r||D || , Kig = —ay3 + P? +a11+
LD LT L2
Ci4 4 —, Rj3 = Cz3+2—|— 74—|—6sz 1§]Z+2(T+1)NZJ 1w]11+2NTZ] 1Zl lw]'zl and/ﬁ}14— 2)\114_2_'_ 7,4 w7.

Proof:
Choose the desired valyg satisfying
Bf > 6Nd; +2(r + 1) Nh; + 2Nrm; (61)

Then the possibly destabilizing ter?ﬁZ 12 e () ||<,1||2k can be fully compensated by the adaptive law. It follows from
(59) and (61) that

W< S (sunlhall + mall 27 s + 300 (st =23 @) = S0 (B 7)’
F30T ST LR (6N + 2 1) Nha + 2Nrmy) [l [P} + Zilwﬁjz

It follows from Assumption 6 that the functions; (t, zf’) satisfy the Lipschitz condition. Hence in the considerechdim
b e N, andz; € Z;, there exist constants;; such that||1;1 || < ;1.
Then define

(62)

I1= ZL {ZZ‘; {22571 (6Nd; +2 (r + 1) Nhy + 2Nrm,) 2} + wf} (63)

It follows from (62) and (63) that
W< —sW+]] (64)

Hence, W (t,z’ﬁ 2y, C,B) decreases monotonically un@t, AL (,B) reaches the compact set
R, = {(t,z", zb,x,g,é) € RY x RPN 5 RPN 5 RO+ o RN RN Ly (t,zb,zb,x,g,é) <kl H} (65)

wheren = Zf\;l ng, 2% 1= col (zl, e ,25’\,), X :=col (xi1, ++ ,Xin), ¢ :=col (C1,-++,Cn) With §; := col ({1, -, i) @and
B := col (Buw" aBiN)-

Hence, Theorem 1 follows form the conditian> 0.

Remark 11. It can be seen from (64) that the closed-loop system is UUB\erathan exponentially stable, due to the
presence of the termi[. [ is mainly determined by);; and 3}, which are generated when dealing with the nonlinear
non-minimum phase characteristics, the unmatched umcgeta and interconnections bounded by an unknown higlerord
polynomial, respectively.
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Remark 12. Note that if system (1) is minimum phase, the proposed meihatill feasible. In that case, Assumption 6
will be satisfied withF; = 0, hence the observer (14) and control (58) do not need to béfieahdand the closed-loop system
is also UUB. In this case (63) will becon]d = Zi\il YiBE2

Remark 13. It should be noted that although the zero dynanifcs- w; (2¢,0) is allowed to be unstable in this paper, when
the dynamic equation! = w; (2!, 2% ) is controllable with respect to the virtual control inptft, a smooth functior, =
F; (t,2?) can always be found that makes the tesp(2?, 2%, ) converge exponentially. This provides a solution wherétie
designed control can ensure th4t converges ta; (¢, z¢), then the non-minimum phase problem may be solved. HoweYer,
is unmeasurable, so the observers (14) are first designeotamats estimated value. Then by definigg = 28, — F; (t, zf)

a decentralized robust adaptive backstepping controldpgsed to guaranteg; is convergent. Finally, a Lyapunov approach
is used to ensure that all signals in the closed-loop systemdd by system (1) and the state observers (14) associéted w
the control (58) are UUB.

Remark 14. An “explosion of terms” problem is induced by calculating thigh-order time derivatives of virtual inputs,
which is a limitation of the standard backstepping contaslshown in (49). It should be pointed out that the Dynamideger
Control (DSC) proposed in [56], [57] can be used to avoid prisblem. Multiple derivative calculations of virtual infsucan
be avoided by adding some first-order, low-pass filters a®ah, [57], which does not affect the closed-loop systemibtab
in the sense of UUB. To improve control quality, on the onedyahe accuracy of the filter can be improved to meet the
design requirements, which is relatively straightforwsrdmplement, and on the other hand, other types of filtersbeansed
if necessary.

Remark 15. It should be pointed out that the condition developed in Taeol is sufficient. In the process of controller
design and in the stability proof, the inequalities relgtio Lyapunov functions, such a86) — (39), will result in the final
conclusion being conservative. Theorem 1 above indichi@sthe sufficient condition for the closed-loop system td B
is k > 0, which implies thatx;; < 0, k;2 < 0, k;3 < 0 andk;y < 0. However, due to the conservativeness in the method of
proof, the system may still be UUB when these conditions dohotd. Although there is conservativeness in the analyisés,
method can be applied to a large class of interconnectedragstespecially those with unstable zero dynamics.

IV. SIMULATION EXAMPLES

This section will test the effectiveness of the designedhogtby two simulation examples.
Case 1
Consider the multiple TORA system studied in [41], as showifrig.1. The dynamical model can be described by:

(Mi + mz) T; — mlLﬂZQ sin 0; + mlLﬂz cosB; + k; (Z‘i — xi_l) + k‘i+1 (.131' — Z‘i+1) =0

N 66
(Ji + miL?) 0; + m; L;i; cosb; = 7 )

wherem; is the rotor mass,/; is the inertia of the rotational centré, is the rotor rotational radiusy/; is the mass of the
cart, k; is the spring constand, is the rotor angular position ang is the cart translational positiom; is the input torque of
thei** subsystem respectively with=1,2,--- , N.

Note that the multiple TORA system (66) is non-minimum phase

Inspired by [24], introduce the following change of variedal

b __ m;L;sin0;
Zin =T+ ArTm,
l_; 5 m; L;60; cosf;
Zig = i ¥ TR m, (67)
a — 0.
zh =0
a _— 0.
2% =0;

In practice, often only the rotor angular position can be snead, that isy; = z&. Then definez? := col (2%, z%) and
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x1 xi .xN
— —> —
QO O QO 0O QO O
M, M, My
ky ! ky k; ki ky : kya
(OO QO Q O
1st TORA i th TORA Nth TORA
Fig. 1: Structure of multiple TORA system
2P = col (2%, 2l). In the new coordinate systefr?, z?), the system (66) can be described as:
b
. Zi2
Zf = kitkit1 b (lflz+kq;+1)m7‘,Li sin z{) + i
= Mi+my; Fil + (M;+m;)? (68)
S B e B RN A e o I N
2l = 27 i i (234) T
P o | T g ST Afis A
) ay\ _ (M;+m;) ~_ miL;cos z (ki+ki+1)zf 7m?L? (2 )2 sin z{ cos z{; . )
where Hi (221) - (Jz:+m1:Lf)(M1,+m1:)—mefcos2zfl’ & = (qul-ﬁ-miL?)(quihu)—me%costfl1 +, the uncertaintyA fi;
and interconnections;, A, are described by
o m?L? sin z{ cos 2 L kitkiga
Asz - (JH»miLZZ)(Mi+mi1)fm?£?cos2zfl M;+m;

0
(Si = ks b _ mi_1L;_1sinzl |, n kit1 b _ mip1 L1 sinz;ﬂrL1 (69)
M;+m; Zi-1,1 M;_1+m;_1 M;+m; Zit1,1 Miy1+mipa

T4 [
a b mi_1Lij_1sinzd g 4 . .a b mip1Lgprsinzdy g g
my L cos 231 ki 2T T my L cos zi kit Zit11T T M Fmarr

Ajp = —

(J,;—&-mlL?)(M,;—&-ml)—me%coszzfl (J,;—&-m,;L?)(]VL;—&-m,;)—m%L?cos?zfl

Two TORA sub-systems are used as the simulation test. THersysarameters are given by:

M; = 1.3608 kg, m; = 0.096 kg, L1 = 0.0592m,.J; = 0.0002175 kg - m?, ki = 186.3 N - m

70
M, = 1.2985 kg, ms = 0.108 kg, Ly = 0.0604m, Jo = 0.0001298 kg - m?2, ks = 186.3 N - m (70)

ChooseV;y = (zf)T(zf) with Fy = arcsin (—0.52z}; — 0.51z%,) and F, = arcsin (—0.452%; — 0.4023,) such that
Assumptions 1-6 are all satisfied.

. - (k;i+ki+1)miLiz§ cos z}; H i -
Denote the virtual system state = G L2)( Mi+m7‘,)fm§ L?closzzgl’ then the main parameters of the decentralized EKF
EHGO (14) are given by:

0.8 0
€1 = 0.003,7711 = 25”]712 = 2,7’13 = 0.037R1 = 17Q1 = [ 0 0.8 ‘|

(71)
g9 = 0.003 =3 =3 =1,Ry=1,Q5 = 0.8 0
2 =U. y121 = 9,722 = 9,123 = L, g = 1, G2 = 0 08
The main parameters of the control (58) are given by:
=0.01,7, =100, A\1; = 1, Ao =2
Y1 » T1 » A1l »y A12 (72)

Yo = 0.02,7’2 = 100, )\21 = 2, )\22 =3

The time response of the original system stdtesd;) with their estimates, the system input torques and adaptatins
are shown in Fig.2 and Fig.4. The system stdtes, 2, 2%, 0;) and their estimates are shown in Fig.3 and Fig.5. As shown
in Figs.2-5, all signals in the nonlinear multiple TORA st (66) and the adaptation gains are all UUB despite the pcese
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of unmatched interconnections and uncertainties whiledisigned EKF-EHGO can quickly observe the system states. Th
simulation results demonstrate that the designed methndeffactively stabilize the multiple TORA system. Note that
this specific example, by direct calculation, the minimuriuea of the parameters; defined in (61) ares; = 1286.45 and

B35 = 2435.26, respectively. It is clear to see from the simulation tha #uaptation gaing; and g, cannot estimate their
corresponding desired values, but the proposed adaptivteot@an still guarantee the UUB stability of the contrdligystem.

005 ——System state x;

- - -Observered state &

z1(m)

time(s)

(a) The system state; and its estimate:;

time(s)

——System state 6;

- - -=Observered state él

time(s)

(b) The system staté; and its estimaté,

0.8

0.7
0.6
0.5
0.4
0.3 A/\/\A
0.2

0.1

time(s)

(c) The time response of the system input torqu@) The time response of the adaptation g&in

T1

Fig. 2: The time response of the original system stétgs#,) with their estimates, the system input torque and adaptatio

gain
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0.05 ——System state zy;
- - -Observered state 2},
0.04
0.03
0.02
001

i
1

1

[

s
o 1 2 3 4 5 6 7 8 9 10
time(s)

(a) The system state?, and its estimate?,

15
a
——System state z{,
10 - - -Observered state 2{,
5
o
-5
»10 m]\/\/W
-15
o 1 2 3 4 5 6 7 8 9 10

time(s)

(c) The system statef, and its estimatey,

——System state 2%,

- - -Observered state 2/,

time(s)

(b) The system stateb, and its estimates?,

80

——System state oy
60 - - -Observered state 61
40

time(s)

(d) The time response ef; and its estimaté

Fig. 3: The time response of the system stdtey, 2%,, z{,,01) and their estimates

——System state z

- - -Observered state &

001 n

z9(m)

time(s)

(a) The system states and its estimatets

T3(N - m)

time(s)

——System state 6

- - -Observered state F}z

0y (rad)

time(s)

(b) The system staté, and its estimatés

0 1 2 3 ) 6 7 8 9 10

5
time(s)

(c) The time response of the system input torqu@) The time response of the adaptation géin

T2

16

Fig. 4: The time response of the original system stétesf,) with their estimates, the system input torque and adajptatio
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System state z5; System state z5,

- - -Observered state 23, 03 - - -Observered state 25,

o 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 & 7 8 9 10
time(s) time(s)

(a) The system state}, and its estimate?, (b) The system state}, and its estimates},

System state z5, s System state oy

- - -Observered state 25, - - -Observered state G,

b & A& & o N » o ®

time(s) time(s)

(c) The system stateg, and its estimategg,, (d) The time response af; and its estimaté

Fig. 5: The time response of the system stdtey, z5,, 25,,02) and their estimates

To further test the proposed decentralized robust adaptiverol, the result in [23] will be compared with the method
proposed in this paper. A robust decentralised output fedisliding mode controller has been designed in [23], algho
the considered interconnected systems in [23] were noirmim phase, the nominal isolated subsystems were requirbd t
linear. In order to use the method proposed in [23] on noalirieterconnected systems (68), it is necessary to firsatine
the considered system at the origin. By using a Taylor expararound the origin and neglecting the higher order tetims,
following linearized model of the nominal isolated systeofig68) can be obtained:

) 0 1 0 0 24 0
Hy | _ 0 0 2733433 0 2%, N 1880.497 .
28 0 0 0 1 28 0 (73)
%, 0.998 0 —255.766 0 2%, 0
Y1 = [ 1 000 } [ 211 2o 21171 Zl172 }T
% 0 1 0 0 2% 0
By | _ 0 0 3501.346 0 2%, N 2026.148 .
25 0 0 0 1 25 0 (74)
5, 1.229 0 —2.64.913 0 zT§2 0
p=[10 0 0][# 4 & %]

The main parameters of the reduced-order observer andiglidode control in [23] are given by:

T
L = { 37 166234 —2.818 —13.679 l S = { 60 1 —9.366.734 846.110 } )
Ly = [ 37 157.087 —2.297 —9.971 ] 5y = [ 37 1 —6850.727 119.716 }

The time response of the system sta(eg,z§’2,z$2) with their estimates and the system input torques using tethaa
proposed in [23] are shown in Fig.6 and Fig.8. The correspontme response of the original system stateswith their
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estimates and; using the method proposed in [23] are shown in Fig.7 and Fith@ time response of the sliding functions
using the method proposed in [23] are shown in Fig.10. Comgdfigs.2-10, it can be seen that the approach proposed in
this paper exhibits better control performance due to itsaliconsideration of the nonlinear characteristics wtiike method
proposed in [23] shows poor system response. In fact, thbadgtroposed in [23] delivers a controller that is only vafid

a small region near the origin.
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0.2 - - -Observered state ;2{’1 0~
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(c) The system statef, and its estimate{, (d) The time response of the system input torque
Tl

Fig. 6: The time response of the system st4tgs, 2}, 2{,) with their estimates and the system input torque using thtbode
proposed in [23]
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Fig. 7: The time response af; with its estimate and, using the method proposed in [23]
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Fig. 8: The time response of the system st4tgs, z5,, 25,) with their estimates and the system input torque using thtbode
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Fig. 9: The time response af, with its estimate and, using the method proposed in [23]
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Case 2:
Consider the nonlinear interconnected system formed ofsmasystems described by:
b =3(28)° + 2828 + 2% + Ady + 61 + Ady
=2+ Afin+ A+ Adz

. (76)
o =2+ 211 tur+Afia+ Arp
Y1 =21
. 2
25 =2(28)" + 22528, + 228, + Ady + 62 + Ads
2y = 230 + Afor + An -
29y = 25 + 281 + uz + Afoy + Ago + Ady
Y2 = 25,
wherez := col (21, 22) € Z = { (21, 22)] |2¥| < 0.1,]25| < 0.1}, the interconnections and uncertainties satisfy
A8y + 61 < 0.2]28y |+ 0.2]28 % + 0.1] 28] + 0.2 |25, ] + 0.2[25|°
Afir+Ap < 0.1]28) +0.2[28 | + 0.1 |25 +0.2 |25 + 0.2]25,
Afiz+ A2 <0120+ 0.2z, 1> +0.1 |25 +0.2|25, | + 0.2|28, 7 78)

Aby + 82 < 0.1 |28] +0.2 |25, | + 0.2 25, ° + 0.1\%{\2 +0.224]
Afor + Doy < 0.1 |25] 4+ 0.2]28, | + 02028 [ +0.1|22|* + 0.2]2¢,
Afas + Aoy < 0.1]25] +0.2 |25 | + 0.1 |28| + 0.2 28| + 0.2]25, |
and Ady, Adsy, Ads, Ady represent the interconnections and uncertainties witlzeronsteady-state values, which are defined

by:
Ad; = 0.002 cos (t) , Ads = 0.006 cos (zll’)

: (79)
Ads = 0.0055sin (t) , Ady = 0.001 cos (254)

Note that the nonlinear interconnected system (76) — (7Apisminimum phase and exhibits strong nonlinear coupling.
ChooseV;y = (z’-’)2 with F; = —32% and F, = —228. Denote the virtual system state = 2% + 2¢, andog = 25 + 2%,

?

then the main parameters of the decentralized EKF-EHGO dfelgiven by:

&1 = 0.001,’1711 = 3,7712 = 3,7713 = 1,R1 = ].,Ql =0.1

(80)
e = 0.001, 21 = 3,7122 = 5,7723 =3,Ry =2, QQ =02
The main parameters of the control (58) are given by:
=0.01,71 = 100, A\;; =2, A2 =2, \13 =3
Y1 1 11 12 13 81)

Yo = 0.01,7’2 = 100,/\21 = 2, /\22 = 3, /\23 =3
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The system states and their estimates are shown in Fig.1FigriB. The time response of the system control signals and
the adaptation gains are shown in Fig.12 and Fig.14. As showrigs.11-14, although the interconnections and unawites
have nonzero steady-state values, all signals in the realiimterconnected system (76) — (77) and the adaptatios ga¢ all
UUB while the designed EKF-EHGO can quickly observe theaysstates within a small error bound. The simulation results
further verify the effectiveness of the proposed methodhla case, by direct calculation, the minimum valuesspfdefined
in (61) aref; = 4 and 35 = 5.28, respectively. Similarly, the adaptation gaifis and S, cannot track their corresponding
desired values. In fact, if the true values of the parametsrdo be obtained by proper adaptive laws, additional requénts
on the considered system may be needed.

The result in [23] will be compared with the method proposedhis paper. In order to apply the method proposed in [23]
to the nonlinear interconnected system (76) — (77), it isessary to first linearize the considered system at the origyn
using the Taylor expansion around the origin and negledtigber order terms, the following linearized model of thenial



isolated systems of (76) — (77) can be obtained:
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The main parameters of the reduced-order observer andglidbde control in [23] are given by:
T
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Fig. 15: The time response of the system stateand system control signal; using the method proposed in [23]
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The corresponding time response of the system states vathdhtimates and the system control signals using the metho
proposed in [23] are shown in Figs.15-16. The time respoffigheosliding functions using the method proposed in [23] are
shown in Fig.17. Comparing Figs.11-14 and Figs.15-17, it lsa seen that the final convergence bound of the system states
and observer errors are all bigger than those using the mhgihaposed in this paper while the method proposed in [23]
shows poorer system response. This is because the methoasprbin [23] is developed based on a linearized model of (76)
which has lost the nonlinear characteristics of the origiyatem while the method proposed in [23] can not readilydian
the uncertainties and interconnections bounded by an wwkindgh-order polynomial, which further shows the supétyoof
the proposed method.

To demonstrate the conservativeness discussed in RematkelBalues of the parameteks, are now chosen as:

A1 =0.5, 1 = 0.8 (85)

By direct calculation, the sufficient conditiofy, < 0 proposed in Theorem 1 does not hold while the parameters give
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(81) can guarantee the corresponding conditions proposedéanrém 1 hold. When using the values given88)(and keeping

all other relevant parameters the same &3 ¢ (81), the system states and their estimates are shown in Figqud8ig.20
while the time response of the system control signals andattaptation gains are shown in Fig.19 and Fig.21. As shown
in Figs.18-21, although the sufficient condition proposed’heorem 1 do not hold in this case, all signals in the noaline
interconnected systen7§) — (77) and the adaptation gains are still UUB while the final cogeece bound of the system will
increase. The simulation results further verify the covestreness of analytical methods underpinning the themleanalysis

of the proposed method.
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Fig. 18: The system states with o; and their estimates under the parameters given in (85)
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V. CONCLUSION

A decentralized EKF-EHGO based robust adaptive backstgpgintrol method has been designed for a class of intercon-
nected systems with non-minimum phase and nonlinear nénsiolated systems. An adaptive nonlinear damping straiegy
used to handle the nonlinear interconnections and uno&esj which are allowed to be unmatched and have higherord

nonlinear bounds. Simulation test results are given to siheweffectiveness of the proposed control scheme. Futurk widl
focus on how to obtain global results and handle some stnotggcionnections.
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APPENDIX
By expandingw; (z?,2%) and§; (2¢,2%) into power series in the domaiif € ®;, x; € R™"! andz; € Z;, it follows that
01 (228, 24,0,0) = i (1. 28) i (1,20) — L (0) (6 (o1,28) — & (21:20) .
= A ()2 +Tu, — Li () Ci (1) 2 — L (1) T,
where
Ty, = wi (20,28) —w; (2,28) — Zjb (s0,28) 3¢
’ (87)

sa i b ay -
Pe =& (20 20) — & (3 20) = 55 (2. 20) 2
represent the corresponding terms of second and higher iordé.
The following lemma is listed below.

Lemma 4: [24], [25] Suppose Assumptions 4-5 are satisfied. Wwéigl H and P; (t) are all bounded, there exist positive
constantsk;; and k;» such that )
ITw; = Lile, || < ka||22 | (88)

l©: (28, 281, 20 xert) = 01 (20, 281, 21, 0.0) || < o (89)
It follows from Lemma 4 and (86) that
2(2) PO (2 2 2o t) + () B = 2(20) P (3, 20,2, 0,)
2(2 )T {0 (20,58, 20 xi t) — 0, (20,28, 20,0,1) }
+ () {~P 7 (AP + PAT + Qi — 2PCT RV CiP) P 2
<o(a) P (A - LC) 2 2|2 [P0, - LiTe )l (90)
F2 P10 (68 202 xiot) = 4 (3,26, 210.0)]
+ () {~P (AP + PAT +Q; — 2RCT R\ CiPy) P} 21
< ~()" P QRE + 2|2 + 2pikia 2] Il

Assume in the considered domaif € X, there exists a positive constai; such thatszH < ki3, then the inequality (89)
can be further expressed as

2(2 ) 1@ (zl,zll, Z,X“t) + (Ef)TPi_léf' < —ai3H2§7H2 +Oéi4||XiH2 (91)

Wher6ai3 :Bzz)‘min (QL) — 2}71,]%1]%3 —1 and Qg = ﬁ?k‘%
Hence, the inequality (29) follows as long as appropriatameters are selected to guaranteg > 0.
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