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Abstract: Community recovery from a disaster is a complex process, in which the importance of 
different types of infrastructure functionality can change over time.  For instance, sheltering 
facilities can be critical in the immediate post-disaster phase, but play a declining role over the 
longer-term recovery period. On the other hand, the successful functionality of educational 
institutions may become important only at the end of any emergency response period. Most of 
the myriad of metrics available for measuring disaster resilience do not capture the dynamic 
importance of functionality explicitly, however. This means that very different recovery trajectories 
of a given infrastructure can correspond to the same resilience value, regardless of variations in 
its utility over time.  While some efforts have been made to integrate features of time dependency 
into individual facility (component-level) resilience quantification, the resulting metrics either 
capture only a limited set of temporal instances throughout the post-disaster phase or do not offer 
a way to prioritize time steps in line with variations in the importance of facility functionality. This 
study proposes a novel yet straightforward metric for component-level post-disaster resilience 
quantification that overcomes the aforementioned limitations. The metric involves a dynamic 
weighting component that allows stakeholders to place varying emphasis on different temporal 
points throughout the recovery process. The end-user-centred approach to resilience 
quantification facilitated by the metric allows for flexible, context-specific interpretations of 
infrastructure functionality importance that may vary across different communities.   We 
demonstrate the metric through a hypothetical case-study of infrastructure facilities with varying 
degrees of importance across the post-disaster period, and showcase its versatility relative to a 
previously well-established measurement of component-level resilience. As the case-study 
demonstration underlines, the proposed metric has significant potential for use in stakeholder-
driven approaches to decision-making on critical infrastructure (as well as other types of built 
environment) recovery and resilience. 

Introduction 

The need for effective disaster resilience is well established in the literature (Tiernan et al., 2019) 
and promoted widely across leading international agencies, such as the World Bank and the 
United Nations (Mochizuki et al., 2018).   There is no explicit consensus on the definition of the 
concept of resilience (Cai et al., 2018), which features across a range of different disciplines 
including ecology and child psychology (Ayyub, 2014).  However, in the context of disasters and 
communities, the term is broadly captured by the following United Nations Office for Disaster Risk 
Reduction (UNISDR) explanation: A resilient city is characterized by its capacity to withstand or 
absorb the impact of a hazard through resistance or adaptation, which enable it to maintain certain 
basic functions and structures during a crisis, and bounce back or recover from an event '' 
(Johnson and Blackburn, 2012). Implicit in this interpretation of disaster resilience (particularly 
through the word ``certain'') is the idea that the importance of post-disaster functionality in a given 
infrastructure (facility) may change over time. Some facilities, like shelters and hospitals, are 
critical to the emergency response phase and should be immediately functional for maintaining 
basic needs (e.g., Cimellaro et al., 2010; Hassan & Mahmoud, 2018; Vecere et al., 2017). On the 
other hand, other services, such as those related to education, are not required to operate so 
soon after a disaster; in fact, the re-opening of schools often marks the transition from response 
to recovery efforts (Scott, 2023). In addition, the  importance of functionality in different facilities 
at a certain point in time can vary across neighbourhoods (Dong et al., 2021). For instance, 
immediate operation of food assistance services may be critical for low-income communities, but 
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not necessary for high-income groups that have sufficient pre-existing resources to cope without 
these facilities for a certain period of time.   

Yet, the vast majority of existing metrics for individual facility (i.e., component-level) resilience do 
not (at least completely) capture the dynamic nature of post-disaster functionality importance 
(Hosseini et al., 2016) For instance, the resilience triangle measurement proposed by Bruneau et 
al., (2003), which is perhaps the most well-known and widely used metric in this context, can 
produce the same resilience result for very different functionality trajectories because each time 
instant is treated equally. Thus, a hospital that has minimal functionality in the critical emergency 
phase but recovers quickly thereafter could have identical resilience to a similar facility that has 
significantly more capacity to deal with emergency casualties but recovers to a fully operational 
status more slowly.   This limitation of the Bruneau et al., (2003) metric was identified and 
addressed by Zobel (2011); Zobel & Khansa (2014); and Chang & Shinozuka, (2004),  but the 
resulting approaches only focus on functionality at a finite number of temporal instances (i.e., the 
beginning and end of recovery processes), such that the importance of performance in intervening 
periods cannot be accounted for.  While the literature does contain time-dependent component-
level metrics that enable disaster-related resilience to be examined and/or distinguished for any 
temporal instance of interest (e.g., Henry & Emmanuel Ramirez-Marquez, 2012; Rose, 2007), 
there has been no attempt to explicitly prioritize (weight) time steps in line with the dynamic 
importance of facility functionality. Time-dependent weighting functions have been introduced in 
the system resilience domain, reflecting the relative importance of functionality in one type of 
facility over another (Ghorbani-Renani et al., 2020; Zhang et al., 2021). However, these types of 
metrics still treat all time steps with equal importance at the component level, and reduce to 
measurements analogous to that proposed by (Bruneau et al., 2003) for a system composed of 
only one facility.   

This study addresses the crucial gap identified in the state-of-the-art, by proposing a novel 
component-level resilience metric that enables varying emphasis to be placed on different 
temporal points throughout the recovery process. The dynamic nature of infrastructure 
functionality importance is specifically captured through a time-dependent weighting component 
that should be calibrated in consultation with relevant end users. This end-user-oriented feature 
of the proposed metric has a number of advantages. First, it allows for flexible, context-specific 
interpretations of recovery importance for different infrastructure, addressing possible inter-
community disparities in post-disaster needs. Second, stakeholder participation in the post-
disaster planning process can lead to greater awareness of related challenges and higher 
confidence of being able to address them (Chandrasekhar, 2012). Ultimately, end-user 
involvement results in better-informed decision making (e.g., Komendantova et al., 2014), which 
is the final goal of any resilience assessment.  

The rest of the paper is organized as follows. We first introduce the proposed resilience metric, 
which is then demonstrated for a set of hypothetical infrastructure facilities and stakeholders. The 
paper ends with a discussion on the utility of the metric and its potential application to 
infrastructure recovery decision-making.  

Proposed metric  

The proposed resilience metric provides a weighted average value of normalized functionality 
Q(t) for an individual facility between two time instances of interest, t0 (typically the time at which 
the disaster occurs) and TRE (corresponding to some subsequent point in the post-disaster phase, 
which may or may not align with the restoration of full operational capacity in the facility and could 
be disaster-specific). It can be expressed as:  

𝑅 = 
∫ 𝑄(𝑡)𝑤(𝑡)𝑑𝑡 

𝑇𝑅𝐸

𝑡0

∫ 𝑤(𝑡)𝑑𝑡 
𝑇𝑅𝐸

𝑡0

 (1) 

where w(t) is a time-dependent weighting, ranging in value from 0 to 1. w(t) is obtained from 
discussions with relevant facility stakeholders and may be derived directly from recovery goals 
set in community resilience plans (e.g., Poland, 2009; Scott, 2023). It is a measurement of the 
relative importance of complete functionality at time t, where w(t)=1 indicates that complete 
functionality is critical and w(t)=0 is used when functionality is not necessary.  

w(t) for a given facility may depend on the severity of a disaster. For instance, the critically 
important functionality of an emergency shelter may last longer for events that cause substantial 
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residential damage than those that have minimal effect on a region's housing stock. On the other 
hand, the time at which educational facilities should reach full capacity may be later for high-
impact events that require a protracted post-disaster emergency phase. w(t) should also account 
for any resilience tactics (e.g., Rose & Huyck, 2016) associated with the facility of interest that 
can be used to supplement or as a substitute for its functionality over a prescribed period of time. 
For example, w(t) may be zero for an industrial premises during the time period that the 
associated business can operate with employees working from home (e.g., Cremen et al., 2020). 

Alignment with existing metrics  

R is a modified version of the straightforward well-known resilience triangle concept (herein 
referred to as R*) proposed by Bruneau et al., (2003) and subsequently updated by Cimellaro et 
al., (2005). The inclusion of the integral on the denominator of R normalizes the metric, analogous 
to the 1/TLC component of the formulation proposed by Cimellaro et al., (2005), whereTLC refers 
to a specific time period of interest (equivalent to TRE in Equation 1). R reduces to R* for w(t) = C, 
where C is some constant between 0 and 1, i.e., the two metrics are equivalent when an equal 
amount of importance is placed on the full functionality of the facility of interest across the time 
{t0, TRE}. This may arise in the case of some facility that operates at or near full capacity even in 
``normal'' conditions (i.e., when it is not dealing with the aftermath of a disaster), such as a critical 
bridge in a road network. 

The proposed metric assumes a similar functional form to the system-level resilience 
measurements provided in Equation 1 of Ghorbani-Renani et al., (2020) and Equation 8 of Zhang 
et al., (2021), which also incorporate a dynamic weighting component that accounts for the time-
dependent importance of infrastructure functionality. However, a crucial difference between these 
measurements and the metric proposed in this study is the manner in which relative importance 
is quantified. The  Ghorbani-Renani et al., (2020) and Zhang et al., (2021) approaches measure 
the importance of functionality in a given infrastructure facility at t relative to that of all other 
infrastructure facilities within the system or network of interest at the same time (i.e., ``inter-
infrastructure'' or ``facility-to-facility'' functionality importance; Almoghathawi & Barker, 2019; He 
& Cha, 2021). These approaches therefore reduce to a time-independent measurement 
analogous to R*, if only one individual facility is considered. On the other hand, R measures 
relative functionality importance in an ``intra-infrastructure'' sense, i.e., the importance of 
functionality in a given infrastructure facility at t is measured relative to the importance of the same 
facility at different times. In other words, the Ghorbani-Renani et al., (2020) and  Zhang et al., 
(2021) approaches are top-down in nature-  where the sets of weightings used across different 
infrastructure reflect the perspectives or rules of one high-level (or generic) decision maker in an 
autocratic process - whereas the R metric is inherently bottom-up, facilitating bespoke 
stakeholder priorities for each unique piece of infrastructure it is applied to. 

If necessary, R could be integrated explicitly into a system resilience quantification Rsys, 
combining the top-down and bottom-up approaches through a formulation such as Cimellaro et 
al., (2014):  

𝑅𝑠𝑦𝑠 = 
∑ 𝑅𝑛

𝑁
 (2) 

 

where N is the number of infrastructure (facilities) within the system of interest. Rn is the resilience 
of the nth facility in the system that could be expressed as an adapted version of R according to:  

𝑅𝑛 = 
∫ 𝑄(𝑡)𝑤𝑛(𝑡)𝑤𝑠𝑦𝑠,𝑛(𝑡)𝑑𝑡 

𝑇𝑅𝐸

𝑡0

∫ 𝑤𝑛(𝑡)𝑤𝑠𝑦𝑠,𝑛(𝑡)𝑑𝑡 
𝑇𝑅𝐸

𝑡0

 (3) 

 

where wsys,n(t) quantifies the nth facility's inter-infrastructure importance (0≤ wsys,n(t) ≤1), wn(t) is 
equivalent to w(t) in Equation 1, and all other variables are as previously defined. To avoid double 
counting in this case, it is important that wn(t) is defined independent of the facility's functional 
interdependencies across the considered system. 
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Case-study demonstration 

We provide a simple hypothetical case-study demonstration of R for three independent 
infrastructure facilities of interest:  a water supply service, an emergency shelter, and a school. 
We assume that the time of interest is between t0=0 and TRE=15 days after an ̀ `expected'' disaster 
(i.e., a disaster that is reasonably expected to occur once during the life of an urban system, which 
is typically set as a 50-year period; Poland, 2009). Hypothetical w(t) values for the three 
infrastructure, which are plotted in Figure 1 and provided in Table 1, are quantified assuming that 
stakeholders and their associated disaster resilience plans would: (1) consider full functionality of 
the emergency shelter to be critical at first, but this importance to decrease significantly over time 
to almost nothing at t=TRE ; (2) deem full functionality of the school to be insignificant at t0, but 
increase slowly over time to reach maximum importance at approximately t=40 days; and (3) 
assign little importance to full functionality of the water supply until t=10 days, which approximately 
corresponds to the duration of capacity in the backup water system. 

We specifically compare the value of R for three contrasting functionality trajectories (see Figure 
2) that provide the same value of R*, i.e.,  

𝑅∗ = 
∫ 𝑄(𝑡)𝑑𝑡

15

0

15
= 0.82 (4) 

Trajectory #1 linearly increases from 60% functionality at t=t0 to 100% functionality at t=13.6 days. 
Trajectory #3 involves a steeper functionality increase from a lower initial functionality level than 
trajectory #1 (5%), but reaches a plateau at only 90% functionality (from t=2.8 days).  Trajectory 
#2 remains constant at 82% functionality, independent of time.  The R values for each recovery 
trajectory (R#1 to R#3) and each facility are included in Table 1.  

Functionality trajectory #1 produces the highest R value for the water supply service. This result 
is explained by the fact that the trajectory provides the largest functionality (across the three 
examined trajectories) at the most important time for the water supply service to be operational 
(i.e., t≥10 days).  

Functionality trajectory #2 produces identical values of R=R* for each infrastructure facility, since 
it does not change dynamically. It leads to the highest R value for the emergency shelter and the 
lowest R value for the water supply service. This is because it provides adequate functionality in 
the period immediately after the disaster when the shelter is most required, but its functionality is 
outperformed by that of #1 and #3 when a fully functional water supply service is critical at a later 
stage.   

Functionality trajectory #3 provides the highest value of R for the school, since the trajectory 
aligns well with the increasing importance of school functionality over time. However, the 
trajectory produces the lowest R value for the emergency shelter, since it provides very little 
functionality in the immediate post-disaster period. Trajectory #3 results in identical R* values for 
both the water supply service and the school, which both have increasing functionality 
requirements over time. Finally, it is interesting to note that the value of R can change 
considerably between trajectories for the same infrastructure facility. For instance in the case of 
the emergency shelter, the R value for trajectory #2 is 26% larger than that for trajectory #3.   

In summary, the results indicate that the proposed resilience metric R can distinguish the best 
functionality trajectory for bespoke infrastructure stakeholder needs, among a set that produces 
the same level of resilience according to traditional measurements. It is important to note that the 
results are specific to the considered time period. For example, functionality trajectory #1 provides 
a higher R value for the school (=0.94) than trajectory #3 (R#3 =0.89) if TRE=30 days, given the 
superior functionality performance of trajectory #1 across the extended time period considered. 

 
Facility w(t) R#1 R#2 R#3 

Water {
0.1, if 𝑡 ≤ 10

1 otherwise
 0.93 0.82 0.88 

Shelter  
𝑒−

𝑡
4 

0.71 0.82 0.65 

School 
1 − 𝑒−

𝑡
4 

0.86 0.82 0.88 

Table 1. w(t) and resulting R values associated with the hypothetical case-study water supply 
service, emergency shelter, and school, computed for the three hypothetical Q(t).The best R 

value for each facility is denoted in bold. 
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Figure 1. Hypothetical w(t) for a water supply service, an emergency shelter, and a school. 

 

Figure 2. Three hypothetical functionality trajectories Q(t) with identical R* values. 

Conclusions  

This study has proposed a new metric for measuring post-disaster resilience that explicitly 
accounts for dynamic fluctuations in the criticality of infrastructure functionality across the post-
disaster period. The time-dependency of functionality importance is reflected in a dynamic 
weighting function that can be calibrated through relevant stakeholder feedback, facilitating an 
end-user oriented approach to flexible, context-specific resilience assessment. The metric is 
specifically designed for component-level applications, but could be easily extended to a system-
level context using some sort of weighted aggregation approach, as discussed in the text.    

We have demonstrated the metric using three hypothetical infrastructure components and 
associated stakeholder input on functionality importance, to identify the best (most resilient) 
functionality trajectory for each case, among a synthetic set of three. Each of the investigated 
functionality trajectories yield the same resilience value computed according to the traditional 
trianglular-based metric first introduced by Bruneau et al., (2003), despite having significantly 
different shapes. On the contrary, the proposed metric provides reasonably different values for 
the trajectories, in line with stakeholder functionality requirements. For instance, the highest 
resilience value is assigned to the trajectory with the most initial post-disaster capacity if 
stakeholders prioritize emergency-phase functionality (i.e., in the case of an emergency shelter), 
whereas trajectories with maximum functionality later on in the recovery process produce the 
highest resilience values if stakeholders do not perceive immediate functionality to be essential 
(i.e., in the case of a school or a water supply for which there are temporary backup resources).   
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The case study demonstration clearly indicates the ability of the metric to naturally distinguish 
diverse optimum recovery trajectories for different infrastructure, based on bottom-up underlying 
stakeholder needs rather than (at least exclusively) relying on top-down autocratic comparisons 
of functionality importance across different types of infrastructure. This is a useful feature of the 
proposed metric that could be leveraged to effectively coordinate the post-disaster recovery 
process across different types of infrastructure and various relevant stakeholders (e.g., civic 
agencies, utility infrastructure operators, and nongovernmental organizations) in a given urban 
system, in the face of limited recovery resources, investment, and time  (e.g., Choi et al., 2019; 
Olshansky et al., 2012; Pant et al., 2014). This type of coordination process would first involve 
designing a series of bespoke recovery trajectories that account for unavoidable constraints (e.g., 
construction worker shortages) across time. The proposed metric could then be used to 
appropriately assign each trajectory to a corresponding infrastructure facility, in accordance with 
the dynamic importance of its functionality.   

To conclude, the proposed metric for post-disaster resilience quantification across individual 
facilities possesses promising potential as an effective tool for facilitating informed stakeholder-
oriented decision making on post-disaster infrastructure recovery. Future work will focus on 
applying the metric to more realistic case studies and exploring its expansion to a more explicit 
consideration of system-level resilience.  
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