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ABSTRACT: Earthquake early warning (EEW) systems deliver actionable information seconds before 

the arrival of damaging seismic waves from an oncoming earthquake at a target site. Such information 

can potentially contribute to mitigating the negative impacts of earthquakes on the operation of 

infrastructure assets. EEW-related decision making should use risk-based protocols, and the evaluation 

of the benefits of EEW systems should address all the possible rupture scenarios that may affect a specific 

location (or asset). This paper addresses these requirements for EEW on railway bridge structures. We 

first develop a risk-informed EEW decision support system (DSS) for these assets, combining 

information on site-specific seismic hazard, time-dependent EEW algorithm outputs, probabilistic 

seismic demand modeling, damage and derailment fragilities, and seismic loss models. These 

components are integrated into a multi-criteria decision-making framework that accounts for diverse 

stakeholder perspectives on risk. We then propose an approach for quantifying the loss-mitigation 

benefits (i.e., effectiveness) of the EEW-DSS across all possible relevant rupture scenarios affecting a 

railway bridge, based on value of information theory and accounting for dynamic accuracy/lead-time 

trade-offs related to EEW performance. A multi-span reinforced concrete railway bridge in Northeastern 

Spain is adopted as a testbed to showcase the proposed EEW-DSS and investigate its benefits. The 

findings from the analysis shed light on the importance of risk-based, uncertainty-informed, and 

stakeholder-oriented decision making to the loss-mitigation effectiveness of EEW for a railway bridge. 

1. INTRODUCTION 

Earthquake early warning (EEW) systems and 

algorithms estimate the arrival of (damaging) 

earthquake-induced ground motions at a site with 

seconds to tens of seconds of advance notice. The 

information provided by EEW can trigger various 

rapid actions depending on the target audience 

and assets to be protected. Examples of these 

actions include i) “drop, cover, and hold on” 
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maneuvers by the public, preventing injuries (e.g., 

Wu and Kanamori 2008); ii) automated shutdown 

of gas supplies, avoiding fire following 

earthquake events; iii) slowing down trains, 

mitigating derailments (e.g., Strauss and Allen, 

2016). EEW can be configured to different 

hardware and software architectures and 

classified as either regional (Zuccolo et al., 2021), 

on-site (Colombelli et al., 2015), or hybrid 

(Iervolino et al., 2006) systems. For a 

comprehensive review of the recent state-of-the-

art in operational EEW systems worldwide, 

interested readers are referred to Cremen and 

Galasso (2020). 

EEW systems traditionally trigger alarms 

(and associated loss-mitigation actions) based on 

hazard-level information (Allen and Kanamori, 

2003). Such an approach excludes important 

knowledge pertaining to the seismic behavior of 

the built environment. To maximize the practical 

effectiveness of EEW, there is a need to unify the 

seismological computations of EEW systems (as 

well as the related uncertainties) with 

corresponding risk-based engineering-driven 

consequence predictions for infrastructure (e.g., 

Cremen et al., 2021a). To further facilitate well-

informed decision making for EEW, these 

predictions should be integrated into a multi-

criteria decision analysis approach that accounts 

for diverse stakeholder preferences towards 

different types of consequences that might occur 

(Le Guenan et al., 2016; Cremen and Galasso, 

2021b).  

The effectiveness of EEW systems is a 

relatively well explored topic in the literature, and 

is a critical issue given the uncertainties that exist 

at each stage in the underlying calculations (e.g., 

Minson et al., 2018, Wald, 2020, Cremen et al., 

2021c). Most investigations of EEW effectiveness 

have centered on their ability to estimate 

accurate/timely seismological or hazard-related 

parameters for single earthquake scenarios (e.g., 

Minson et al., 2017, Zuccolo et al., 2021). 

However, to provide insight into the long-term 

benefits of EEW for a specific infrastructure asset 

or urban system of interest, it is necessary to focus 

on the risk-based consequences associated with 

all possible relevant rupture scenarios that might 

affect them. The concept of value of information 

(VoI; Howard, 1966) can be leveraged to address 

this requirement (Cheng et al., 2014).  

 The VoI concept is based on the average 

value a stakeholder is willing to pay for more 

information to improve their decision making. 

VoI began to play an important part in civil 

infrastructure decision making with the 

pioneering works of Pozzi & Der Kiureghian 

(2011) and Thons & Faber (2013) on the VoI of 

structural health monitoring. An extensive review 

of VoI applications in civil engineering can be 

found in Zhang et al. (2021). In the context of 

EEW, VoI may be interpreted as the cost savings 

from the loss-mitigation measures triggered by 

the information from the EEW system.  

This study focuses on developing and 

assessing the effectiveness of a risk-based EEW 

decision-making approach (i.e., decision support 

system, DSS) for railway bridges, which have 

been largely overlooked in previous EEW studies. 

The potential benefits of EEW for this type of 

infrastructure is an important consideration, given 

the interconnected consequences that can result 

from their earthquake-induced damage, including 

train derailment and wider transportation network 

disruption and resulting socio-economic 

consequences. The proposed EEW DSS is based 

on the engineering-oriented multi-criteria 

decision-making approach to EEW introduced in 

Cremen and Galasso (2021). The VoI concept is 

then leveraged to investigate the benefits of the 

EEW-DSS in mitigating earthquake-related 

railway bridge losses (both direct and cascading).  

2. METHODOLOGY  

This section presents the proposed EEW DSS and 

an approach to assess its effectiveness for a single 

railway bridge. Note that only an outline 

description of the methodology is provided in this 

paper (e.g., equations are omitted) due to space 

constraints. A more detailed account of the 

procedure is provided elsewhere by the authors 

(Ozer et al., 2023).  
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2.1. EEW DSS  

The proposed EEW DSS comprises five main 

calculation components, outlined in the following 

subsections (see also Figure 1). In general terms, 

the methodology consists of a performance-based 

earthquake early warning procedure for 

estimating real-time EEW-related losses at the 

bridge (induced by train derailment). The 

procedure is integrated within a multi-criteria 

decision-making framework to account for 

diverse stakeholder priorities on seismic risk.  

2.1.1. Step 1: Real-time Probabilistic Seismic 

Hazard Analysis (RTPSHA) 

The first step of the methodology is a real-time 

adaptation of Cornell’s (1968) probabilistic 

seismic hazard analysis formulation, following 

the approach proposed by Iervolino et al. (2006). 

Based on time-dependent seismic network 

measurements and associated early warning 

parameters (collectively denoted as d), 

probabilistic estimates of the incoming 

earthquake’s magnitude and source-to-site 

distance can be determined in real time. 

Appropriate ground-motion models (GMMs) can 

then be used to translate these uncertain source 

parameter estimates into a time-dependent 

distribution of site-specific ground-shaking 

intensities associated with the incoming event 

𝑓(𝑖𝑚|𝒅). The exact intensity measures adopted 

depend on the probabilistic seismic demand 

model to be developed (details to follow).  

2.1.2. Step 2: Probabilistic Seismic Demand 

Modeling 

The relationship between the ground-motion 

intensity measure output from the RTPSHA 

process and engineering demand parameters 

(EDPs) for the railway bridge 𝑓(𝒆𝒅𝒑|𝑖𝑚)  is 

established through cloud analysis (Bazurro et al., 

1998). The EDPs included in the model depend on 

how derailment is defined (details to follow).  

2.1.3. Step 3: Derailment Analysis 

Train derailment is interpreted in terms of EDPs 

exceeding designated thresholds. Three modes of 

train derailment on the bridge are considered: i) 

derailment due to transient vibratory motions of 

the bridge; ii) derailment due to permanent 

deformations on the bridge caused by structural 

damage; and iii) derailment due to collapse of the 

bridge. Fragility curves are developed to quantify 

the probability of the xth mode of derailment for 

the ground-shaking intensity measure output from 

the RTPSHA 𝑝(𝐷𝑥|𝑖𝑚) , using Monte Carlo 

simulations to first determine the probability of 

derailment occurrence as a function of EDPs.  

2.1.4. Step 4: Consequence Modeling 

This component of the methodology computes the 

real-time expected consequences associated with 

implementing (A) or not (�̅�) an EEW-triggered 

slow-down of trains approaching the railway 

bridge for an incoming earthquake 𝐸(𝐶𝑗
𝐴|𝒅) , 

leveraging the derailment fragilities developed as 

well as time-dependent information on train 

locations, speed, deceleration ability, and the 

amount of EEW lead time available. Only 

derailment-related consequences are considered 

in this study; consequences associated with 

structural damage (e.g., repair cost) are ignored in 

this case, given that they cannot be reduced 

through EEW. The examined consequences are 

expressed in the form of downtime hours and 

casualties. 

2.1.5. Step 5:Multi-Criteria Decision-Making 

This component of the methodology accounts for 

stakeholders’ preferences (𝑤𝑗) towards each type 

of consequence examined as well as the time-

dependent expected magnitude of each 

consequence 𝐸(𝐶𝑗
𝐴|𝒅), to determine the real-time 

optimal decision to take (𝐴𝑜𝑝𝑡, i.e., trigger or not 

a slow-down of trains). The Technique for Order 

Preference by Similarity to Ideal Solution method 

(TOPSIS; Yoon and Hwang, 1995) is used for 

decision evaluation, in line with Cremen and 

Galasso (2021). This approach deems the best 

decision to be the one that optimizes a trade-off 

between the best and worst outcomes (where each 

outcome corresponds to a consequence weighted 

in line with stakeholder preferences).  

 



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14 

Dublin, Ireland, July 9-13, 2023 

 4 

 
Figure 1: Workflow of the proposed EEW DSS.  

2.2. Value of Information Assessment 

Framework 

The concept of VoI assesses the beneficial 

contributions of the EEW-DSS in terms of 

minimizing the stakeholder-weighted 

consequences. Two time-dependent VoI metrics 

are proposed to express i) the value of taking the 

optimal action determined by the EEW-DSS 

relative to the case of having no information and 

taking no action; ii) the value of taking the optimal 

action based on the imperfect (uncertain) 

information provided by the EEW system relative 

to the ideal case of taking the optimal action based 

on perfect magnitude and source-to-site distance 

information for the incoming event. These metrics 

are quantified for all possible earthquake 

scenarios affecting the railway bridge (above a 

minimum magnitude threshold), and the final 

assessment of EEW effectiveness is based on the 

average values of each metric.  

3. CASE-STUDY APPLICATION 

This section demonstrates the development and 

evaluation of an EEW-DSS for Mugo Viaducto 

del Rio, a testbed multi-span railway bridge in 

Northeastern Spain (see Figure 2). The 

reinforced/prestressed concrete bridge consists of 

a total span of approximately 700 m and rests on 

11 bridge piers that are assumed to consist of 

rectangular hollow sections. Characteristic bridge 

features are retrieved from Manterola Armisen et 

al. (2008).  

The bridge is located in a seismically active 

zone, and the surrounding region is instrumented 

with a network of seismometers (see Figure 3). 

One thousand stochastic earthquake scenarios are 

generated by sampling events from the seven 

seismogenic sources surrounding the bridge, 

using corresponding Gutenberg-Richter 

distribution parameters from the Seismic Hazard 

Harmonization in Europe (SHARE) project’s area 

source model (Giardini et al. 2013; Woessner et 

al., 2013). In this case, the intensity measure of 

interest is the spectral displacement at the 

fundamental period of the bridge (1.03 s). Five 

hundred ground-shaking intensity values for each 

event are sampled at the bridge’s location, using 

the Akkar et al. (2014) GMM for Europe. These 

values correspond to the “perfect information” 

case discussed in Section 2.2. 

3.1. Steps 1 to 3  

RTPSHA is simulated for each event, using a 

dynamic degree of information (d) available in 

real-time from between n=1 and n=34 triggered 

seismic stations located near the site, according to 

the following procedure: (1) Determine the real-

time magnitude probability distribution from the 

Allen and Kanamori (2003) EEW magnitude-

scaling relationship in combination with the 

Bayesian formulation proposed by Iervolino et al. 

(2009), and neglect EEW-related location 

estimation uncertainty; and (2) Sample five 

hundred ground-shaking intensity estimates from 

the Akkar et al. (2014) GMM and the magnitude 

distribution obtained in (1).  

A nonlinear finite element model is 

developed for the bridge using OpenSees. The 

probabilistic seismic demand model is generated 

based on the ground motion dataset used in 

Tubaldi et al. (2022). The model expresses the 

relationship between acceleration and transient 

displacement EDPs and the geometric mean of 

spectral displacement at the bridge’s fundamental 

period Sdgeom. Derailment fragility curves are 

finally expressed in terms of the spectral 

displacement intensity measure. More details on 

Steps 1 to 3 are omitted for brevity but can be 

found in Ozer et al. (2023).  



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14 

Dublin, Ireland, July 9-13, 2023 

 5 

 
Figure 2: Multi-span railway bridge in Spain. 
 

 
Figure 3: Location of the testbed bridge and the 

surrounding seismic network.  

3.2. Steps 4 to 5  

Expected casualty (I: Individuals) and downtime 

(H: Hours) consequences are computed for each 

earthquake event, in the case of triggering an 

EEW-related slow-down of trains or not, given d 

from n stations. These consequences are also 

calculated for both possible actions assuming 

perfect information on the incoming event’s 

magnitude (M*) and source-to-site distance (R*). 

Figure 4 provides example expected values, E(I) 

and E(H), for a relatively large earthquake event 

scenario (𝑀∗ = 6.7, 𝑅∗ = 57 𝑘𝑚 ). Assumptions 

on train-related parameters and other information 

related to the consequence calculations are 

detailed in Ozer et al. (2023).  

It can be seen in Figure 4 that the expected 

consequences vary according to the number of 

stations triggered and, therefore, the underlying 

accuracy of the magnitude distribution, as 

anticipated. As n increases: (1) the expected 

consequences dependent on EEW information d 

become closer to the true values dependent on M* 

and R*, due to greater accuracy in the EEW-

related magnitude distribution; and (2) the 

expected consequences for A increase, as the 

decreasing lead-time available diminishes the 

loss-mitigation effects of triggering a slow-down. 

Various hypothetical stakeholder preferences 

towards casualties and downtime ( 𝑤𝑗)  are 

investigated for the final multi-criteria decision-

making step, using the combination of weights 

provided in Table 1. These weights reflect a 

gradual transition from casualty-dominated (Case 

1) to downtime-dominated (Case 4) risk 

perspectives. 

Figure 5 presents the optimal decision for 

each combination of weights and all rupture 

scenarios examined, based on the expected 

consequences calculated according to d at the time 

when one station is triggered and those calculated 

with perfect information {𝑀∗, 𝑅∗}. The results are 

expressed in terms of E(Sdgeom|M*,R*), the mean 

value of the spectral displacement intensity 

measure according to perfect information.  

               
Figure 4: Expected consequences for an example earthquake scenario, n: no of stations. All variables 

are the same as previously defined. For instance,, 𝐸(𝐼�̅�|𝒅) denotes the expected casualties if no action 

is taken, conditional on real-time information available for the earthquake.
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It is seen in Figure 5 that the optimal 

decision is always to take action if only casualties 

are considered important to mitigate (Case 1). 

Perspectives that place positive varying emphasis 

on downtime (Cases 2 to 4) result in an optimal 

decision of taking no action for d, but for some 

scenarios would result in the opposite optimal 

decision if perfect information on the incoming 

earthquakes was known.  

 
Table 1. Hypothetical stakeholder 𝑤𝑗  values investigated. 

 

Criteria 

Stakeholder cases 

1 2 3 4 

Casualty 1. 0.67 0.33 0. 

Downtime 0. 0.33 0.67 1. 

 

 

 

 
Figure 5: Action (trigger a slow-down of the 

train) vs no action decisions for different 

stakeholder risk preferences (Upper row: Case 1-

2, Lower row: Case 3-4).  

 

Table 2 presents example results of the first 

VoI assessment metric, assuming n=8 for the 

EEW system and using the stakeholder preference 

cases previously introduced. When only 

casualties are considered (Case 1) or prioritized 

over downtime (Case 2), the optimal action is 

often to trigger the EEW-related slow-down of 

trains, which: (1) mitigates casualties relative to 

having no system, providing a positive expected 

VoI for I; but (2) creates unnecessary downtime, 

leading to a negative expected VoI for H. The 

optimal action (given d) is not to trigger EEW for 

Case 3 and Case 4, so there is no expected value 

of information associated with having the EEW-

DSS in these cases.  

 
Table 2. Expected VoI of the proposed EEW-DSS relative to 

not having it. 
 

Criteria 

Value of information per each case 

1 2 3 4 

Casualty 0.3201 0.0911 0. 0. 

Downtime -2.6327 -0.0048 0. 0. 

 

Table 3 presents example results of the second 

VoI assessment metric, using n=8 for the EEW 

system and the stakeholder preference cases 

previously introduced. The results show that there 

is no gain from perfect early warning estimations 

if only casualties are considered (Case 1), since 

the optimal decision for both perfect and 

imperfect information is to trigger the EEW 

system in this case. The VoI provided by perfect 

early warning information in the other cases is due 

to deviations in the optimal decisions produced. 

Since the optimal decision tends towards taking 

no action as higher priority is placed on mitigating 

downtime, regardless of the level of information 

available, the expected value of information for H 

is minimal. The expected VoI for I in Cases 3 and 

4 underline the benefits of avoiding missed alarms 

with perfect information. Note that more detailed 

findings of this study can be found in Ozer et al. 

(2023). 

 
Table 3. Expected VoI of an EEW-DSS based on perfect 

information relative to the imperfect one. 
 

Criteria 

Value of information per each case 

1 2 3 4 

Casualty 0. 0.0477 0.1090 0.0823 

Downtime 0. 0.0028 0.0002 0.0005 

4. CONCLUSIONS 

In this paper an EEW-DSS for mitigating seismic 

risk at railway bridges wass developed and its 

benefits were assessed. The paper leveraged an 

engineering-oriented approach to creating the 

EEW-DSS and integrated multi-criteria decision-

making theory to account for varying stakeholder 

priorities towards different types of seismic risk. 

The benefits of the proposed EEW-DSS were 

quantified in terms of bespoke VoI metrics that 

accounted for the risk preferences input to the 

multi-criteria decision-making component, as 
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well as all possible earthquake scenarios that may 

affect bridge-related decisions. Key findings are: 

• Optimal decisions produced by the EEW-DSS 

depend on stakeholder prioritization of 

different consequence types, as well as the 

accuracy of the underlying source-parameter 

estimates and the lead time available for risk-

reduction efforts. 

• The number of triggered stations used in the 

EEW-DSS has competing effects on its 

effectiveness. Increasingly accurate source-

parameter predictions yielded by larger 

amounts of recording station data result in 

more accurate optimal decisions but also 

decrease the effectiveness of EEW due to the 

amplified risks of train derailment as lead time 

shortens. The overall effectiveness of the 

EEW-DSS depends on a combination of these 

two factors. 

• Findings of the case study indicate that there 

can be no (or even negative) expected VoI 

from an EEW-DSS system for minimizing 

downtime consequences. This is because no 

action is often the optimal decision for the low 

ground-shaking values that dominate the 

seismic hazard of the case-study area, for 

which issuing an EEW alarm would only 

unnecessarily trigger a disruptive bridge 

inspection.  

• The benefits of having perfect source-

parameter information in the EEW-DSS can 

depend on the risk priorities of stakeholders. 

The case study’s findings imply that 

stakeholders who only care about minimizing 

casualties would experience little to no 

marginal benefits in having a perfect EEW-

DSS, since the more uncertain loss estimates 

obtained with the raw EEW parameters still 

lead to the correct optimal decision (i.e., 

trigger the alarm). On the other hand, 

stakeholders that heavily prioritize the 

minimization of downtime losses do benefit 

from using perfect information since, in 

particular, it can eliminate some missed alarm 

opportunities associated with the more 

uncertain source-parameter estimates.  
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