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Abstract. We introduce the control conditions for 0th order pseudodifferential op-

erators P whose real parts satisfy the Morse–Smale dynamical condition. We obtain

microlocal control estimates under the control conditions. As a result, we show that

there are no singular profiles in the solution to the evolution equation (i∂t−P)u = f

when P has a damping term that satisfies the control condition and f ∈ C∞. This is

motivated by the study of a microlocal model for the damped internal waves.

1. Introduction

Zeroth order pseudodifferential operators are used as mathematical models for in-

ternal waves since the work of Colin de Verdière–Saint-Raymond [CdVSR20]. When

the operator is self-adjoint and the Hamiltonian flow of its principal symbol satis-

fies the Morse–Smale condition, [CdVSR20] proved that the solution to the evolution

equation has singular concentration on the attractive Lagrangians for the Hamilton-

ian flow. Such concentration provides a microlocal interpretation of the formation of

attractors in internal waves – see [MBSL97], [Bro16] for the physics literature. Using

tools from scattering theory, in particular the radial estimates introduced by Mel-

rose [Mel95], Dyatlov–Zworski [DZ19b] provided an alternative proof for the singular

concentration of the solutions with relaxed conditions on the operators. Much work

has been done on 0th order operators since then: Colin de Verdière [CdV20] stud-

ied 0th order operators in high dimensions and with weaker dynamical assumptions;

Wang [Wan19] studied the scattering matrix for 0th order operators, which is analo-

gous to the scattering matrix for the Schrödinger operators in the Euclidean spaces;

Galkowski–Zworski [GZ22] studied the resonances for 0th order operators via viscos-

ity limits; Wang [Wan22] studied the dynamics of resonances for 0th order operators,

in particular, a Fermi golden rule for embedded eigenvalues is proved. Tao [Tao19]

studied the spectral theory for 0th order operators on the circle and found embedded

eigenvalues for such operators. Almonacid–Nigam [AN24] obtained numerical results

for both the evolution equations and viscosity limits of eigenvalues. The recent work of

Dyatlov–Wang–Zworski [DWZ21] proved the formation of internal wave attractors in

two-dimensional domains. We also mention that there are other motivation to study

0th order operators: for example, Ralston [Ral73] considered the Poincaré problem and
1
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investigated the spectrum and the eigenvalues of a 0th order operator, in the study of

rotating fluids,

Motivated by studying the damping of internal wave attractors [Bec19, BBSM18,

BM16], we consider a microlocal model for the damped internal waves in this paper.

More precisely, for a closed smooth surface M , we consider non-self-adjoint 0th order

pseudodifferential operators P = P − iχ ∈ Ψ0(M), where Ψ0(M) is the set of 0th

order pseudodifferential operators whose symbols have asymptotic expansion with ho-

mogeneous symbols, P ∈ Ψ0(M) is self-adjoint and χ ∈ C∞(M), χ ≥ 0. We assume

P satisfies the Morse–Smale condition as in [CdVSR20, DZ19b], hence it models the

internal waves without damping. The smooth function χ, which is also in Ψ0(M) as a

multiplication operator, is now considered as the “damping” term. We are interested in

the evolution problem for P. In particular, we show that if χ satisfies certain “control

condition”, then the internal wave attractors disappear and the solution stays bounded

in L2: see Theorem 2.

As indicated in the previous paragraph, the main tools we use to study the damping

problem are resolvent estimates, in the form of microlocal control estimates for 0th

order operators: see Theorem 1. Since the singularity of solutions to (P − ω)u = 0

propagates along the bicharacteristics of Reσ(P) (where the direction of propagation

is determined by the sign of Imσ(P)), one can control the solution from a subset

K of the cotangent bundle T ∗M \ 0, assuming T ∗M \ 0 can be covered by finitely

many images of the subset K propagated in finite time. When the Hamiltonian flow

of Reσ(P) satisfies the Morse–Smale condition, and we assume the subset K is small

and located on the attractive (or repulsive) limit cycles, the repulsive (or attractive,

respectively) limit cycles cannot be covered in the above-mentioned way. In these

cases, we will use radial estimates from scattering theory [Mel95] – see [HMV04, VD13,

DD13, Dya12, HV18, DZ16] for some of the recent developments. We also mention that

since the Morse–Smale condition is only stable under small perturbations, we can only

obtain the microlocal control for a small range of the spectral parameters. We refer to

[Lio88, Mil05, BZ04] for introductions to control theory and resolvent estimates.

Resolvent estimates often imply stability results for damped equations, especially the

damped wave equation. Classical results [RT74, BLR92, BG97] in the damped wave

equation, together with recent developments [BJ16, Wan20, BG20, KK22, Kle22b]

in the settings of non-compact manifolds, singular, anisotropic, and time-dependent

damping, implies that there is exponential energy decay without loss of derivatives if

and only if the geometric control condition is satisfied: the geometric control condition

is a strong dynamical assumption that every geodesic enters the damped region in

finite time. Moreover, the solution will be sufficiently smooth if both the damping

and the initial data are sufficiently smooth. Even if there are, for example, periodic

geodesics or other attracting or repulsing invariant sets which are outside the control
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regions, solutions are still smooth near the attractors, as in the vast control theory

and damped wave literature [CdVP94, Chr07, Chr10, ALN14, CSVW14, BC15, LL17,

Wun17, Sta17, Kle19, DK20, Wan21a, Wan21b, Kle22a, Sun22, KW22], inexhaustively

listed here.

In stark contrast, in this paper we study solutions to evolution equations of zeroth

order, for which solutions near attractors exhibit some blow-up. The goal of this work

is to show if damping is introduced near the attractors, it stabilizes the solutions.

Note that in this case, the control conditions we impose are weaker than the geometric

control condition.

This problem is new and requires new techniques. For the usual damped wave

problem, the coercive nature of −∆ gives rise to a compact resolvent. Using the

analytic Fredholm theory, this implies the damped wave resolvent has a meromorphic

extension to a neighbourhood of the real axis. In particular, the poles of the damped

wave resolvent are of finite order and discrete, hence a contour deformation in the

inverse Fourier transform allows one to conclude the exponential decay of energy.

On the other hand, for the zeroth order pseudodifferential operators studied in this

paper, the resolvent is not compact in the L2 space, so the analytic Fredholm theory

does not apply. In particular, a limiting absorption principle is non-trivial. In fact, as

one can see in the second remark after Theorem 2, the unique continuation principle

can fail for zeroth order operators even with a spatial damping term.

1.1. Assumptions. LetM be a compact surface without boundary. Let P = P+iQ ∈
Ψ0(M), where P , Q are self-adjoint operators with respect to some density dm on M :

P,Q ∈ Ψ0(M), P ∗ = P, Q∗ = Q on L2(M,dm).

Here Ψ0(M) is the space of 0th order polyhomogeneous pseudodifferential operators

defined in [DZ19a, Definition E.12] with h = 1. The operators P , Q are called the real

and the imaginary parts of P respectively, and we write

ReP :=
P+P∗

2
= P, ImP :=

P−P∗

2i
= Q.

Let β be defined as

β : R+ × (T ∗M \ 0) → T ∗M \ 0, β(r, x, ξ) := (x, rξ).

β gives an action of R+ on T ∗M \ 0. We denote the quotient space and the quotient

map by

∂T ∗M := (T ∗M \ 0)/R+, κ : T ∗M \ 0 → ∂T ∗M.

∂T ∗M is a 3-dimensional orientable smooth manifold.
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Let p, q ∈ S0(T ∗M \ 0;R) be the principal symbols of P , Q. Then p, q are homoge-

neous of order 0. We assume that

0 is a regular value of p. (1.1)

In other words, dp|p−1(0) ̸= 0. This implies that the characteristic variety p−1(0) is a

smooth conic submanifold of T ∗M \ 0. Let Hp be the Hamiltonian vector field

Hp := ⟨∂ξp, ∂x⟩ − ⟨∂xp, ∂ξ⟩.

Then |ξ|Hp is a smooth vector field on p−1(0) that commutes with β and is homogeneous

of order 0. We now define

S := κ(p−1(0)), X := κ∗(|ξ|Hp).

X is a smooth vector field on S. We assume that

φt := etX is a Morse–Smale flow with no fixed points on S. (1.2)

Recall that (1.2) means that (see for instance [NZ99, Definition 5.1.1])

(1) φt has finitely many closed hyperbolic limit cycles;

(2) every trajectory of φt that is not a limit cycle has unique limit cycles as its α, ω-limit

sets.

We denote the repulsive and attractive limit cycles by γ−, γ+ respectively and Λ± :=

κ−1(γ±). Then Λ± are conic Lagrangian submanifolds of T ∗M \ 0. [DZ19b, Lemma

2.1] showed that γ± are the radial source (−) and the radial sink (+) respectively, for

the Hamiltonian flow of |ξ|p, in the sense of [DZ19a, Definition E.50].

Remark. Since regular values and the Morse–Smale property are stable under small

perturbations to the spectral parameter, if (1.1), (1.2) are satisfied, then there exists

δ > 0 such that for every ω ∈ [−δ, δ], ω is a regular value of p and (1.2) is satisfied by

S(ω) := κ(p−1(ω)), X(ω) := κ∗(|ξ|Hp).

Moreover, let γ±(ω) be the limit cycles, Λ±(ω) := κ−1(γ±(ω)), then γ±(ω) are the radial

source (−) and the radial sink (+) for the Hamiltonian flow of |ξ|(p−ω). Moreover, if

K ⊂ T ∗M \0 satisfies (CC±) for P, then it also satisfies (CC±) for P−ω, ω ∈ [−δ, δ].
For ω ∈ C, Reω ∈ [−δ, δ], Λ±(ω) is understood as Λ±(Reω).

We also assume

q ≤ 0 on T ∗M \ 0. (1.3)

In view of propagation of singularities [DZ19a, Theorem E.47], (1.3) implies that the

singularities propagate backwards along the Hamiltonian flow. Let α ∈ C∞(T ∗M ; [0, 1])

such that suppα ⊂ {|ξ| ≥ 1}, supp(1−α) ⊂ {|ξ| ≤ 2}. Let q−1 be the principal symbol

of Q−Op(αq) ∈ Ψ−1(M):

q−1 := σ(Q−Op(αq)).

Then q−1 is homogeneous of order −1.
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γ− γ+

X+

(a) CC+

γ−

X−

γ+

(b) CC−

Figure 1. Illustration of the control conditions. γ+ is the attractive

limit cycle and γ− is the repulsive limit cycle, see §1.1. The labels X±
represent the radial compactification of the elliptic sets of X±.

We now introduce the control conditions :

Definition 1.1. For a conic set K ⊂ T ∗M \ 0, we say that K satisfies the forward

(backward) control condition (CC±, + for forward, − for backward), if there exists a

conic open subset Ω ⊂ T ∗M \ 0, such that Ω ⊂ K and every connected component of

Λ+ (or Λ− respectively) intersects Ω.

See Figures 1(a) and 1(b) for illustrations of the control conditions.

1.2. Main results. Assume there is a conic subset of T ∗M \0 that satisfies the control
condition (CC±). In the corresponding Sobolev spaces, we can show the solution u to

the equation

(P− ω)u = f ∈ C∞(M)

can be microlocally controlled by its own part on this conic set, uniformly for ω close

to 0. More precisely:

Theorem 1. Suppose P ∈ Ψ0(M) satisfies the conditions (1.1), (1.2), (1.3) and q−1,

Hp, Λ±(ω) are as in §1.1. Let (CC±) be as in Definition 1.1. Then the following are

true:

1. Suppose X+ ∈ Ψ0(M) and ell(X+) satisfies (CC+). Then there exists δ > 0 such

that for any

|Reω| ≤ δ, Imω ≥ 0, s > sup
Λ−(ω)

(
− |ξ|q−1

Hp|ξ|

)
− 1

2
, N ∈ R, (1.4)

there exists C > 0 independent of ω such that for any u ∈ C∞(M),

∥u∥Hs ≤ C∥X+u∥Hs + C∥(P− ω)u∥Hs+1 + C∥u∥H−N . (1.5)
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2. Suppose X− ∈ Ψ0(M) and ell(X−) satisfies (CC-). Then there exists δ > 0 such

that for any

|Reω| ≤ δ, Imω ≥ 0, s < inf
Λ+(ω)

(
− |ξ|q−1

Hp|ξ|

)
− 1

2
, N ∈ R, (1.6)

there exists C > 0 independent of ω such that for any u ∈ C∞(M),

∥u∥Hs ≤ C∥X−u∥Hs + C∥(P− ω)u∥Hs+1 + C∥u∥H−N . (1.7)

Remarks. 1. The regularity thresholds in (1.4), (1.6) arise naturally from the radial

estimates, see [DZ19a, Theorem E.52, Theorem E.54] for instance. When P takes

the specific form (1.8), we have q−1 = 0 and the thresholds in (1.4), (1.6) are simply

s > −1
2
, s < −1

2
respectively.

2. Constants in the proofs of Theorem 1 – including constants in the proofs of Lemma

2.2 and Lemma 2.1 – are all independent of ω.

As an application of Theorem 1, we study a microlocal model for the damped internal

wave and show the elimination of the singular profile. More precisely, we put

P = P − iχ, χ ∈ C∞(M ;R≥0), (1.8)

and we are interested in the long time behavior of the solution to the equation

(i∂t −P)u(t, x) = f(x), u(0, x) = 0. (1.9)

If χ ≡ 0 and 0 /∈ Specpp(P ), then by the main theorem of [DZ19b]

u(t) = u∞ + b(t) + ϵ(t),

u∞ ∈ I0(M ; Λ+(0)), ∥b(t)∥L2 ≤ C, ∥ϵ(t)∥H−1/2− → 0.
(1.10)

Thus the solution has a singular profile u∞, concentrating on the attracting Lagrangian

submanifolds. Figure 2(a) exhibits the concentration.

The following theorem shows that if 0 /∈ Specpp(P) and χ is nonzero on the projection

of every connected component of the attracting Lagrangian to the base manifold, then

the solution to (1.9) does not have singular profile: see Figure 2(c).

Theorem 2. Let P be as in (1.8) and satisfy (1.1), (1.2), and 0 /∈ Specpp(P). Suppose

T ∗(suppχ) \ 0 satisfies (CC+) and u solves (1.9). Then there exists C > 0 that does

not depend on t such that

∥u(t)∥L2(M) ≤ C, t > 0.

Remarks. 1. The assumption 0 /∈ Specpp(P) is equivalent (see the proof of Lemma

3.1) to the following form of the unique continuation principle for P = Re(P):

Pu = 0, u|suppχ = 0 ⇒ u ≡ 0. (1.11)
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(a) Undamped wave (b) Partially damped wave (c) Damped wave

Figure 2. Numerical illustration of solutions to (1.9) with P , f given

in §1.3 and χ = χj, j = 0, 1, 2. (a) χ0 = 0. The undamped wave

concentrates at the limit cycles and the L2 norm of the solution blows

up. (b) χ1(x) =
1
2
e−5(x1−π/2)2 . χ1 is numerically localized near x1 = π

2

and negligible at x1 = −π
2
. As a result, the singular profile at x1 = π

2

disappears but there is still a singular profile at x1 = −π
2
. (c) χ2(x1, x2) =

χ1(x1, x2)+χ1(x1+π, x2). The damping is localized on both limit cycles

and the solution stays bounded in L2.

In the case where M = T2 := R2/(2πZ2) and the full symbol of P admits bounded

analytic continuation p(z, ζ) from T ∗T2 to{
(z, ζ) ∈ C2/(2πZ2)| | Im z| ≤ a1, | Im ζ| ≤ a2⟨Re ζ⟩

}
,

[Wan22, Proposition 3.1] proved the analyticity of the eigenfunctions u of P . Hence

(1.11) is satisfied in this case.

2. For a general P, (1.11) can fail. In fact, let P = P − iχ ∈ Ψ0(M), χ ∈ C∞(M) such

that P satisfies conditions in §1.1 and M \ suppχ ̸= ∅. Then for any v ∈ C∞(M ;R),
suppχ ∩ supp v = ∅, let ΠPv be the orthogonal projection on to CPv. Put

P̃ := (P − ΠPvP )− iχ,

Since ΠPvP ∈ Ψ−∞(M), we know P̃ satisfies conditions in §1.1 yet P̃v = 0.

3. One can also consider the case where some of the attracting Lagrangians are damped

while the others are not. In this case, if Γ+ is a connected component of Λ+(0) and

T ∗(suppχ) \ 0 contains a conic open subset that intersects Γ, then u is bounded near

Γ+. If Γ+ ∩ T ∗(suppχ) \ 0 = ∅ instead, then u can have singular profiles near Γ+ – see

Figure 2(b).

1.3. Examples. 1. Consider M = T2,

P = P − iχ ∈ Ψ0(T2), P := ⟨D⟩−1Dx2 − a cosx1,

a > 0, a ̸= 1, χ ∈ C∞(T2), χ ≥ 0.
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P has the principal symbol p(x, ξ) = |ξ|−1ξ2 − a cosx1. The radially compactified

characteristic variety S is a disjoint union of two tori. Let Πx : T ∗T2 → T2 be the

projection of (x, ξ) to x. If 0 < a < 1, then S covers T2, meaning that Πx : S → T2 is

onto; if a > 1, then S does not cover T2. On p−1(0) ⊂ T ∗T2 \ 0, we have

H|ξ|p = |ξ|Hp = −ξ1ξ2
|ξ|2

∂x1 +
ξ21
|ξ|2

∂x2 − a(sinx1)|ξ|∂ξ1 .

We now introduce the coordinates (ρ, θ) ∈ R+ × S1 on T ∗T2 \ 0 such that ξ1 = ρ cos θ,

ξ2 = ρ sin θ and identify ∂T ∗T2 with the cosphere bundle S∗T2. Then

S = {(x1, x2, 1, θ)| sin θ = a cosx1, x ∈ T2, θ ∈ S1}, X = − sin θ cos θ∂x1+cos2 θ∂x2+a sinx1 sin θ∂θ.

Now let

γ− :=
{
(π
2
, x2, 1, 0)| x2 ∈ S1

}
∪
{
(−π

2
, x2, 1, π)| x2 ∈ S1

}
⊂ ∂T ∗T2,

γ+ :=
{
(π
2
, x2, 1, π)| x2 ∈ S1

}
∪
{
(−π

2
, x2, 1, 0)| x2 ∈ S1

}
⊂ ∂T ∗T2.

Then we have X|γ± = ∂x2 . One can see now that γ± are closed orbits of etX. On S,
near γ±, the coefficient of ∂θ is ±

√
a2 − sin2 θ sin θ where the signs ± are determined

by the value of x1. From here we see that γ− are repulsive cycles and γ+ are attractive

cycles. Now by definitions of Λ±(0), we know H|ξ|p has the attractive and the repulsive

Lagrangian submanifolds

Λ−(0) = κ−1(γ−) =
{
(±π

2
, x2, ξ1, 0)| x2 ∈ S1, ±ξ1 > 0

}
,

Λ+(0) = κ−1(γ+) =
{
(±π

2
, x2, ξ1, 0)| x2 ∈ S1, ±ξ1 < 0

}
.

In Figure 2, we studied the numerical solution to (1.9) with

a = 1
2
, f(x) = −5(e−3((x1+0.9)2+(x2+0.8)2) + e−3((x1−0.9)2+(x2−0.8)2))e2ix1+ix2

and

χ0 ≡ 0, χ1(x) =
1
2
e−5(x1−π/2)2 , χ2(x) =

1
2
e−5(x1−π/2)2 + 1

2
e−5(x1+π/2)2

for Figure 2(a)–2(c) respectively. We use MATLAB to produce the numerical solutions

and we refer to [AN24] for the numerical schemes used here.

2. In (1.9), if P = P − i, f ∈ C∞(M), then from the spectral theory we know

u(t) = (P − i)−1(e−t−itP − I)f(x).

Since e−itP preserves the L2 norm and P is of 0th order, we know u ∈ C∞([0,∞);L2(M))

and

∥u(t)∥L2 ≤ (1 + e−t)∥f∥L2 .

Moreover we have

lim
t→∞

u(t) = −P−1f(x) in L2(M).

If, however, the damping term −i is removed in this example and P = P , then one

can only claim that u(t) ∈ H− 1
2
−(M) by (1.10).
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Λ− Λ+

X+

B−

A−

φt

Xl

(a) Covers in Lemma 2.1

Λ−

X−

Λ+Xl

A+

B+

B+

φt

(b) Covers in Lemma 2.2

Figure 3. Illustration of the covers constructed in Lemma 2.1 and

Lemma 2.2. The labels should be understood as the radial compacti-

fications of the elliptic sets of the corresponding operators.

Acknowledgement. The authors are thankful to Jared Wunsch and Maciej Zworski

for their insightful comments on the failure of unique continuation for general zeroth

order operators. The authors are grateful to two anonymous referees for kindly reading

this manuscript and providing many valuable remarks. RPTW is partially supported

by NSF grant DMS-2054424.

2. Microlocal control estimates

In this section, we prove Theorem 1. We always assume ω = λ+ iϵ with λ ∈ [−δ, δ]
where δ satisfies the conditions in Remark in §1.1 and ϵ > 0. We remark that results

in this section are uniform in ω by the stability of the Morse–Smale flow discussed in

Remark in §1.1.

Let ψt := etH|ξ|(p−λ) : T ∗M \ 0 → T ∗M \ 0 be the Hamiltonian flow of |ξ|(p − λ) on

T ∗M \ 0.
To state the following lemmata for covering T ∗M \ 0 by the images of elliptic sets

of operators under propagation, we recall that for a pseudodifferential operator A ∈
Ψk(M), its elliptic set ell(A) is defined as a conic subset of T ∗M \0, such that (x0, ξ0) ∈
ell(A) if and only if there exists a conic neighborhood U of (x0, ξ0) in T

∗M \ 0, such

that

|σ(A)(x, ξ)| ≥ C|ξ|k, (x, ξ) ∈ U,

where σ(A) is the principal symbol of A.

We then have

Lemma 2.1. Suppose A−, X+ ∈ Ψ0(M) such that

Λ− ⊂ ell(A−), ell(X+) satisfies (CC+).
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Then there exist finitely many operators {Bℓ, Xm}ℓ,m ⊂ Ψ0(M), such that the elliptic

sets of A−, Bℓ, X+, Xm cover p−1(λ) ⊂ T ∗M \ 0 and for each ℓ, m, there exist 0 <

Tℓ, T
′
m <∞, such that

WF(Bℓ) ⊂ ψTℓ
(ell(A−)), WF(Xm) ⊂ ψT ′

m
(ell(X+)).

Proof. Since the bicharacteristics of |ξ|(p − λ) are the same as the ones for p − λ in

T ∗M \ 0, it suffices to consider the radial compactification (by κ in §1.1) of all the

conic sets in the lemma, and replace ψt by φt. We now identify the wavefront sets and

elliptic sets for operators with their radial compactification.

Let Ω+ be an open subset of ell(X+) such that Ω+ ⊂ ell(X+) and every connected

component of γ+ intersects Ω+. From the Morse–Smale assumption (1.2), we know

each connected component of γ+ is a closed orbit under the flow φt, and intersects Ω+.

This implies that there is T > 0 such that ∪T
t=0φt(Ω+) covers the closed orbit, and its

compactness gives a finite subcover. Taking the union of the finite subcovers over the

finitely many connected component of γ+, we have finitely many T ′
m, such that

γ+ ⊂ U+ :=
⋃
m

φT ′
m
(Ω+).

Now let U− ⊂ T ∗M \ 0 be an open neighborhood of γ− such that U− ⊂ ell(A−).

Now for any z ∈ S \ U+, by (1.2), there exists T (z) such that z ∈ φT (z)(U−). Notice

that {φT (z)(U−)}z∈S\U+ is an open cover of the compact set S \ U+, we can extract a

finite cover {φT (zℓ)(U−)} of S \ U+.

Let bℓ, ρm ∈ C∞(T ∗M \ 0;R) be functions that are homogeneous of order 0 and

supp bℓ ⊂ φT (zℓ)(ell(A−)), b−|φT (zℓ)
(U−) = 1; supp ρm ⊂ φT ′

m
(ell(X+)), ρm|φT ′

m
(Ω+) = 1.

Put

Bℓ := Op(bℓ), Xm := Op(ρm)

and we complete the proof. □

Lemma 2.2. Suppose A+, B+, X− ∈ Ψ0(M) such that

Λ+ ⊂ ell(A+), Λ+ ∩WF(B+) = ∅, ell(X−) satisfies (CC−).

Then there exist finitely many operators {Xm}m ⊂ Ψ0(M), such that the elliptic sets of

A+, X−, Xm, cover p
−1(λ) ⊂ T ∗M \ 0, and the elliptic sets of X−, Xm, cover WF(B+).

Moreover, for each m there exist 0 < Tm <∞, such that

WF(Xm) ⊂ ψTm(ell(X−)).

The proof for Lemma 2.2 is similar to the proof of Lemma 2.1.

We now prove the control estimates in Theorem 1.
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Proof of Theorem 1. For ω = λ+ iϵ, λ ∈ [−δ, δ], ϵ > 0, we denote

P1(ω) := ⟨D⟩1/2(P− ω)⟨D⟩1/2, u1 := ⟨D⟩−1/2u ∈ C∞,

P1 := ⟨D⟩1/2(P − λ)⟨D⟩1/2, Q1 := ⟨D⟩1/2Q⟨D⟩1/2.

Principal type of propagation estimates. Suppose A,B ∈ Ψ0(M) such that

there exists T > 0 such that

ψ−T (WF(B)) ⊂ ell(A).

Then for any s, N ∈ R, there exists C > 0 such that for any u1 ∈ C∞(M), we have

∥Bu1∥Hs ≤ C∥Au1∥Hs + C∥P1(ω)u1∥Hs + C∥u1∥H−N . (2.1)

Here (2.1) follows from [DZ19a, Theorem E.47] and the fact that

Imσ(P1(ω)) = |ξ|(q − ϵ) ≤ 0.

Radial source estimates. The goal of this step is to show the following estimate:

there exists A− ∈ Ψ0(M) such that Λ− ⊂ ell(A−) and for any r,N ∈ R such that

r > sup
Λ−(λ)

(
−|ξ|q−1

Hp|ξ|

)
,

there exists C > 0 such that for any u1 ∈ C∞(M), we have

∥A−u1∥Hr ≤ C∥P1(ω)u1∥Hr + C∥u1∥H−N . (2.2)

The proof of (2.2) is a modification of the proof of [DZ19a, Theorem E.52] and

[DZ19b, §3]. Indeed, let B− ∈ Ψ0(M) such that Λ− ⊂ ell(B−), WF(B−) ∩ Λ+ = ∅ and

ρ ∈ C∞(T ∗M \ 0; [0, 1]) be an escape function such that ρ is homogeneous of order 0

and

supp ρ ⊂ ell(B−), ρ = 1 near Λ−, H|ξ|(p−λ)(ρ) ≤ 0.

For the construction of such functions, see [DZ16, Lemma C.1] or [DZ19a, Lemma

E.53].

Now for r ∈ R, we put G := Op(⟨ξ⟩rρ) ∈ Ψr(M). Then

Im⟨P1(ω)u1, G
∗Gu1⟩ =⟨− 1

2i
[P1, G

∗G]u1, u1⟩+ ⟨(Q1 − ϵ⟨D⟩)Gu1, Gu1⟩
+ ⟨Re (G∗[G,Q1 − ϵ⟨D⟩])u1, u1⟩.

Notice that α
√

−|ξ|q ∈ S1/2(T ∗M ;R), where α is given in §1.1. LetQ1/2 := Op(α
√

−|ξ|q) ∈
Ψ1/2(M), then

Q1 +Q∗
1/2Q1/2 ∈ Ψ0(M), σ(Q1 +Q∗

1/2Q1/2) = |ξ|q−1.
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Now we have

Im⟨P1(ω)u1, G
∗Gu1⟩

= ⟨Tu1, u1⟩ − ∥Q1/2Gu1∥2L2 − ϵ∥⟨D⟩1/2Gu1∥2L2 + ⟨Re(G∗[G,Q1 − ϵ⟨D⟩])u1, u1⟩,
≤ ⟨Tu1, u1⟩+ ⟨Re(G∗[G,Q1 − ϵ⟨D⟩])u1, u1⟩

(2.3)

with

T := − 1
2i
[P1, G

∗G] +G∗(Q1 +Q∗
1/2Q1/2)G ∈ Ψ2r(M), T ∗ = T.

(i) Since G∗[G,Q1−ϵ⟨D⟩] ∈ Ψ2r(M) has purely imaginary principal symbol, we know

Re(G∗[G,Q1 − ϵ⟨D⟩]) ∈ Ψ2r−1(M), WF(Re(G∗[G,Q1 − ϵ⟨D⟩])) ⊂ ell(B−).

By the elliptic estimates [DZ19a, Theorem E.33], we have

⟨Re(G∗[G,Q1 − ϵ⟨D⟩])u1, u1⟩ ≤ C∥B−u1∥2Hr−1/2 + C∥u1∥2H−N . (2.4)

(ii) The principal symbol of T is

σ(T ) = |ξ|2rρ
[
H|ξ|(p−λ)ρ+ ρ (rHp|ξ|+ |ξ|q−1)

]
.

Let r satisfies

r > max
Λ−(λ)

(
− |ξ|q−1

Hp|ξ|

)
, (2.5)

then there exists ν > 0 and a conic open neighborhood U ⊂ B− of Λ−(λ) such

that

rHp|ξ|+ |ξ|q−1 ≤ −ν on U.

Thus

σ(T + νG∗G)|U ≤ 0.

Now apply the microlocal G̊arding inequality [DZ19a, Proposition E.34], with

(A,B,B1) there replaced by (−T − νG∗G, 0, B−) and h = 1, we have

ν∥Gu1∥2L2 ≤ −⟨Tu1, u1⟩+ C∥B−u1∥2Hr−1/2 + C∥u1∥2H−N . (2.6)

Combining (2.3), (2.4) and (2.6) and we find

ν∥Gu1∥2L2 ≤ − Im⟨GP1(ω)u1, Gu1⟩+ C∥B−u1∥2Hr−1/2 + C∥u1∥2H−N .

Use Cauchy–Schwartz and we have

∥Gu1∥L2 ≤ C∥GP1(ω)u1∥L2 + C∥B−u1∥Hr−1/2 + C∥u1∥H−N .

Let A− := Op(ρ), then by the elliptic estimates [DZ19a, Theorem E.33]

∥A−u1∥Hr ≤ C∥P1(ω)u1∥Hr + C∥B−u1∥Hr−1/2 + C∥u1∥H−N . (2.7)

To remove the ∥B−u1∥Hr−1/2 term, we use the propagation estimates (2.1) and find

∥B−u1∥Hr−1/2 ≤ C∥A−u1∥Hr−1/2 + C∥P1(ω)u1∥Hr−1/2 + C∥u1∥H−N .
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Apply the interpolation inequality for Hr−1/2 and Hr, H−N to the term ∥A−u1∥Hr−1/2 ,

and we have

∥B−u1∥Hr−1/2 ≤ 1
2
∥A−u1∥Hr + C∥P1(ω)u1∥Hr + C∥u1∥H−N .

This together with (2.7) gives (2.2).

Radial sink estimates. Similar to (2.2), we can also prove the following radial sink

estimates for P1(ω): there exist A+, B+ ∈ Ψ0(M) such that Λ+ ⊂ ell(A+), WF(B+) ∩
Λ+ = ∅ and for any N ∈ R,

r < inf
Λ+(λ)

(
−|ξ|q−1

Hp|ξ|

)
there exists C > 0 such that for any u1 ∈ C∞, we have

∥A+u1∥Hr ≤ C∥B+u1∥Hr + C∥P1(ω)u1∥Hr + C∥u1∥H−N . (2.8)

Control by the sink. Suppose X+ ∈ Ψ0(M) and ell(X+) satisfies (CC+). We now

prove (1.5).

Let X̃+ ∈ Ψ0(M) be such that WF(X̃+) ⊂ ell(X+) and ell(X̃+) satisfy (CC+). Let

A− ∈ Ψ0(M) be as in (2.2). Then A−, X̃+ satisfy conditions in Lemma 2.1 and we

can find Bℓ, Xm ∈ Ψ0(M) satisfying conditions in Lemma 2.1. Then by (2.1), for any

r,N ∈ R and each ℓ, m, there exists C > 0 such that for any u1 ∈ C∞, we have

∥Bℓu1∥Hr ≤ C∥A−u1∥Hr + C∥P1(ω)u1∥Hr + C∥u1∥H−N ,

∥Xmu1∥Hr ≤ C∥X̃+u1∥Hr + C∥P1(ω)u1∥Hr + C∥u1∥H−N .
(2.9)

Combine (2.2), (2.9), the fact that the elliptic sets of A−, Bℓ, X̃+, Xm covers p−1(λ),

and the elliptic estimates [DZ19a, Theorem E.33], we know that for r satisfying (2.5)

∥u1∥Hr ≤ C∥X̃+u1∥Hr + C∥P1(ω)u1∥Hr + C∥u1∥H−N .

The control estimate (1.5) now follows from the elliptic estimate applied to X̃+⟨D⟩ 1
2

and ⟨D⟩ 1
2X+.

Control by the source. The control estimate (1.7) is proved in a similar way.

Assume X− ∈ Ψ0(M) satisfies (CC−). Let X̃−Ψ
0(M) be such that WF(X̃−) ⊂

ell(X−) and ell(X̃−) satisfy (CC−). Let A+, B+ ∈ Ψ0(M) be as in (2.8). We then

apply Lemma 2.2 to A+, B+, X̃− and get operators Xm.

By (2.1) we find for r, N ∈ R,

∥Xmu1∥Hr ≤ C∥X̃−u1∥Hr + C∥P1(ω)u1∥Hr + C∥u1∥H−N . (2.10)

The estimate (1.7) is now a result of (2.8), (2.10) and elliptic estimates. □



14 HANS CHRISTIANSON, JIAN WANG, AND RUOYU P. T. WANG

3. The limiting absorption principle

From now on we assume

P = P − iχ, χ ∈ C∞(M ;R≥0). (3.1)

We ask T ∗(suppχ)\0 to satisfy the control condition (CC+). This is equivalent to say

that

suppχ intersects with each connected component of π(Λ+). (3.2)

Here π : T ∗M \0 →M is the natural projection. We remark that in this case, q−1 = 0.

Hence the regularity conditions (1.4), (1.6) become

s > −1
2
, or s < −1

2

respectively.

Lemma 3.1. Suppose P satisfies (1.1), (1.2), (3.1), (3.2). Then there exists δ > 0

such that

|SpecL2,pp(P) ∩ [−δ, δ]| <∞.

Proof. By [DZ19b, Lemma 3.2], it suffices to show that

{Reω | ω ∈ SpecL2,pp(P), Imω ≥ 0} ⊂ SpecL2,pp(P ).

In fact, assume ω ∈ C, Imω ≥ 0, u ∈ KerL2(P− ω). Then

0 = Im⟨(P− ω)u, u⟩ = −⟨(χ+ Imω)u, u⟩ = −
∫
M

(χ+ Imω)|u|2dx.

Since χ+ Imω ≥ 0, we know (χ+ Imω)u = 0. Thus (P − Reω)u = 0. □

We record a lemma on the regularity of solutions.

Lemma 3.2. Let P be as in Lemma 3.1. Then there exists δ > 0 such that

(P− ω)u ∈ C∞, u ∈ D ′(M), ω ∈ [−δ, δ]

implies that u ∈ C∞(M).

Proof. Let χ̃ ∈ C∞(M) satisfy supp χ̃ ⋐ {χ > 0} and (3.2). Then notice that

σ(P− ω) = p− ω − iχ,

which is elliptic on supp χ̃. Hence by the elliptic estimate, for s,N ∈ R, there exists

C > 0, such that

∥χ̃u∥Hs ≤ C∥(P− ω)u∥Hs + C∥u∥H−N .

This implies χ̃u ∈ C∞(M). The desired result u ∈ C∞(M) now follows from (1.5) with

X+ replaced by χ̃. □

Now we show the limiting absorption principle:
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Lemma 3.3. Suppose P is as in Lemma 3.1 and 0 /∈ Specpp(P). Then there exists

δ > 0 such that for any ω ∈ [−δ, δ], f ∈ C∞(M), the limit

(P− ω − i0)−1f := lim
ϵ→0+

(P− ω − iϵ)−1f

exists in C∞(M). Moreover,

(P− ω − i0)−1f ∈ C∞
ω ((−δ, δ);C∞(M))

and is the unique solution to the equation

(P− ω)u = f, u ∈ D ′(M).

Proof of Lemma 3.3. 1. The limit exists and is smooth on M . By Lemma 3.1, for

δ > 0 sufficiently small, we have Specpp(P) ∩ [−δ, δ] = ∅. We first show that for any

ω ∈ [−δ, δ], f ∈ C∞(M), we have

(P− ω − i0)−1f ∈ C∞(M).

For simplicity, we put ω = 0.

For any ϵ > 0, since χ ≥ 0, we know P − iϵ is elliptic. Thus uϵ := (P − iϵ)−1f ∈
C∞(M). Let χ̃ be as in the proof of Lemma 3.2. Theorem 1 implies that for any

s > −1
2
, N ∈ R, there exists C > 0 such that for any ϵ > 0,

∥uϵ∥Hs ≤ C∥χ̃uϵ∥Hs + C∥f∥Hs+1 + C∥uϵ∥H−N . (3.3)

On the other hand, for ϵ > 0, we have

Imσ(P− iϵ) = −(χ+ ϵ),

which is uniformly elliptic over supp χ̃. Thus by the elliptic estimates [DZ19a, Theorem

E.33], for any s, N ∈ R, there exists C > 0 such that

∥χ̃uϵ∥Hs ≤ C∥f∥Hs + C∥uϵ∥H−N . (3.4)

Estimates (3.3), (3.4) implies that for any s > −1
2
,

∥uϵ∥Hs ≤ C∥f∥Hs+1 + C∥uϵ∥H−N . (3.5)

We now show that for any s > −1
2
, {∥uϵ∥Hs}ϵ>0 is bounded. Otherwise, there exists

s > −1
2
and a subsequence uℓ such that ∥uℓ∥Hs → ∞, ℓ→ ∞. We put ũℓ := uℓ/∥uℓ∥Hs ,

then

∥ũℓ∥Hs = 1, (P− iϵ)ũϵ = f/∥uℓ∥Hs
C∞
−−→ 0, ℓ→ ∞. (3.6)

By (3.5), for any s′ > −1
2
, we have

∥ũℓ∥Hs′ ≤ C∥f∥Hs′+1/∥uℓ∥Hs + C∥ũℓ∥Hs = C∥f∥Hs′+1/∥uℓ∥Hs + C.
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In particular, we know ũℓ is bounded in Hs′ for s′ > s. Since the embedding Hs′ ↪→ Hs

is compact when s′ > s, by passing to a subsequence, we can assume that uℓ → u in

Hs. Let ℓ→ ∞ in (3.6), we find

∥u∥Hs = 1, Pu = 0.

This contradicts Lemma 3.2 and the assumption 0 /∈ Specpp(P).

We conclude now that {uϵ}ϵ>0 is bounded in Hs for any s > −1
2
and hence in Hs for

any s ∈ R. A similar argument as above shows that {uϵ}ϵ>0 is precompact in Hs for

any s ∈ R. Notice that by (P− iϵ)uϵ = f and (3.5), every limit point u has to satisfy

Pu = f, u ∈ D ′(M). (3.7)

By either (3.5) or Lemma 3.2, we can see that u ∈ C∞. By Lemma 3.2, we know such

u is unique. Hence uϵ converges to the unique solution to (3.7).

2. Smoothness in ω. First, to see that (P − ω − i0)−1f is continuous in ω for

ω ∈ (−δ, δ), we can replace uϵ = (P− iϵ)−1f above by uℓ := (P− ωℓ − iϵℓ)
−1f with

ϵℓ > 0, ωℓ ∈ (−δ, δ), ωℓ + iϵℓ → ω ∈ (−δ, δ).

The previous argument shows that {uℓ} converges inHs for any s to the unique solution

to

u ∈ C∞, (P− ω)u = f,

which is (P− ω − i0)−1f . This implies (P− ω − i0)−1f is continuous in ω ∈ (−δ, δ).
For any k ∈ N, we denote

(P− ω − i0)−kf :=
(
(P− ω − i0)−1

)k
f.

Then we have (P− ω − i0)−kf ∈ C∞. We claim that for ω ∈ (−δ, δ),

∂kω
(
(P− ω − i0)−1f

)
= k!(P− ω − i0)−k−1f, k ≥ 1. (3.8)

In fact, for k = 1, ω0 ∈ (−δ, δ) we have

(P− ω − i0)−1f − (P− ω0 − i0)−1f

ω − ω0

= (P− ω − i0)−1(P− ω0 − i0)−1f.

Let ω → ω0 and use the continuity in ω, and we find

∂ω|ω=ω0(P− ω − i0)−1f = (P− ω0 − i0)−2f.

(3.8) then follows by induction in k. This concludes the proof. □
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4. The damped equation

In this section we study the evolution problem for P = P − iχ, which considered as

the damping problem for P and prove Theorem 2.

Proof of Theorem 2. Since P : L2(M) → L2(M) is bounded, we define

U(t) :=
∞∑
ℓ=0

(−itP)ℓ

ℓ!
: L2(M) → L2(M), t ∈ R.

Then U(t) is also bounded for any t ∈ R.
We first show that (1.9) has a unique solution

u(t) := (U(t)− I)(P− i0)−1f.

Indeed, by Lemma 3.3, we have (P − i0)−1f ∈ C∞ ⊂ L2(M). We thus have u(t) ∈
L2(M) and can check that

(i∂t −P)u(t) = f, u(0) = 0.

Suppose (1.9) has another solution w(t), then we have

(i∂t −P)(u− w) = 0, u(0)− w(0) = 0.

Now we compute

0 =2 Im⟨(i∂t −P)(u− w), u− w⟩L2(M)

= ∂t∥u− w∥2L2(M) + 2⟨χ(u− w), u− w⟩L2(M) ≥ ∂t∥u− w∥2L2(M).

Thus we know

∥u(t)− w(t)∥L2(M) ≤ ∥u(0)− w(0)∥L2(M) = 0 ⇒ u = w, t ≥ 0.

To see that ∥u(t)∥L2(M) is uniformly bounded in t, we notice that

(i∂t −P)(u(t) + (P− i0)−1f) = 0.

We again compute

0 = Im⟨(i∂t −P)(u+ (P− i0)−1f), u+ (P− i0)−1f⟩ ≥ ∂t∥u+ (P− i0)−1f∥2L2(M).

Thus

∥u+ (P− i0)−1f∥L2(M) ≤ ∥(P− i0)−1f∥L2(M),

which implies

∥u(t)∥L2(M) ≤ 2∥(P− i0)−1f∥L2(M).

This concludes the proof of Theorem 2. □
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des ondes. C. R. Acad. Sci. Paris Sér. I Math., 325(7):749–752, 1997.

[BG20] N. Burq and P. Gérard. Stabilization of wave equations on the torus with rough dampings.

Pure Appl. Anal., 2(3):627–658, 2020.

[BJ16] N. Burq and R. Joly. Exponential decay for the damped wave equation in unbounded

domains. Commun. Contemp. Math., 18(6), 2016.

[BLR92] C. Bardos, G. Lebeau, and J. Rauch. Sharp sufficient conditions for the observation, con-

trol and stabilization of waves from the boundary. SIAM J. Control Optim., 30(5):1024–

1065, 1992.

[BM16] F. Bechebanze and L. R. M. Maas. Damping of 3D internal wave attractors by lateral

walls. International Symposium on Stratified Flows, 1(1), 2016.

[Bro16] C. Brouzet. Internal wave attractors: from geometrical focusing to non-linear energy cas-

cade and mixing. PhD thesis, Université de Lyon, 2016.
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