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Abstract 

In contrast to previous studies that look only at discriminating 

pathological voice from the normal voice, in this study we focus 

on the discrimination between cases of spasmodic dysphonia 

(SD) and vocal fold palsy (VP) using automated analysis of 

speech recordings. The hypothesis is that discrimination will be 

enhanced by studying continuous speech, since the different 

pathologies are likely to have different effects in different 

phonetic contexts. We collected audio recordings of isolated 

vowels and of a read passage from 60 patients diagnosed with 

SD (N=38) or VP (N=22). Baseline classifiers on features 

extracted from the recordings taken as a whole gave a cross-

validated unweighted average recall of up to 75% for 

discriminating the two pathologies. We used an automated 

method to divide the read passage into phone-labelled regions 

and built classifiers for each phone. Results show that the 

discriminability of the pathologies varied with phonetic context 

as predicted. Since different phone contexts provide different 

information about the pathologies, classification is improved by 

fusing phone predictions, to achieve a classification accuracy of 

83%.  The work has implications for the differential diagnosis 

of voice pathologies and contributes to a better understanding 

of their impact on speech. 

Index Terms: voice pathology discrimination, phonetic 

context, continuous speech, machine learning 

1. Introduction 

The human voice production system can become impaired in 

multiple ways involving structural, neurogenic, inflammatory 

or muscle tension imbalance [1]. Differentiation between types 

of disorders by subjective auditory assessments of clinicians is 

difficult because of similarities in auditory effect, and 

diagnostic reliability is highly influenced by clinician training, 

background, and experience [2]. Instrumental methods are 

based on endoscopic examination of the larynx and for voice 

assessment involving Acoustic and Electroglottographic (EGG) 

analysis are available but only in specialized centers. Recently 

machine learning approaches for objective assessment of voice 

pathology have become popular since they hold the promise of 

accurate pathology detection and discrimination from simple 

audio recordings [3, 4, 5]. Although there are many such studies 

focusing on contrasting pathological voice from neurotypical 

voice (see [6] for a survey), few studies in the past few decades 

have investigated differential diagnosis of voice pathologies [7, 

8, 9]. However, when voice problems are concerned, it is 

essential to determine the underlying causes to provide 

appropriate and effective medical treatment. 

The most common approach to automated voice disorder 

assessment has been to use sustained vowel productions (e.g., 

[ɑ], [e], and [i]) instead of continuous or connected speech. 

Although sustained vowels have long been used by clinicians 

to assess voice, they lack ecological validity [10]. Since 

continuous speech requires the exercise of more laryngeal 

functions it seems likely that this style would better expose 

voice disorders. Recent studies of automated assessment have 

indeed shown that pathology detection can be better from 

recordings of continuous speech than from vowels [11, 12, 13]. 

However automated assessment of continuous speech can be 

challenging for machine learning methods because of the 

increase in acoustic variability caused by the verbal content of 

the speech. While an isolated vowel can be said to have 

relatively stationary spectral properties and thus can be 

characterized by averages made over a whole recording, the 

same cannot be said of a read passage. It seems likely that 

different parts of a passage will be more informative than others 

about the voice pathology, and so the computing of averages 

across a whole recording will dilute features that might be very 

useful for discrimination of pathologies. 

The use of a fixed reading passage for vocal assessment 

enables researchers to analyze voice characteristics according 

to known phonetic and phonological contexts. This analysis of 

voice by phonetic context could provide key discriminating 

information that is not present in the averages computed over 

whole recordings, since the production of different phones is 

associated with different vocal tract and laryngeal 

configurations and activities. For example, the starting and 

stopping of voicing in plosives, or the aerodynamic interactions 

between vocal tract and voicing in voiced fricatives might 

expose disorders in ways not obvious in a sustained vowel. 

Previous studies have shown how in dysphonic voice with vocal 

fold thickening, unstressed syllables are more likely to be 

produced with insufficient subglottal pressure realizing aphonia 

[14]. The variation of voice quality with phonetic context in the 

normal voice has been found in studies such as [15, 16] and 

predicted by phoneticians [17]. A few studies have also looked 

at variation in voice quality with phonetic context for the 

assessment of Parkinson’s [18] or on the assessment of severity 

of voice disorder [19]. These studies have exploited contexts 

such as manner of articulation (e.g., plosives, fricatives, and 

affricates), voicing (e.g., voiced and voiceless onsets), and the 

height of the tongue (e.g., high vowels and low vowels). 

However, this idea has not yet been applied to voice pathology 

discrimination. 

In this paper, we propose a new phonetic analysis method 

for automatic voice pathology discrimination from a clinical 

perspective. To the best of our knowledge, this is the first 
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attempt to automatically discriminate voice pathologies on the 

basis of continuous speech. Our hypothesis is that different 

voice pathologies will cause measurably different acoustic 

variations in different phonetic contexts, which can be used for 

discriminating them. The work has the following novel 

elements: (i) application of automatic forced alignment and 

phonetic annotation techniques, which enables the 

segmentation of a recording of a passage according to phonetic 

contexts; (ii) investigation of how different phonetic contexts 

affect the classification of two different voice pathologies, 

serving to determine more appropriate speech tasks for 

classifying pathologies; and (iii) introduction of a novel 

phonetic fusion method that can significantly improve voice 

pathology classification accuracy. 

2. Materials and Methods 

Our proposed method aims to analyze phonetic context to 

improve the automatic pathology classification from 

continuous speech, using a widely available feature toolkit 

(OpenSMILE) [20] and classifier (Support Vector Machine, 

SVM). The framework of the method is illustrated in Figure 1. 

2.1. Source of data  

The study used previously collected ‘Arthur the Rat’ passage 

reading and sustained vowel production recordings made from 

individuals (British English speakers) presenting at a specialist 

multidisciplinary voice clinic. There are 38 participants 

subsequently diagnosed with Spasmodic Dysphonia (SD) (6 

Abductor, 32 Adductor) and 22 participants diagnosed with 

Vocal fold Palsy (VP). The mean age for SD speakers (10 male, 

28 female) was 62 ± 15 years. The mean age for VP speakers 

(20 male, 2 female) was 53 ± 22 years. The choice of these two 

pathologies was due to data availability, but they do reflect two 

disorders with different aetiologies and therapies. 

SD and VP are two distinct types of neurogenic voice 

disorder. SD is a form of focal dystonia. There are two main 

phenotypes both characterized by abrupt spasms of intrinsic 

laryngeal muscles. The commoner form, Adductor SD (90%), 

is associated with spasmodic closure of the vocal folds (i.e., 

glottal stopping) particularly following voiced onsets. This 

results in involuntary phonatory breaks during propositional 

speech and in addition the voice has a strained/ strangled quality. 

The less common form Abductor SD (10%) is associated with 

involuntary spasmodic opening of the vocal folds (i.e., glottal 

widening). It is associated with unnatural breathy or aphonic 

interludes during phonation and is worsened by the use of 

voiceless consonants prolonging word or sentence duration. In 

both forms, speech becomes slower, more effortful, and more 

dysfluent with increasing severity but less affected during 

whispering and non-speech vocalizations, such as laughter and 

crying. VP occurs when there is neural damage to the intrinsic 

muscles of the larynx due to viral neuropathy, neck or thoracic 

surgery, cancer, neck trauma or other neurologic conditions. 

People with VP may have a hoarse, weak, breathy, or 

diplophonic voice with loss of volume and elevation in pitch 

[21]. 

Speech and EGG recordings were made with Laryngograph 

hardware, which used an electret microphone placed on the 

EGG neckband, in a quiet clinic room. Most recordings were 

made at 44,100 samp/sec 16-bit, while some were at 22,050 

samp/sec. Only the recorded speech signals were used in this 

study, and the EGG recordings will be analyzed in a later study. 

2.2. Audio pre-processing 

For the baseline trials, two types of vowel-sound extracts were 

segmented from recordings of the production of sustained 

vowels collected in another assessment and the whole recording 

of passage reading was used: 

• IY: instance of an [i] vowel spoken on a low pitch. 

• AE: instance of an [æ] vowel in the isolated word “sat”. 

• Passage: reading of “Arthur the Rat” passage. The average 

duration of SD recordings was 149 seconds, and the 

average duration of VP recordings was 141 seconds. 

For the passage reading, manual editing of the audio was 

required to eliminate any speech from the clinician prompting 

the speaker before or after each extract. However, to maintain 

consistency, any clinician’s speech that overlapped with the 

participant’s speech was retained. All signals were then 

resampled to 32,000 samples/sec. 

2.3. Alignment and annotation 

An edited transcript of the reading passage was created 

separately for each speaker to make transcriptions that matched 

the actual production. There were 3 out of 60 transcripts that 

needed major editions due to the deletion of whole sentences. 

For the rest of the recordings, only a few manual corrections 

were required when the participants repeated or changed 

several words. The orthographic transcript was then aligned 

with the speech audio using the Montreal forced aligner [22]. 

This forced alignment approach produced a segmentation of the 

signal at both word and phone levels. The phonetic annotation 

was based on an American English pronunciation dictionary 

with 41 phone types. The alignment and phonetic labelling 

permitted the analysis of phonetic context within the 

pathological speech recording, as the individual acoustic 

segments corresponding to individual phones could be grouped 

together for voice disorder assessment. Figure 2 shows the 

examples of the automatic alignment and annotation of the 

word ‘Arthur’. 

Figure 1: The framework of proposed method for automated voice pathology discrimination based on phonetic context. 
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Figure 2: Examples of automatic alignment and annotation. 

Voice recordings are from a speaker with SD (above) and a 

speaker with VP (below) producing the word ‘Arthur’. 

 

To establish the accuracy of the automated alignment, a 

random sample of 20 recordings was chosen, and then a random 

section of 3s of each was selected for manual checking. Of 493 

annotations checked, only 9 (2%) were found to be in 

significant error (greater than 10ms from a satisfactory ideal 

position). On average those in error were shifted by 30ms from 

their preferred location. Based on these results, no corrections 

to the automatic phonetic annotations were made for the 

experiment. It is possible that alignment might have been 

improved further had a British English dictionary been 

available. 

2.4. Feature extraction 

The OpenSMILE analysis system was used to extract features 

for processing. We adopted two strategies for summarizing 

features across recordings. In the Functional strategy, we used 

the large set of summary functionals found in the COMPARE13 

configuration of OpenSMILE [23], which delivered 6373 

features per recording. In the Summary strategy, we used the 

COMPARE13 low-level descriptors (LLD) configuration 

delivering 126 features per 10ms frame and then computed the 

median and inter-quartile range of each LLD to give 252 

features for each specified region. This latter approach allowed 

us to label each frame with the active phone so that summaries 

could be produced for the whole recording or specific phonetic 

regions. 

2.5. Classification 

For classification, a leave-one-out cross-validation strategy was 

employed in which all normalization, feature selection and 

classification were performed on all but one training sample to 

classify the left-out sample. The normalization of features was 

performed using z-scores. For the Functional strategy, feature 

selection was performed on the basis of an F-ratio statistic to 

select the 1000 most active features for discrimination. For the 

Summary strategy, feature selection was not conducted. This 

present study used a Support Vector Machine (SVM) classifier 

from the e1071 package for R [24]. A radial basis function 

kernel was selected with a cost parameter C=2. 

2.6. Phonetic analysis 

In order to evaluate the prediction that different voice 

pathologies would have different effects in different phonetic 

contexts, we took a simple approach and built classifiers for 

each phone-context separately. There were only 36 phone 

regions in total because some phones used by the forced aligner 

did not occur in all instances of the read passage. In the phonetic 

evaluation, for each phone type, Summary strategy feature 

vectors were collated over all segments within the reading 

passage that were labelled with that phone, and then an SVM 

classifier was built and validated from the collated data. 

2.7. Phonetic fusion 

The phone evaluation examined how well regions labelled with 

the different phones led to pathology classifications. In this 

regard, each phone region was treated as an independent source 

of information on the pathology. This suggests that improved 

classification performance can be obtained by fusing the 

classification predictions made from different phones. To fuse 

the predictions, the SVM classifiers were again trained for each 

labelled phone region, but in such a way as to provide a pseudo 

“probability” of classification. This then generated a vector of 

36 scores for each recording—representing the probability that 

the recording came from an SD case assessed by each phone 

type. Then, score fusion was performed by computing the 

weighting of the probabilities that best discriminated the two 

pathologies. This was implemented using linear discriminant 

analysis (LDA), again with leave-one-out cross-validation. This 

cross-validation procedure ensured that both the phone scores 

and the fusion weights were calculated without reference to the 

sample under test. 

3. Results 

3.1. Baseline results 

The main objective of this paper is to investigate the benefits of 

phonetic context in voice disorder discrimination evaluation.  

We compared our proposed system with classification 

approaches based on vowel productions as well as continuous 

speech without phonetic analysis. Baseline results for 

pathology discrimination are shown in Table 1. Values are 

unweighted average recall (UAR). It is noteworthy that the 

UARs for vowel sounds were slightly higher compared with 

passage reading. This difference might be due to the problem 

described in the introduction of this paper—some small but 

meaningful changes can be lost due to the overall variability 

when the features are averaged across the recording. 

Table 1: Baseline results for voice disorder pathology 

discrimination in terms of UAR on the whole recording. 

Functional strategy: feature selection of 1000 best features. 

Summary strategy: median and IQR of LLD features. 

Data set Functional Strategy 

(1000 features) 

Summary Strategy 

(252 features) 

IY [i] 75.44% 73.36% 

AE [æ] 73.49% 70.53% 

Passage 71.65% 70.33% 
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3.2. Phonetic analysis 

The results of the phonetic evaluation show that the 

performance for different phones differed significantly, 

confirming that phonetic context is important for voice disorder 

classification. Table 2 includes pathology discrimination 

accuracy for the best and worst phones. Most of the best phones 

are vowel sounds, whilst all worst phones are voiceless 

consonant sounds. Note that the vowels here are found in 

syllables and are not isolated forms. There is no clear pattern to 

suggest that better performance comes from a larger number of 

labelled frames. Further analysis is required to investigate the 

reasons why particular phone types aid discrimination, and to 

also assess their statistical significance. 

Table 2: Results for best and worst phones in voice disorder 

pathology discrimination. Frame represents the number of 

10ms frames used for the classification across all recordings. 

Best phones Worst phones 

Phone Frame UAR % Phone Count UAR % 

AH [ʌ] 48227 78.5 P [p] 3275 59.6 

EH [ɛ] 19288 78.5 F [f] 17343 58.6 

EY [eɪ] 24475 77.5 K [k] 19304 58.6 

DH [ð] 14506 77.2 CH [tʃ] 5590 47.5 

ER [ɜ] 17317 75.8 TH [θ] 7737 45.6 

3.3. Phonetic fusion 

The LDA fusion of phone scores leads to weights for each 

phone type in terms of how much they contribute to a 

discriminant that separates the SD and VP classes. The 

weightings given to the most “SD sensitive” and most “VP 

sensitive” phone classifications are summarized in Table 3. The 

results suggest that SD and VP affect phonetic contexts in 

different ways. We noticed that nasal sounds (i.e. NG [ŋ], M 

[m], and N [n]) contributed particularly to the discrimination, 

while vowel sounds such as UH [ʊ], OY [ɔɪ], AO [ɔ], AA [ɑ], 

and EH [ɛ] only had small weights, with absolute values below 

1.  

Table 3: Results for most “SD sensitive” and most “VP 

sensitive” phones in voice disorder pathology discrimination (-

ve = more SD, +ve = more VP). 

Most SD sensitive Most VP sensitive 

Phone Weight Phone Weight 

IH [ɪ] -11.662 NG [ŋ] 13.576 

Z [z] -11.617 K [k] 11.714 

B [b] -9.252 N [n] 10.384 

M [m] -7.226 AY [aɪ] 8.596 

EY [eɪ] -5.948 CH [tʃ] 8.179 

Figure 3 plots the distribution of the discriminant for the 

true pathology classes, and Table 4 provides a confusion matrix 

for the classification result, using a discriminant threshold of 

zero. The proposed system based on phonetic analysis 

significantly outperformed the baseline models, obtaining a 

classification accuracy of 89.5% for SD, 77.3% for VP, and a 

UAR of 83.37%. This compares to the best baseline UAR of 

75.44%. 

 

Figure 2: Distribution of the discriminant for the true SD and 

VP pathology classes. 

Table 4: Confusion matrix for voice disorder pathology 

discrimination using phonetic analysis. UAR=83.37%. 

 SD VP Accuracy 

SD 34 4 89.5% 

VP 5 17 77.3% 

4. Discussion and Future Work 

In this paper, we presented an automated voice pathology 

discrimination system based on continuous speech, employing 

a novel phonetic context analysis method. This system 

outperforms the baseline models that used the whole recording, 

whether based on vowels or a read passage, with a 32% 

reduction in recall error. Moreover, our findings reinforce the 

hypothesis that voice pathologies influence phonetic contexts in 

different ways, as phones show different sensitivities for 

distinct disorder types in the classification. The SD and VP 

pathologies were selected because of availability, but there are 

no particular aspects of the method that is specific to these 

disorders, suggesting that a similar approach might be useful 

for other pathologies We believe that the present work not only 

provides important implications for the future design of 

effective discrimination systems as well as vocal tasks but also 

contributes to a better understanding of the mechanisms of 

voice pathologies.  

Several limitations regarding the findings are worth noting. 

First, the relatively small size and the gender imbalance of the 

pathology samples might have caused problems for 

classification. A larger, gender-balanced sample would be 

preferred for future studies. The automated phonetic labelling 

of the reading passage seemed to work well but relied upon the 

manual correction of an orthographic transcript to what was 

actually said. Automation of the generation of the transcript 

could be a subject for further study, together with an evaluation 

of the effect of automation on classification accuracy. In 

addition, phonetic contexts could be considerably expanded, to 

include, for example, syllable types or prosodic units. Finally, 

future work should also investigate the benefits that arise from 

joint analysis of the speech audio with the EGG signals. 
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