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Abstract

This paper describes and evaluates the ELO-SPHERES project
sentence intelligibility model for the Clarity Prediction
Challenge 2022. The aim of the model is to make predictions
of the intelligibility of enhanced speech to hearing impaired
listeners. Input to the model are binaural processed audio of
short sentences generated in a simulated noisy and reverberant
environment together with the original source audio. Output of
the model is a prediction of the intelligibility of each sentence
in terms of percentage words correct for a known hearing-
impaired listener characterized by a pure-tone audiogram.
Models are evaluated in terms of the root mean squared error
of prediction. We approached this problem in three stages: (i)
evaluation of the influences of the scene metadata on scores,
(ii) construction of classifiers for estimation of scene metadata
from audio, and (iii) training a non-linear regression model on
the challenge data and evaluation using 5-fold cross
validation. On the test data, a baseline system using only the
standard short-time objective intelligibility metric on the better
ear achieved a RMS prediction error of 27%, while our model
that also took into account given and estimated scene data
achieved an RMS error of 22%.

Index Terms: speech-in-noise, speech intelligibility, hearing
aids, hearing loss, machine learning

1. Introduction

The Clarity Prediction Challenge 2022 [1] was an open
competition to compare the performance of speech
intelligibility metrics. The materials for the prediction
challenge were generated from a previous enhancement
challenge in which teams competed to process noisy speech
for known hearing-impaired (HI) listeners. The goal of the
prediction challenge was to predict the intelligibility of some
of the enhanced sentences by these listeners.

For training the model, recordings of sentences containing
7-10 words collected in a set of 402 noisy scenes and
enhanced with 10 enhancement systems were provided. There
were seven interfering noises: (dishwasher, fan, hairdryer,
kettle, microwave, vacuum, washing machine) mixed with the
source sentence at seven signal-to-noise ratios (-6, -4, -2, 0, 2,
4, 6dB). The enhanced signals were presented to 27 HI
listeners characterised by their audiometric data. Responses of
each listener were recorded in terms of the target transcription,
listener transcription, and number of words correct. Audio of
both the source signal and processed signal are provided as
two-channel files for the left and right ears of the simulated
listener. In total there are 4863 training samples. More details
can be found in [2].

Previous proposals for predicting the intelligibility of
speech to HI listeners have adapted existing intrusive signal

metrics for normal listeners by adding a correction to account
for audibility by the HI listener. Examples are those of
Magnusson [3] and Ching et al [4] which looked at
modifications to the Speech Intelligibility Index (SII), while
the HASPI metric [5] combines an intrusive metric with a
model of impaired auditory processing. A comparison of some
audibility-adapted metrics can be found in [6]. However,
studies have shown that audibility alone is insufficient to
explain the differences between impaired listeners. This
inadequacy was shown clearly in the study by the authors [7]
in which variations in audiograms only accounted for 40% of
the variation in intelligibility performance across listeners.
This has influenced our approach to the Clarity Challenge, in
which we try to exploit all available factors that might
influence intelligibility, not just changes to the signal and the
listener audiogram.

Our approach to building an intelligibility prediction
model for the challenge comprised three stages:

a. Explore which features of the speech, audio and
listener metadata have impact on the speech
intelligibility

b. Train classification models that attempt to recover
metadata from the audio signals

c. Train a non-linear regression model that takes as
input the source and processed audio, the given
speech and listener metadata, and the estimated
metadata to predict the intelligibility of a given
speech recording to a given listener.

In the following sections we describe these stages and the
performance of the model.

2. Metadata Exploration

To establish the size of the influence of each of the source
factors, the mutual information (MI) between the factor and
%Correct was measured using the MPMI toolbox [8]. Mutual
information quantifies the "amount of information" obtained
about one random variable from observation of another
random variable. MI is preferred here to correlation because it
does not presume a linear relationship between the two
variables, and we expect to use non-linear regression for
prediction. To gain better estimates of MI, a cross-validation
process is used to correct for bias.

We investigate the following factors: the STOI metric
value [9] calculated from the source and processed audio in
the better of the two ears; the choice of processing system
used to enhance the signal (from 10 choices); the azimuth of
the source w.r.t the listener and the difference in azimuthal
angle between the source and the interferer; the probability of
the text in the prompt sentence; the signal-to-noise ratio of the
source to the interferer; the pure-tone average of the listener in



each ear; the identity of the listener (from 27 choices); the
choice of interfering noise type (from 7 choices); and the
listener performance on the digit-triple test [10]. Table 1
provides the bias-corrected mutual information value between
each factor and the intelligibility score.

To calculate the STOI metric value from the supplied
reference and processed audio, the signals were first aligned
with the sigalign function in VOICEBOX [11], then the
STOI metric value was calculated for each ear independently
using the reference implementation [12]. Finally, the larger of
the two values was selected.

To calculate the probability of the prompt sentence, a
simple trigram language model was built from texts in the
British National Corpus [13]. The corpus was pre-processed to
remove all punctuation except sentence mark-up. Upper case,
lower case and mixed case words were merged. Each marked
sentence in the BNC was divided into trigrams, which were
sorted and counted. In total 97,881,081 trigrams were found,
of 41,429,470 types. The source sentences in the Clarity data
set were then divided into trigrams and the relative frequency
of each trigram in the BNC was used to establish a log
probability for each sentence. The average log probability per
word in the sentence was then used as an influencing factor on
intelligibility. The correlation between %Correct and mean log
word probability was r=0.28.

Table 1. Mutual intelligibility values for a number of
possible factors influencing sentence intelligibility

Influence on %Correct MI (nats)

STOI value in better ear 0.267

Choice of processing system 0.222

Azimuth angle between source and interferer 0.098

Setting of listening volume 0.075

Sentence text probability 0.058

Signal-to-noise ratio of stimulus 0.029

Pure tone average in worse ear 0.026

Identity of listener 0.025

Identity of talker 0.019

Choice of interferer noise type 0.018

Pure tone average in both ears 0.017

Listener performance on digit triple test 0.017

Pure tone average in better ear 0.015

Azimuth of source 0.015

As expected, the STOI value and choice of processing system
had a strong influence on % correct. Somewhat less useful are
the azimuthal angle between target and interferer sources in
the scene, the listening volume setting, and the sentence text
probability. Plots of these are shown in Figures 1-3 where
points are individual sentences, and the line a loess regression.

Figure 1. Influence of difference in azimuth of target
and interferer on proportion correct.

Figure 2. Influence of listening volume on proportion
correct.

Figure 3. Influence of prompt text probability (mean
log probability per word) on proportion correct.



It can be seen that the effects of azimuthal difference (Fig
1) is particularly due to the fact that most stimuli have angular
separations of less than 90°. The influence of listening volume
(Fig 2) is probably an artefact caused by the fact listening
volume setting differed across listeners. The influence of
sentence text probability (Fig 3) is small but shows increasing
score with increasing probability, i.e. that more probable
sentences were better recognized.

Unexpectedly, the influence of the listener was small,
whether that was done by identifying the person, or through
their pure-tone average, or through performance on the digit
triple test. This may be because the enhancement systems had
already modified their spectral characteristics for each listener.
The identity of the talker producing the sentences had a small
effect.

The type of noise interferer and the mixture SNR had very
little effect, presumably because the processing systems were
effective at removing noise.

3. Scene Classification

For evaluation of the prediction model on test data, the
challenge only provides the target and processed audio, the
identity of the listener, and the prompt sentence text. However
the analysis in the previous section showed that factors like
the identity of the processing system, the difference in angle
between source and interferer, and the identity of the talker are
also potentially important for predicting intelligibility. Thus
we investigated the extent to which these factors could be
predicted from the audio signals alone.

Our scene metadata classification system took as input 100
frames (2.56s) of filterbank energies selected from the
filterbank used in the calculation of the STOI metric [12]. The
STOI filterbank comprises 15 third-octave frequency bands
from 150Hz to 4800Hz, with the amplitude measured in
51.2ms windows every 25.6ms.

For classification of the processing system, a
convolutional neural network was used, with inputs from both
the target and processed audio and filterbank channels
interleaved. Two convolutional layers with an 8x8x4 kernel
were fed into a max-pooling layer and a long short-term
memory (LSTM) layer and finally into a dense layer with 10
softmax outputs. A validation set of 10% of the training set
was used to halt training, and on the test set, the classifier was
able to identify which processing system was used for a scene
with an accuracy of 97%.

For classification of the talker, the same convolutional
neural network was used, but with only the target audio as
input. Output was a dense layer with 6 softmax outputs. Using
5-fold cross-validation on the training set, the classifier was
able to identify which talker was used for a scene with an
accuracy of 95%.

For prediction of the azimuthal angle difference the same
convolutional network was used on both target and processed
audio, but with a linear output. However no useful prediction
of angle was obtained, this is likely because this information
has little presence in the processed audio.

4. Baseline Models

To better understand the performance of our regression model
we implemented four baseline models for predicting % correct
from the supplied data:

NULL – a single % correct prediction based on the mean
score over all scenes, listeners and systems.

LISTENER – a single % correct prediction for each
listener, based on their mean performance over all scenes and
systems.

SYSTEM – a single % correct prediction for each system,
based on their mean performance over all scenes and listeners.

STOI – a regression model that predicted proportion of
words correct from the reference and processed audio alone
using the STOI metric (from the better ear). The STOI metric
value was converted to a proportion correct score using
logistic regression weighted by the number of words in each
sentence. The regression model was fitted and tested on the
training set using 5-fold cross-validation.

Performance of these baseline models on both training and
test data is shown in Table 2. The RMS prediction error of
27% using STOI on the best ear provides a good estimate of
the prediction error found using a current state of the art
approach.

Table 2. RMS error for baseline predictors

Baseline method RMS Prediction Error (%)

Train Test

NULL 36.452 36.380

LISTENER only 35.584 35.375

SYSTEM only 27.402 27.173

STOI best ear 27.081 27.404

5. Regression Model

5.1. Input Features

Given the outcome of the metadata analysis and the outputs of
the scene classification models, the following features were
used to construct a regression model to predict percentage
correct intelligibility:

STOIFILT (15 features) – STOI correlations between
source and processed audio per filter channel. The target and
processed signals are first aligned by spectral cross-correlation
before calculation of the STOI correlations. The set of
correlations is chosen from which ear delivered the better
STOI value overall.

SYSTEM (10 features) – predicted identity of the
processing system found by the scene classifier, one
probability per system.

LISTENER (27 features) – identity of the hearing-
impaired listener as one-hot vector. This is generated from the
given metadata.



TALKER (6 features) – predicted identity of the talker of
the sentence used found by the scene classifier, one
probability per talker.

SPROB (1 feature) – Prompt sentence text probability.
This is calculated from word trigram frequencies of the words
in the prompt in the British National Corpus. The value is the
mean log probability of the words in the prompt given their
frequency of occurrence in trigrams that include the previous
and following word. The SPROB value was z-score
normalized before presentation to the model.

The regression model was implemented as a simple neural
network with two hidden dense layers of 32 and 16 nodes.
Input was a single vector of concatenated features taken from
the sets above. Output was a single sigmodal node with an
output between 0 and 1 representing the proportion of words
correctly identified in the sentence. The model was trained
using a binary cross-entropy loss function. A validation set
based on 10% of the training data was used to terminate
training.

5.2. Model Evaluation

To determine the relative importance of the feature sets, a
greedy algorithm was used to find the first most useful, then
the best two, the best three and so on. Table 3 shows how
RMS prediction error reduces on the training data (with 5-fold
cross-validation) and on the test data as each feature is
introduced in turn.

Table 3. RMS error for non-linear regression model

Feature set RMS Prediction Error (%)

Train Test

STOIFILT alone 25.974 26.144

+ SYSTEM 24.068 23.818

+ LISTENER 22.525 22.705

+ SPROB 22.090 22.299

+ TALKER 22.039 22.421

On the training data, STOIFILT in which correlations are
provided per filter channel provides a 1.1% improvement over
the standard STOI metric alone. The SYSTEM prediction
features, improved performance by a further 1.9%, while the
LISTENER feature improved by a further 1.5%. Sentence text
probability and TALKER prediction together only made a
small further improvement of 0.5% RMS prediction error. A
similar pattern was found on the test data, except that the
introduction of the TALKER features slightly increased error
on the test set. A graph of predictions of the full model
compared to the actual % correct scores on the test data is
shown in Figure 4.

6. Discussion

The analysis of the factors influencing % correct using mutual
intelligibility revealed some unexpected results. The utility of
the listener audiograms was quite small, possibly because the
processing systems had already compensated for audibility by
each listener. Listener performance on the digit triple test was

also not helpful, possibly because those stimuli had not been
corrected for audibility, and so did not provide information
about supra-cochlear influences [7] on intelligibility.

Figure 4. Predictions of the non-linear regression
model on the test data.

Classification of the choice of processing system and
classification of the talker from the supplied audio signals
worked extremely well. It is possible that other models trained
on the audio alone would pick up these particular influences
even without explicit construction of a classifier.

The non-linear regression model showed useful
improvements in prediction error on the training data. The
switch from a single STOI value to one value per filter
channel gave a reduction in error. This suggests there is
information in the different frequency bands not yet being
exploited in the metric. This idea has been previously explored
in [14, 15]. Similarly the fact that the identity of the
processing system is useful in addition to STOI suggests that
there is information about the nature of processing not being
yet captured by STOI. That the identity of the listener is more
useful than their pure-tone average suggests there is still more
to do to characterise listener performance.

The regression model here - trained for a closed set task in
which the listener, talker and processing system came from a
fixed set of choices - could easily be extended to an open set
task. The system characterisation features could simply
represent the type of processing system used, the listener
identity could be replaced by audiogram data, and the talker
characterisation features could represent the type of talker.

In this work we have used RMS error calculated on %
correct as this is the requirement for the challenge. However
we would note that in the prediction of a probability, a
binomial distribution of scores would be expected, with error
better measured in terms of log odds. A proposed method for
this is described in [16].
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