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Abstract. In this work, we study the problem of learning online the
optimal source placement in networks, such that the reward obtained
from a priori unknown network processes is maximized. We consider
graph-based multi-arms bandit problems aimed at optimizing actions on
high-dimensional networks, with a decision-maker that takes sequential
actions over time and observes the resulting reward on the network. The
goal is to optimize the action policy in order to maximize the reward
experienced over time. The main challenges are represented by the un-
certainty about the system and the properties of the network processes,
as well as the high-dimensional search space in large networks. The un-
certainty can be addressed by online learning strategies that infer the
system behavior from past experience. However, the action-reward map-
ping is typically learned with a sublinear regret (i.e., suboptimality in
terms of reward gap), which increases with the dimension of the search
space, leading to highly suboptimal solutions in large networks. To over-
come this limitation, we describe the network processes with an adaptive
graph dictionary model, which leads to sparse spectral representations.
This enables a data-efficient learning framework, whose learning rate
scales the dimension of the spectral representation model instead of the
one of the network. We then propose an online sequential decision strat-
egy that learns the parameters of the spectral representation while opti-
mizing the action strategy. We derive the performance guarantees that
depend on network parameters and show the correlation between the net-
work topology and the learning curve of the sequential decision strategy.
Simulations are then carried out in source placement tasks where the
proposed online learning algorithm outperforms baseline offline meth-
ods that typically separate the learning phase from the testing one. The
results confirm the theoretical findings, and further highlight the gain
of the proposed online learning strategy in terms of cumulative regret,
sample efficiency and computational complexity.

Keywords: First keyword · Second keyword · Another keyword.

1 Introduction
Large-scale interconnected systems (transportation networks, social networks,
etc.), which create services and produce massive amounts of data, are becom-
⋆⋆ Corresponding author: l.toni@ucl.ac.uk
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ing predominant in many application domains. The management of such net-
worked systems is exceedingly hard because of their intrinsic and constantly
growing complexity. Many works have been proposed to tackle this problem
(e.g., model based optimal control, consensus works [25, 26, 31, 45, 46], Bayesian
approaches [2], etc.) but with a limited focus on online learning and control
of large-scale networks. The latter becomes extremely challenging with highly
dynamic and high dimensional network processes that controls the evolution of
states of network nodes. The dynamics introduce uncertainty about the system
environment, which can be addressed by online learning strategies that infer the
system behaviour before taking the appropriate adaptation actions or decisions.

We consider the particular problem of optimal source placement in order to
maximmize a reward function on a network, which depends on network pro-
cesses that are a priori unknown and must be learned online. We address this
challenge by blending together online learning theory [18] and Graph Signal
Processing (GSP) with the key intuition that the latter permits to appropri-
ately model the large-scale network processes via sparse graph spectral repre-
sentations. This generates a data-efficient learning framework, whose learning
rate does not scale with the dimension of the network as in most methods of
the literature, but rather with the dimension of the spectral representation. In-
deed, in classical online learning solutions such as those casted as Multi-arm
bandit (MAB) problems, the main learning steps (i.e., observation, model re-
finement and action selection) happen in the action (or node) domain and do
not scale properly with the search space. The key intuition underpinning our
new framework is to consider these learning steps at the crossroad of the search
space (or node) domain and the latent space (or spectral) domain. An agent
takes sequential decision strategies in the high-dimensional vertex domain based
on the uncertainty of the model estimated in the low-dimensional spectral do-
main. More specifically, we model the search space as a graph and the action
represents the activation of specific nodes on the graph. The resulting reward is
mapped as a resultant signal on the graph, which can be sparsely represented in
the graph spectral domain. We can thus exploit tools from GSP to sparsely rep-
resent high-dimensional signals (rewards or actions) as a combination of graph
basis functions. With respect to classical MAB problems, we provide a novel
theoretical framework that cast sparse graph signal representations into classi-
cal linear MAB problems, where one has to learn a graph spectral model online.
As a result, the learning process boils down to inferring spectral graph represen-
tations with a learning rate that scales with the dimension of their generating
kernels, which is substantially lower than the one of the search space.

This new general online learning framework is key in solving our source opti-
mization problem. We consider settings where a central agent places advertise-
ments on a few strategic users within a large social networks, in such a way that
the spreading/sharing of the ads across the network is maximized. The vertex
domain represents in this case the network of users, with as many nodes as users.
Conversely the spectral domain it is rather the latent space domain, which char-
acterizes the ads evolution over the network via graph spectral filtering. With
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our framework, this online learning problem can be reformulated and reduced to
a linearUCB problem [10] {PF: +short characteristics/benefits in 2 words}. We
then derive the theoretical bound of the estimation of the graph spectral model
and translate it to the MAB upper confidence bound. Finally, we observe that
the optimization method leads to an arm selection problem that is NP-hard,
and we provide a low-complexity algorithm by exploiting the structure of the
optimization function (maximization of a convex function over a polytope). Sim-
ulation results validate the accuracy of the proposed low-complexity algorithm
as well as the gains of the proposed graph-kernel MAB strategy, in terms of
cumulative regret, sample efficiency and computational complexity, when com-
pared to baseline offline methods that typically separate the learning and testing
phases.

The reminder of this paper is as follows {PF: to complete once the whole text
is finalized.}

{PF: clarify name for the proposed algorithm}

2 Graph-Kernel MAB Framework

Let consider a learner (or agent) controlling processes on large scale networks
with no a priori information on their dynamics. Examples can be network cooling
systems [15], opinions spreading across social networks [28], or energy distribu-
tion networks [29] that need to be managed online with no a priori information
about the underlying processes. In this paper, we model these processes as sig-
nals on graphs. Namely, we denote by wwwt the instantaneous reward of aaat, the
action taken by the learner at time t. Assuming that the action is modelled as
an excitation signal on the graph, the reward wwwt = V → RN can modelled as
a function of a graph signal resultant from action taken at t. In Fig. 13 box
“Graph-Kernel MAB problems”, with actions and resultant signal defined
on the weighted and undirected graph G = (V, E ,W ) with V being the vertex
set (|V| = N), E the edge sets, and W the N ×N graph adjacency matrix.

As pointed out in the previous section, learning the mapping aaat → r(rrrt) with
current MAB-based approaches would lead to sublinear regret scaling with the
search or action space. This is not a feasible solution in large-scale systems. In
this work, we propose a graph-kernel MAB problem that exploits the geometry
of the network processes to achieve a better regret scaling. Specifically, we write
r(rrrt) = wwwt and model the mapping aaat → wwwt as an unknown structured function
of the graph Laplacian LLL, i.e., wwwt = f (gL(aaat))+nnnt, with gL(·) being an unknown
generating kernel3 of the graph Laplacian LLL and f(·) being an affine function4.
The generating kernel models the process on graphs and characterizes the effect
of an action in a resulting graph signal, which will impact the mean reward.
Hence, the agent infers the mapping aaat → r (aaat) by learning the graph generating
3 Graph filter defined in the spectral domain of the graph, typically in the form of the

power series of the graph Laplacian {PF: +ref?}.
4 This include many reward shapes such as subsampled or filtered signal as well as

mean value.
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kernel gL(·) in the spectral domain, which is much more sample-efficient than
learning the mapping aaat → r (aaat) directly in the high-dimensional vertex (action)
space.

We now formulate the online learning problem via graph signal processing
tools, and we cast the problem into a linear MAB problem, in which the con-
fidence bound is defined on the graph spectral parameters of the generating
kernel. We model the network process via the graph-based parametric dictio-
nary learning algorithm in [35], with a signal on graph defined as yyy = DDDhhh + ϵϵϵ,
with hhh = [h1, h2, . . . , hN ]T being the latent variables (localized events) defined
on the graph, i.e., the excitation signal defined as actions in our model. The
graph dictionary DDD is defined as DDD = gLLL(·) =

∑K−1
k=0 αkLLL

k [35] and represents
the graph kernel, which incorporates the intrinsic geometric structure of data
domain into the atoms of the dictionary through LLL. Assuming that signals have
a support contained within K hops from vertex n, the resulting signal at vertex
n can be represented as combinations of localized events (e.g., local signals) on
the graph, which can appear in different vertices and diffuse along the graph.
Namely,

yn =

N∑
m=1

hm

K−1∑
k=0

αk(L
k)n,m + ϵn (1)

where (LLLk)n,m is the (m,n) entry of LLLk and we recall that (LLLk)n,m = 0 if
the shortest path between n and m has a number of hops that is greater
than k. Finally, ϵϵϵ = [ϵ1, ϵ2, . . . , ϵN ]T is a Gaussian and N -dimensional random
variable with ϵn ∼ N (0, σ2

e) [10]. With the following matrix notations where
PPP = [LLL0,LLL1,LLL2, . . . ,LLLK−1], with PPP ∈ RN×NK , captures the powers of the Lapla-
cian, and with α =α =α = [α0, α1, . . . , αK−1]

T representing the polynomials coefficients
in the dictionary, we can rewrite the resulting signal as

yyy = gL(hhh;ααα) = PPPIIIK ⊗ hhhααα+ ϵϵϵ = PHPHPHααα+ ϵϵϵ (2)

with IIIK being the K ×K identity matrix, ⊗ the Kronecker product, and HHH =
IIIK⊗hhh, withHHH ∈ RNK×K . Without loss of generality, in the following we assume
that the agent controls the latent variables hhh while learning the polynomial
coefficients ααα. However, the problem formulation could be also extended to the
reverse case in which gent controls the dynamics of the network process via ααα
while learning the input latent variables hhh. Given that the instantaneous reward
is a linear function of the resultant signal yyy, substituting (2) in the reward
expression we achieve the following

www =MMMyyy =MMMPHPHPHααα+MMMϵϵϵ = XXXααα+nnn (3)

where and XXX =MMMPHPHPH, with XXX ∈ RN×K . In short, the reward can be expressed
as a linear combination of the K-degree polynomial ααα and the matrix XXX, which
includes both the graph structure information (via the Laplacian LLL) and the
action hhh. The above reward is important for two key reasons:
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– it has a linear mapping similar to (31), implying that we can solve the online
learning problem with the linUCB theory, (32), where the confidence ellipsoid
is however defined in the graph spectral domain.

– the reward is given by the generating kernel gL(·), which is parametrized by
the vector ααα with dimensionality K. It follows that the agent needs to learn
a K (low) dimensional polynomial instead of learning a high-dimensional
mapping.

3 Online Source Optimisation Problem

We now propose a theoretical bound and algorithmic solution to the online source
optimisation problem using the new framework described in the previous section.
Specifically, we consider the problem where a decision maker needs to select T0
sparse actions out of N , i.e., A = {hhh | ||hhh||0 ≤ T0 ∧ hn ∈ [0, 1], n = 1, ..., N},
where T0 is the maximum sparsity level of the actions. Without loss of gener-
ality, we assume that the rewards associated to consecutive actions are i.i.d..
We then define the mapping function MMM ∈ RN×N as a diagonal binary matrix,
with the n-th diagonal element being 1 if the signal at the node n is observed, 0
if the signal is masked. Applicative examples are influence maximization prob-
lems, such as placing ads to maximize the product appreciation over time with
a network of users (e.g., social network) [34]. Reward would be the users feed-
back or click-on-ads (resultant signal), which realistically is observed only for
some users (MMM being a masking matrix). Another example is the optimization
of cooling systems and/or power networks, in which energy sources need to be
optimized favoring global network heating system. This online source optimiza-
tion on large-scale networks can be formulated as max{hhht}t

∑T
t=1 r(hhht) subject

to the action belonging to the action set A.
The problem can be casted as a stochastic MAB problem, aimed at mini-

mizing the cumulative loss (or equivalently maximize the cumulative reward),
which is seen as the minimization of the pseudo regret RT = Tr(hhh⋆)−

∑T
t=1 r(hhht).

Classical MAB problems achieve a sublinear regret, i.e., RT = O(|A| log T ) [18],
with |A| =

(
N
To

)
, if T0 is the imposed sparsity of hhh, Fig. ??. This regret is not

sustainable in large-scale networks (i.e., with large action space |A|). In the fol-
lowing we formalize the problem in our new framework of Section 2, by placing
sources and observing the resulting signal in the network domain while learning
the model DDD in a sparse graph kernel domain, see Fig. ??.

We now propose a novel algorithm for source optimization using the frame-
work of Section III, which permits to learn in the spectral domain and eventually
to act in the vertex domain. The algorithm is composed of two steps: 1) refine-
ment of the coefficients estimate, 2) selection of the arm given the updated
knowledge of the system.

Step 1: Coefficients estimation Let consider the t-th decision opportunity, when
t−1 decisions have already been taken and the corresponding signals and rewards
have been observed. The training set built over time thus corresponds to sequence
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of pairs {(hhhτ ,wwwτ )}t−1
τ=1, where we recall that p(yyy|hhh,ααα) ∼ N (gL(hhh;ααα), σ

2
eIIIN ),

where the randomness is due to the random noise ϵϵϵτ . For large t, maximiz-
ing the MAP probability p(ααα|yyy,hhh) corresponds to minimize the l2-regularized
least-square estimate of ααα, which leads to the following estimation problem:

α̂ααt : argmin
ααα

t−1∑
τ=1

||MMMPHταPHταPHτα−wwwτ ||22 + λ||ααα||22 . (4)

It follows that

α̂ααt =

[
t−1∑
τ=1

ZZZT
τ ZZZτ + λIIIK

]−1 t−1∑
τ=1

ZZZT
τ wwwτ =

[
ZZZT

1:tZZZ1:t + λIIIK
]−1

ZZZT
1:tWWW t = VVV −1

t ZZZT
1:tWWW t

(5)

with ZZZ1:t = [ZZZ1,ZZZ2, . . . ,ZZZt−1]
T , ZZZτ = MMMPHPHPHτ , WWW t = [www1,www2, . . . ,wwwt−1]

T , and
VVV t = ZZZT

1:tZZZ1:t + λIIIK . In practice, since the training set is built over time, it is a
small set to begin with. Therefore the l2-regularized least-square estimate in (4)
leads to an approximation of the actual polynomial ααα, and this approximated
estimate is refined at each decision opportunity.

Step 2: Action selection Once the estimation of the ααα coefficients is refined, the
decision maker needs to select the best action to take for the t-th decision op-
portunity. Following the theory of linear UCB [10], the decision maker evaluates
the confidence bound Et as an ellipsoid centered in α̂ααt defined such that ααα ∈ Et

with probability 1 − δ for all t ≥ 1, see Fig. 14. Then, the decision maker will
select the best action that maximizes the estimated mean reward, for each pos-
sible generating kernel in the ellipsoid. Formally, the decision maker selects the
action hhh (and therefore XXX =MMMPPPIIIK ⊗ hhh) such that

hhht : argmax
hhh∈A

max
ααα∈Et

XαXαXα . (6)

The intuition is that rather than maximizing the reward r(hhh) = MMMPPPIIIK+1 ⊗
hhhα̂ααt = XXXα̂ααt, the decision maker takes into account the uncertainty on the es-
timate of the polynomial and looks at all possible possible generating kernels
in Et (optimism in face of uncertainty [18]). However, to apply (6), we need to
formally derive the confidence bound Et. This can be derived by the following
two Lemmas (proofs in Appendix 9).

Lemma 1 bounds the matrix VVV t, which defines the regularized least-square
solution as shown in (5). Lemma 1 is key to evaluate the upper confidence bound
in Lemma 2. Specifically, Lemma 2 provides the confidence bound Et such that
Et : {||α̂ααt − ααα∗|| ≤ ct}. It is worth noting that both bounds have explicit de-
pendency on topological features of the graph, such as the sum of eigenvalues
power, as we comment later.

Lemma 1: Suppose ZZZ1,ZZZ2, . . . ,ZZZt ∈ R1×K , with ZZZτ =MMMPPPIIIK ⊗hhhτ and for
any 1 ≤ τ ≤ t − 1, ||hτ ||2F ≤ T0, and ||MMM ||2F ≤ Q. Let VVV t =

∑
τ ZZZ

T
τ ZZZτ + λIIIK
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Algorithm 1 Kernel-UCB
Input:
N : nr of nodes, T0: sparsity level of initial signal hhh, K: sparsity of the basis coefficients
λ, δ: regularization and confidence parameters
R,S: upper bounds on the noise and ααα∗
t = 1
while t ≤ T do

Refine estimate of the coefficients
XXX1:t = [XXX1,XXX2, . . . ,XXXt−1]

T

YYY 1:t = [yyy1, yyy2, . . . , yyyt−1]
T

VVV t =XXXT
1:tXXX1:t + λIIIK+1

α̂ααt = VVV −1
t XXXT

1:tYYY 1:t

Evaluate the confidence bound and select the best action
ct = R

[√
K log(1 + tNT0d/λ) +

√
2 log 1/δ

]
+ λ1/2S

hhht : argmaxhhh∈A

[
MMMPHPHPHα̂ααt + ct||MMMPHPHPH||

VVV −1
t

]
Observe the resulting signal yyyt and the instantaneous reward r(yyyt)
t = t+ 1

end while

with λ > 0, then |VVV t| ≤ [λ+ tdQT0]
K
, with d =

∑
k

∑
l λ

k
l , with λl being the

l-th eigenvalue of the graph Laplacian.

Lemma 2: Assume that VVV t =
∑

τ ZZZ
T
τ ZZZτ + λIIIK , define wwwτ = ZZZτα∗α∗α∗ + ηηητ ,

with ZZZτ = MMMPPPIIIK ⊗ hhhτ and with ηηηt being conditionally R-sub-Gaussian, and
assume that ||ααα∗||2 ≤ S, and ||hhhτ ||2F ≤ T0. Then, for any δ > 0, with probability
at least 1− δ, for all t ≤ 0, ααα∗ lies in the set

Et :

{
ααα ∈ R1×K : ||α̂ααt −ααα||VVV t

≤ R

[√
K log(λ+ tdQT0) + 2 log(λ−1/2δ)

]
+ λ1/2S

}

with d =
∑

k

∑
l λ

k
l , with λl being the l-th eigenvalue of the graph Laplacian and

α̂ααt is the l2-regularized least-square estimate of ααα when t training samples are
available.

Defining the confidence bound Et such that Et : {||α̂ααt − ααα∗|| ≤ ct}, the
maximization in (6) becomes (see Appendix 12 for details)

hhht = argmax
hhh∈A

max
α∈Et

XαXαXα

= argmax
hhh∈A

XαXαXα+ ct

√
XXXVVV −1

t XXXT

= argmax
hhh∈A

XαXαXα+ ct||XXX||VVV −1
t

= argmax
hhh∈A

[
MMMPHPHPHα̂ααt + ct||MMMPHPHPH||VVV −1

t

]
(7)
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with ct = R
[√

K log(λ+ tdQT0) + 2 log(λ−1/2δ)
]
+ λ1/2S following Lemma 2.

This optimization characterizes the Step 2, i.e., the action selection. In Algorithm
1, we summarize the main steps of the proposed kernel-UCB strategy.

We now derive the regret bound. From [38], we have

RT ≤ 2(cT + 1)

√√√√T

T∑
t=1

min
(
1, ||XXX||2

V −1
t

)
(8)

and from Lemma 11 in [1], we also have

min
(
1, ||XXX||2

V −1
t

)
≤ 2 log(|VVV t|/λIIIK+1|) (9)

Substituting (9) in (8) and applying Lemma 1, we get

RT ≤ 2(cT + 1)

√√√√T

T∑
t=1

2K log

(
1 +

NT0d

λ

)
. (10)

4 Online Source Optimization Algorithm

The methodology proposed in the previous Section entails two main optimiza-
tion/learning steps that need to be solved. While the solution to the optimization
in Step 1 has a closed form solution, i.e., equation (5), in Step 2 the optimiza-
tion problem in (7) needs to be solved efficiently. This optimization becomes
computationally expensive in large-scale graphs, see Appendix C, therefore in
the following we propose a computationally effective optimization algorithm. We
first rewrite the problem as follows

max
hhh

DDDhhh+ ct

√
XXXVVV −1

t XXXT

s.t. h(n) ∈ [0, 1], ∀n
||hhh||0 ≤ T0 (11)

where the constraints for hhh are explicitely related to A, and where DDDhhh = XαXαXα,
according the notation introduced in Sec. 2. Decomposing VVV −1

t as VVV −1
t = LLLTLLL,

we have XXXVVV −1
t XXXT = ||LLLXXXT ||22. This leads to the following optimization problem

max
hhh

DDDhhh+ ct||LLL ∗ bbbT ⊗ hhhT ||2

s.t. h(n) ∈ [0, 1], ∀n
||hhh||0 ≤ T0 (12)

where we have used XXX =MMMPPPIIIK+1 ⊗ hhh = bbb⊗ hhh. The above problem maximizes
a convex objective function over a polytope, defined by both constraints. It can
be shown that, if the objective function has a maximum value on the feasible
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region then it is at the edges of the polytope. Therefore, the problem reduces to
a finite computation of the objective function over the finite number of extreme
points.

However, in the case of large networks, this computation could be too ex-
pensive. Therefore, we propose an algorithm that walks along the edges of the
polytope. The intuition is similar to the one of the simplex algorithm or any hill
climbing algorithm. Let consider an iterative algorithm, where at each iteration
the N variables hn, with n = 1, . . . , N , are subdivided into basic variables and
non-basic variables. The former are the ones such that hn = 1, while the non
basic variables are the remaining zero sources. At each iteration we perform the
operation of moving from a feasible solution to an adjacent feasible solution by
swapping a basic variable with a non basic one (similar to the pivoting operation
in the simplex algorithm). We move in such a way that the objective function
always increases. We then stop the algorithm either after a maximum number
of iteration steps or when convergence has reached.

We now describe the algorithm in more details. Let define

hhh(t−1) = [h
(t−1)
1 , h

(t−1)
2 , . . . , h

(t−1)
N ]

be the optimal variable at the iteration step i − 1. Let Bt = {n|h(t−1)
n = 1} be

the set of the indices of basic variables at t. Let then denote by J the objective
function J(hhh) = MMMPPPIIIK+1 ⊗ hhhα̂ααt + ct||LLL ∗ bbbT ⊗ hhhT ||2 and by ∂J/∂hn be the
partial derivative of J with respect the nth variable. Finally, note that vertices
are adjacent if they share all but one non-basic variable. Equipped with the
above notations and definitions, we now state the following Lemmas (further
explained in Appendix 10).

Lemma 3: One vertex is optimal if there is no better neighboring vertex.
Lemma 4: From a vertex, moving to one of the neighboring nodes in the

direction of the greatest gradient leads to a no-worse objective function. Let
h
(t)
in and h

(t)
out be the variable that enters and leaves the set of basic variables,

respectively, at the t-th iteration. These variables are evaluated as follows

in = arg max
n|hn /∈Bt

{
∂J

∂hn

∣∣∣
hhh(t−1)

}
, out = arg min

n|hn∈Bt

{
∂J

∂hn

∣∣∣
hhh(t−1)

}
Therefore, given a vertex hhh(t−1), at the t-th iteration the algorithm will move

to the neighboring vertex hhh(t) defined as follows:

h
(t)
in = 1, h

(t)
out = 0, and h(t)n = h(t−1)

n ,∀n ̸= in, out.

As shown in Algorithm 2 that solves (12), if the swap variable leads to an im-
provement of the objective function, i.e., if J(hhh(t)) > J(hhh(t−1)), then we proceed
to the next step. Otherwise, we set the optimal source signal hhh⋆ = hhh(t−1) and we
break the iterative loop. Further details are provided in Algorithm 2, together
with the initialization step. Rather than a randomly generating starting point,
we consider the one with the T0 variables having the maximum partial derivative
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Algorithm 2 Algorithm for Action Selection
Input:
number of iterations MaxIter, sparsity level T0, graph topology (and therefore LLL
and PPP ), reward mask MMM , estimated polynomial α̂αα, confidence bound c.
Output:
optimal source signal hhh⋆

Initialization:
Definition of the objective function J(hhh) =MMMPPPIIIK+1 ⊗ hhhα̂αα+ c||LLL ∗ bbbT ⊗ hhhT ||2
Evaluation of the partial derivatives an = ∂J

∂hn

∣∣
ununun

, ∀n
Selection of hhh(0): h(0)

n = 1 if an belongs to the T0 largest partial derivatives.
t = 1
for t ≤MaxIter do

Set Bt = {n|h(t−1)
n = 1}

Evaluate the IN and OUT variables:

in = arg max
n|hn /∈Bt

{
∂J

∂hn

∣∣∣
hhh(t−1)

}
, out = arg min

n|hn∈Bt

{
∂J

∂hn

∣∣∣
hhh(t−1)

}
Set hhh(t) = hhh(t−1)

Set h
(t)
in = 1, h

(t)
out = 0

if J(hhh(t)) ≤ J(hhh(t−1)) then
hhh⋆ = hhh(t)

break
end if
t← t+ 1

end for

an = ∂J
∂hn

∣∣
ununun
,∀n, with ununun being a N -dimensional vector all elements null but the

n-th, which is set to 1.
The remaining step is the evaluation of the partial derivatives. We recall that

the objective function is given by

J(hhh) =MMMPPPIIIK+1 ⊗ hhhα̂αα︸ ︷︷ ︸
F (hhh)

+c ||LLL ∗ bbbT ⊗ hhhT ||2︸ ︷︷ ︸
G(hhh)

.

We now evaluate the partial derivative for each of the two components of the
objective function. Namely:

∂F (hhh)

∂hn
=

∂

∂hn
(MMMPPPIIIK+1 ⊗ hhhα̂αα)

=MMMPPP
∂

∂hn
(IIIK+1 ⊗ hhh) α̂αα

=MMMPPPIIIK+1 ⊗ 111nα̂αα (13)
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∂G(hhh)

∂hn
= ||LLL ∗ bbbT ⊗ hhhT ||2

=

(
LLL ∗ bbbT ⊗ hhhT

)
||LLL ∗ bbbT ⊗ hhhT ||2

∂
(
LLL ∗ bbbT ⊗ hhhT

)
∂hn

=

(
LLL ∗ bbbT ⊗ hhhT

)
||LLL ∗ bbbT ⊗ hhhT ||2

(
LLL ∗ bbbT ⊗ 111Tn

)T (14)

This leads to the following partial derivative

∂J(hhh)

∂hn
=MMMPPPIIIK+1 ⊗ 111nα̂αα+

(
LLL ∗ bbbT ⊗ hhhT

)
||LLL ∗ bbbT ⊗ hhhT ||2

(
LLL ∗ bbbT ⊗ 111Tn

)T (15)

In summary, the proposed algorithm requires the evaluation of the partial
derivative (N operations) instead of exhaustively evaluating the objective func-
tion in (12) at all

(
N
T0

)
possible edges. In the following section, we empirically

validate the performance of the above algorithm. {PF: should we give a name to
the proposed algorithm, wrap up on a short description (summary of integration
of above steps in 2 words), and make connections with results later - maybe be
helpful to clarify - see comments later in Results section.}

5 Simulation Results

5.1 Settings

We now evaluate experimentally our proposed online source optimization al-
gorithm that is based on the new Graph-Kernel MAB framework. As bench-
mark solution, we propose an algorithm denoted as Act After Learning (AAL),
in which the exploration and the exploitation phases are separated, while our
proposed method finds the best tradeoff between exploitation and exploration
automatically. The key intuition is that it first gathers a training set (in the
first TL decision strategies) and therefore experience a reward as a function of
random actions. Then, after a training phase of TL decision opportunities, the
generating kernel is estimated and the best arm is selected. In the remaining
decision opportunities the best action is taken and the reward observed.

We carry out experiments on Barabási-Albert model (BA) graphs [4], on ra-
dial basis function (RBF) random graphs, and on non-synthetic graphs (e.g.,
Minnesota graph5). For BA graphs, the network begins with an initial con-
nected network of m0 = 10 nodes. At each iteration, one node is added to
the network and it is connected to m ≤ m0 existing nodes. Connections to
existing nodes are built following a preferential attachment mechanism, which
eventually builds a scale-free network. For the RBF model, we generate the
coordinates of the vertices uniformly at random in the unit square, and we
set the edge weights based on a thresholded Gaussian kernel function so that
W (i, j) = exp(−[dist(i, j)2)/2σ) if the distance between vertices i and j is
5 Available at https://lts2.epfl.ch/gsp/.
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smaller than or equal to T , and zero otherwise. We further set σ = 0.5 and
we vary T to change the edge density of the generated graphs.

If not specified otherwise, we consider that network processes take the form
of diffusion processes on the graphs described above. We then consider that each
signal on the graph is characterized by the source signal, the generating kernel
and an additive random noise ϵt with zero mean and variance σ2

e (i.e., R = σe in
the spectral UCB). {PF: maybe we can add the formulation of the graph signal
in the case of diffusion processes?} The remaining parameters of the sequential
decision strategy are set as λ = 0.01, δ = 0.01. {PF: should we talk about M
too?}

5.2 Performance of Kernel-UCB

We now show the performance of our online learning solution with respect to
the AAL baseline algorithm. We study the performance of the proposed Kernel-
UCB, assuming that the optimization in Step 2 is solved by Algorithm 2. First,
a randomly generated graph (RBF model) with N = 100 nodes is considered, in
the case of diffusion process acting on the graph with τ = 10 and with σ2

e = 10−2.
Fig. 1 depicts the cumulative regret over time (in terms of decision opportunities)
for the considered graph. Each point is averaged over 100 realizations (when
at each realization both the graph and the noise of the signal on graph are
generated). The proposed Kernel-UCB is provided for both the case with and
without confidence bound, i.e., ct as evaluated from Algorithm 1, or ct = 0. Then,
the Kernel-UCB is compared to the baseline algorithm with different learning
time TL, namely TL = 10 and TL = 20. Note the longer is the learning time, the
better is the estimate of the polynomial ααα. But also the longer the suboptimal
phase, since during the learning phase actions are selected at random. From
Fig. 1, we observe that the Kernel-UCB (both with and without confidence
bound) outperforms the baseline algorithms. We also notice that the baseline
with TL = 10 leads to an estimate of the polynomial ααα that is not accurate
enough. Therefore, after the learning phase the decision-maker selects future
actions with a wrong estimate of ααα. This leads to a large level of suboptimality
and therefore to a rapidly increasing cumulative regret.

In Fig. 2, the cumulative regret is provided as a function of time for the same
settings of Fig. 1, but with τ = 10 and τ = 0.5 for the diffusion process. Larger τ
means a more diffused (and therefore more informative) resulting signal. There-
fore, in the case of τ = 10 the estimate of the polynomial ααα is less challenging
than the case of diffusion process with τ = 0.5. This can be observed by two
behaviors: 1) a learning time of 20 decision opportunities does not improve the
estimation with respect to a learning framework of 10 decision opportunities.
This is motivated by the fact that the two AAL algorithms have the same slope
of the cumulative regret. 2) The cumulative regret evaluated with the Kernel-
UCB with ct = 0 almost overlaps with the curve obtained from Kernel-UCB with
confidence bound. This means that taking into account the uncertainty of the
estimation is less beneficial in Fig. 2(a), and this is due to the better estimate of
the polynomial. On the contrary, in the case of a more localized process, namely
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Fig. 1. Cumulative regret vs. time for randomly generated graphs with N = 100,
diffusion process (with τ = 5) and sparsity level T0 = 5.
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Fig. 2. Cumulative regret vs. time for randomly generated graphs with N = 100,
diffusion process and sparsity level T0 = 5.

τ = 0.5, the estimation process is more challenging, hence taking into account
the confidence bound leads to a better selection of the actions hhh over time.

We further illustrate in Fig. 3 that optimal placement of sparse resources
in high dimensional networks is not necessarily an intuitive step. It depicts the
optimal source signal computed by our algorithm {PF: it is computed by oure
algorithm, right?} and the resulting signal for a randomly generated graph (RBF
model) with N = 100, and sparsity level T0 = 4. In Fig. 3(a), the optimal signal
is depicted in red, while the mask signal used to evaluate the reward is depicted
in blue. The mask M is randomly generated and it covers 20% of the nodes. It is
worth noting that the optimal signal is placed on nodes that do not necessarily
belong to the mask and do not necessarily appear to be central in the graph.
However, this results in the optimal reward signal depicted in Fig, 3(b).
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(a) Source signal (red) and mask
signal M (blue)
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(b) Resulting Signal

Fig. 3. Optimal source signal and resulting signal for a randomly generated graph
(RBF model) with N = 100, and sparsity level T0 = 4.

5.3 Empirical Reward-Complexity Tradeoff

We validate now the proposed algorithm for solving the action selection Step,
which is a priori NP-hard. We empirically compare the numerical solver (FMI-
CON) adopted to optimally solve Step 2 and the proposed Algorithm 2 {PF:
maybe clear is we give a name to each version of the algorithm, and then use
it in results discussion - possibly figures - hopefully without need to change the
labels.}. Fig. 4(a) depicts the CPU time required by both solvers as a function
of the number of nodes N for a randomly generated graph (RBF model), with
sparsity level T0 = 5. The achieved reward after 100 decision steps is also de-
picted in Fig. 4(b). Results are averaged over 50 generated graphs. As expected,
the problem in (28) is NP-hard (maximization of a convex function under con-
vex -or affine- constraints) and the solver’s complexity grows exponentially with
N . Conversely, the complexity of Algorithm 2 grows linearly with N , as shown
by Fig. 4(a). From Fig. 4(b), it can be observed that the proposed solution still
achieves the optimal solution in terms of reward. Note that the reward is not
monotonic with N because the density of the graph is not necessarily kept con-
stant for different N values. Similar conclusions can be observed from Fig. 5,
where both CPU time and reward are provided as a function of the edge density
of random graphs with 80 nodes. Results are averaged over 50 generated graphs.

6 Related Work

{PF: to be consolidated, possibly also adding pieces from the Bandits Overview
section in Appendix.}

In decision making strategies (DMS), an agent optimises sequential actions
in a way that maximizes the expected reward, when each action’s and reward’s
properties are uncertain a priori. This uncertainty can be reduced over time
by learning from experience, striking the well known exploration-exploitation
tradeoff. When network or user dynamics are unknown, network management
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Fig. 4. Comparison of the optimal solver and the proposed Algorithm 2 for random
graphs (RBF model) with different number of nodes, and T0 = 5.
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Fig. 5. Comparison of the optimal solver and the proposed Algorithm 2 for random
graphs (RBF model) with N = 80 and different sparsity levels.

and optimization problems can be cast as DMS, in which actions represent re-
source allocation, or source selection strategies [3, 32]. The agent learns a priori
unknown stochastic network characteristics while acting, and eventually con-
verges over time to the best action strategy, i.e., the decision that optimizes the
network objective function. The key challenge of these networked DMS problems
is usually the high dimension of the search and observation spaces. MAB prob-
lems are classical DMSs under uncertainty; they are well understood in small-
scale environments [9] and they can theoretically be applied to networked bandit
settings [11, 17]. However, the regret (action suboptimality) of these problems
increases fast with the ambient dimension, which makes the problem intractable
in scenarios with infinitely large strategy sets, such as large-scale network opti-
mizations or recommendation systems [18, 42]. Scalability can be addressed by
reducing the dimensionality of the search space by clustering arms for exam-
ple [7, 8, 12, 17, 20–22], but these methods usually perform poorly in irregular
datasets [44], typical of most of the real-world problems. This can be addressed
by structural learning [5, 24, 33, 37, 41], which identifies and leverages the struc-
ture underneath data in optimisation problems where the outputs have seman-
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tically rich structure. For example, when MAB problems are applied to online
recommendation systems, the social network underpinning users identify users
similarity in terms of arms reward. Exploiting this hidden structure improves
the efficiency of the learning, however the algorithm still experiences a sublinear
regret that scales with the number of network nodes. In the context of decision-
making strategies for network processes, it stays an open challenge to design
an online learning framework able to capture efficiently the dynamic network
processes with a regret that scales properly in high-dimensional regimes.

To the best of our knowledge, this is the first work exploiting GSP tools to
handle the irregular network structure of the online learning problems in complex
systems. Moreover, no a priori assumption is imposed on the network processes
so that our methodology applies to any network processes that can be sparsely
represented by graph kernel functions.

This work opens the door to a main stream of research devoted to structured
online learning on graphs, where GSP tools are used to learn graph signal models
in order to develop new effective decision-making strategies. Note that GSP [27]
has been used to capture structural properties of network processes, such as
node centrality [14] and community detection [40] for network problems such
as diffusion dynamics, pricing experiments, and opinion dynamics. In [40], an
unknown network process is modeled as a graph filter that is excited by a set of
unknown low-rank inputs/excitations in order to detect communities. Similarly,
generative low-pass graph filters have been used for power systems modeling [30].
Despite the growing literature in using GSP tools to infer structural processes, to
the best of our knowledge, no work so far has however focused on learning while
acting, i.e., inferring network process models while taking sequential actions on
those networks.

7 Conclusions

{PF: to consolidate}
In this work, we study network optimization problems under uncertainty in

the case in which one action (or graph signal) leads to a mean reward func-
tion of the resulting signal on the graph. The challenge is to optimize sequential
actions without knowing a priori the network process that drives the mapping
between action and mean reward. The key intuition is to infer the network
process form by learning in the (low-dimensional) graph-spectral domain, and
exploit this knowledge while optimizing the actions in the (high-dimensional)
vertex domain. This allows us to find the best tradeoff between exploitation
(optimization based on the current knowledge of the system) and exploration
(suboptimal actions that might reveal unknown behaviors of the system) despite
the large dimensionality of the network online learning problem. As main contri-
butions, we cast the network optimization problem under uncertainty as a linear
MAB problem, which infers a K-dimensional polynomial that defines the graph
generating-kernel while taking actions over time on the network-graph. We then
derive the theoretical bound of the estimation of the graph spectral model and
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translate it to the MAB upper confidence bound. We show both mathematically
and empirically that more connected graphs and sparser signals lead to a more
accurate estimation of the network processes. Finally, we observe that the op-
timization method leads to an arm selection problem that is NP-hard, and we
provide a low-complexity algorithm by exploiting the structure of the optimiza-
tion function. Beyond proposing a data-efficient solution to problems of network
optimization, this work aims at opening the gate to new research directions in
which graph signal processing tools are blended to online learning frameworks
to exploit structural knowledge of network optimization problems.

{PF: Overall, 2 pages should still be cut, maybe by shortening text here and
there, consolidating further Sections 2 and 3, or removing a few results (not too
much...)}

8 Ethical Statement
To be completed

Ethics is one of the most important topics to emerge in machine learning
and data mining. We ask you to think about the ethical implications of your
submission such as, e.g., related to the collection and processing of personal
data, the inference of personal information, or the potential use of your work for
policing or the military. which will be taken into consideration by the reviewers.As
part of your submission, you are asked to include an ethical statement up to one
page in length that discusses any ethical implications of your work.

9 Proof of Lemmas
Lemma 1: Suppose ZZZ1,ZZZ2, . . . ,ZZZt ∈ R1×(K), with ZZZτ = MMMPPPIIIK ⊗ hhhτ and for
any 1 ≤ τ ≤ t − 1, ||hτ ||2F ≤ T0, and ||MMM ||2F ≤ Q. Let VVV t =

∑
τ ZZZ

T
τ ZZZτ + λIIIK

with λ > 0, then |VVV t| ≤ [λ+ tdQT0]
K
, with d =

∑
k

∑
l λ

k
l , with λl being the

l-th eigenvalue of the graph Laplacian.

Proof : As shown in [1] the following inequality holds |VVV t| ≤ (Tr(VVV t)/K)K .
We now look at the trace of VVV t:

Tr(VVV t) = Tr(λIIIK) + Tr

(
t∑

τ=1

ZZZT
τ ZZZτ

)
= Kλ+

t∑
τ=1

Tr(ZZZT
τ ZZZτ ) (16)

Tr(ZZZT
τ ZZZτ ) = ||ZZZτ ||2F = ||MMMPHPHPH||2F ≤ Q ||PPP ||2F ||IIIK ||2F ||hhhτ ||2F

= KQ||PPP ||2F ||hhhτ ||2F ≤ KNT0||PPP ||2F (17)

where the first inequality comes from ||MMM ||2F ≤ Q, and the last inequality comes
from the imposed sparsity level on hhh and from the condition |hn| ≤ 1. Finally,
we look at the Frobenius norm of PPP as follows

||PPP ||2F =
∑
k

||Λk||2F =
∑
k

∑
l

λkl = d (18)
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where Λ is the diagonal matrix with entries the graph Laplacian eigenvalues λl.
Thus, we can bound the trace of VVV t as

Tr(VVV t) ≤ Kλ+ tKQT0d (19)

and then derive the inequality of Lemma 1. □

Lemma 2: Assume that VVV t =
∑

τ ZZZ
T
τ ZZZτ + λIIIK , define wwwτ = ZZZτα∗α∗α∗ + ηηητ ,

with ZZZτ = MMMPPPIIIK ⊗ hhhτ and with ηηηt being conditionally R-sub-Gaussian, and
assume that ||ααα∗||2 ≤ S, and ||hhhτ ||2F ≤ T0. Then, for any δ > 0, with probability
at least 1− δ, for all t ≤ 0, ααα∗ lies in the set

Et :

{
ααα ∈ R1×K : ||α̂ααt −ααα||VVV t

≤ R

[√
K log(λ+ tdQT0) + 2 log(λ−1/2δ)

]
+ λ1/2S

}
with d =

∑
k

∑
l λ

k
l , with λl being the l-th eigenvalue of the graph Laplacian and

α̂ααt is the l2-regularized least-square estimate of ααα∗ when t training samples are
available.

Proof: We now study the LOWER bound on the estimated α̂ααt, recalling that
the vector is estimated observing the masked signal wwwt. Similarly to [1], using

α̂ααt = VVV −1
t ZZZT

1:tỸ̃ỸY
T
1:t = VVV −1

t ZZZT
1:t (ZZZ1:tααα

⋆ + ηηη1:t) = VVV −1
t ZZZT

1:tηηηt + VVV −1
t ZZZT

1:tZZZ1:tααα
⋆ + λVVV −1

t ααα⋆ − λVVV −1
t ααα⋆

= VVV −1
t ZZZT

1:tηηη1:t + VVV −1
t

(
ZZZT

1:tZZZ1:t + λIIIK+1

)
ααα⋆ − λVVV −1

t ααα⋆

= VVV −1
t ZZZT

1:tηηη1:t +ααα⋆ − λVVV −1
t ααα⋆ . (20)

Let’s now consider a vector x ∈ RK×1, we get

xxxT α̂ααt − xxxTααα⋆ = xxxVVV −1
t ZZZT

1:tηηη1:t − λxxxVVV −1
t ααα⋆ = ⟨xxx,ZZZT

1:tηηη1:t⟩V −1
t

− λ⟨xxx,ααα∗⟩V −1
t

(21)

Using Cauchy-Schwarz, we get

|xxxT α̂ααt − xxxTααα∗| ≤ ||xxx||V −1
t

(
||ZZZT

1:tηηη1:t||V −1
t

+ λ||ααα∗||V −1
t

)
≤ ||xxx||V −1

t
R

√
2 log

|VVV t|1/2
δ|λIIIK |1/2

+ λ1/2S (22)

where the last inequality comes from Theorem 1 in [1], under the condition that
ηt is conditionally R-sub-Gaussian for some R ≥ 0, and that ||ααα∗||2 ≤ S. In
our case, ηηη ∼ N (0, Nσ2

e), which means that it is a R-subgaussian variable with
R =

√
Nσe.

Using xxx = VVV t(αααt −ααα⋆) and ||VVV t(αααt −ααα⋆)||VVV −1
t

= ||αααt −ααα⋆||VVV t
, we get

||αααt −ααα⋆||2VVV t
≤ ||VVV t(αααt −ααα⋆)||V −1

t

(
R

√
2 log

|VVV t|1/2
δ|λIIIK+1|1/2

+ λ1/2S

)
. (23)
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Diving both sides by ||αααt −ααα⋆|| we obtain

||αααt −ααα⋆||VVV t
≤ R

√
2 log

|VVV t|1/2
δ|λIIIK+1|1/2

+ λ1/2S (24)

Applying Lemma 1, we obtain

||α̂ααt −ααα||VVV t
≤ R

[√
K log(λ+ tdQT0) + 2 log(λ−1/2δ)

]
+ λ1/2S (25)

This proves the confidence bound defined in Lemma 2. □

10 Proof of the Sub-Optimal Algorithm

In the following, we better motivate the Algorithm 2 proposed to solve (12). The
problem formulation in (12) has a convex objective that needs to be maximized
over a polytope. Because of the binary constraint on the hhh variable, the optimal
solution will lie on one of the vertices of the boundary. Therefore, visiting all
vertices would lead to the optimal solution. This however is not always practical
in large graphs. Therefore, we propose an algorithm to jump from one vertex to
the other in such a way that the objective function always increases and ideally
the optimum point is reached within the maximum number of iteration allowed
by the algorithm.

We propose an iterative procedure. At each iteration the algorithm selects one
vertex among the ones neighboring to the node selected at the current iteration.
Note that vertices are adjacent if they share all but one non-basic variable. We
then consider the following Lemmas.

Lemma 3: One vertex is optimal if there is no better neighboring vertex.
Proof: This follows directly from the definition of convex function. Namely, the
point of global optimum will be the one that maximizes the objective function.
Therefore, moving out in any direction from the optimum point (i.e., visiting
any neighboring node) will not increase the objective function. At the same time,
any other point which is not optimum will always have at least one neighboring
node that leads to a no-worse objective function. □

The missing step is how to select the best direction to move from one iteration
to the other. This is explained by the following Lemma.

Lemma 4: From a vertex, moving to one of the neighboring nodes in the
direction of the greatest gradient leads to a no-worse objective function. Let denote
by h(i)in and h(i)out be the variable that enters and leaves the set of basic variables,
respectively, at the i-th iteration. These variables are evaluated as follows

in = arg max
n|hn /∈Bt

{
∂J

∂hn

∣∣∣
hhh(i−1)

}
, out = arg min

n|hn∈Bt

{
∂J

∂hn

∣∣∣
hhh(i−1)

}
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Proof: We first consider a simple case of N = 3 with the three possible solutions
hhhA = [1 0 0], hhhB = [0 1 0], hhhC = [0 0 1], see Fig. 6(a). Let also assume that
J(hhhC) < J(hhhB) < J(hhhA) and that hhhC is the starting node. The algorithm
needs to decide if moving in the direction of hhhB and hhhA. From the definition of
gradient, the gradient of J evaluated in hhhC will be pointing toward hhhA rather
than hhhB (since the improvement of the objective function if larger is moving
in this direction). Let make the approximation of having a continuous domain
(rather than a discrete one) highlgihted by the green shaded area in Fig. 6(a)
and assume to run the gradient ascend to find the optimal solution. The gradient
from hhhC will be pointing to any region highlighted in red in Fig. 6(a) since at
last the gradient ascend will be point toward hhhA. This that that the variable at
the iteration i+ 1 would be

hhh(i+1) = hhhC + α

(
∂J

∂x
iii+

∂J

∂x
jjj +

∂J

∂x
kkk

)
.

and to move toward hhhA, the following condition needs to be respected

∂J

∂x
≥ ∂J

∂y

x

y

z

feasible region

A

B

C

(a) graphical representation

[11110]

[11101]

[1101

[01111]

[10111]

(b) pseudo-code

Fig. 6. Visualization of the feasible region for a three dimensional domain. (a) Red
contour delimit the area in which the gradient will be pointing to. (b) white circle
denotes the starting node (or vertex). Green vertices are the candidate ones.

This condition can be extended to a more general case with a starting node
hhh(i) = [h

(i)
1 , h

(i)
2 , . . . , h

(i)
N ] at the i-th iteration. Without loss of generality we

assume that the first T0 variables are the basic variables, this means

hhh(i) = [h
(i)
1 , h

(i)
2 , . . . , h

(i)
T0︸ ︷︷ ︸

basic variables

, h
(i)
T0+1, . . . , h

(i)
N︸ ︷︷ ︸

non-basic variables

] = [ 1, 1, . . . , 1︸ ︷︷ ︸
basic variables

, 0, . . . , 0︸ ︷︷ ︸
non-basic variables

]

Since neighboring nodes differs in the non-basic variables only for one element,
it means that only one of the N − T0 remaining variables can become a basic
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variable. Let consider that the candidates neighboring vertices are

hhha = [0, 1, . . . , 1︸ ︷︷ ︸
T0

, 1, 0, . . . , 0︸ ︷︷ ︸
N−T0

]

hhhb = [0, 1, . . . , 1︸ ︷︷ ︸
T0

, 0, 1, . . . , 0︸ ︷︷ ︸
N−T0

]

. . .

hhhl = [0, 1, . . . , 1︸ ︷︷ ︸
T0

, 0, 0 . . . , 1︸ ︷︷ ︸
N−T0

]

This means that we simply need to select the direction out of N − T0 that
maximizes the gain in terms of objective function. This translates in the following
condition

max
n|hn /∈Bt

{
∂J

∂hn

∣∣∣
hhh(i)

}
. (26)

The above condition determines a T0-dimensional plane with T0possible vertices
(green vertices in Fig. 6(b)). To select the best one, we identify the least promis-
ing direction among the ones of the basic variables in hhh(i). This translates in the
second condition imposed in Algorithm 2, which is

min
n|hn∈Bt

{
∂J

∂hn

∣∣∣
hhh(i−1)

}
(27)

The motivation is the symmetric one of above, but this time we look for the
least convenient direction since we look for the variable to abandon the set of
basic variables. Therefore, we seek the direction that minimizes the gradient. □

11 Optimal Solution for (7)

The problem in (12) can also be solved as follows. We relax the sparsity constraint
with a l1-norm constraint, leading to the following equivalent problem

max
hhh

DDDhhh+ ct||LLL ∗ bbbT ⊗ hhhT ||2

s.t. h(n) ∈ [0, 1], ∀n

||hhh||1 =

N∑
n=1

h(n) ≤ T0 (28)

The above problem is a maximization of a convex problem over a polytope
and can be globally solved by solvers for constrained nonlinear optimization
problems, as branch-and-bound search (e.g., bmibnb in Matlab) or sequential
quadratic programming (SQP). The branch-and-bound solver is based on a spa-
tial branch-and-bound strategy, based on linear programming relaxations and
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convex envelope approximations. Relaxed problems are solved to evalute lowe
and upper bounds. Given these lower and upper bounds, a standard branch-and-
bound logic is used to select a branch variable, create two new nodes, branch,
prune and navigate among the remaining nodes. On the other side, the sequential
quadratic programming is an iterative procedure which models the originating
problem by a quadratic programming subproblem at each iteration. In both
cases, the problem stays NP-hard and the solvers require exponential computa-
tional complexity to achieve the optimal solution. Specifically, it can be observed
that the cardinality of the decision variables |A| is

(
N
T0

)
and the complexity of

the solver grows exponentially with |A|.

12 UCB Derivation

By least square regression, we estimate the mean reward, but we can also esti-
mate the variance of reward, denoted by σ2

α, i.e. the uncertainty due to parameter
estimation error. We can then define the UCB to be c standard deviations above
the mean by adding on a bonus for uncertainty, cσα to the mean reward. This
leads to maximize the reward summed on the UCB.

Being a linear regression, the parameter covariance is V −1
t . being the re-

ward linear in features (XXXααα), we obtain a quadratic reward variance XXXTV −1
t XXX.

The geometric interpretation is that we maximize the reward for any parameter
vector α within an ellipsoid Et defined by c. It follows

hhht = argmax
hhh∈A

max
α∈Et

XαXαXα

= argmax
hhh∈A

(XαXαXα+ ctσXα)

= argmax
hhh∈A

(
XαXαXα+ ct

√
XXXVVV −1

t XXXT

)
= argmax

hhh∈A
XαXαXα+ ct||XXX||VVV −1

t

= argmax
hhh∈A

[
MMMPHPHPHα̂ααt + ct||MMMPHPHPH||VVV −1

t

]
(29)

with ct = R
[√

K log(λ+ tdQT0) + 2 log(λ−1/2δ)
]
+ λ1/2S following Lemma 2.

13 Additional Experimental Results

13.1 Influence of the Graph Topology

We are now interested in understanding how much the graph topology correlates
to the performance of the learning process. To do this, we first consider a ran-
domly generated training set of 300 signals, and we then estimate the accuracy
of the learned polynomial α. Implicitly, the better the estimate, the better the
decision maker behaviour. To measure the accuracy of the estimate, we evaluate
the error on the resulting signal given the action hhh of test signals. Basically we
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evaluate (1/|YTest|)
∑

i ||yyyi−Dhhhi||22/||yyyi||2, where |YTest| is the cardinality of the
testing set.

The key intuition we have from Lemma 2 is that the confidence bound (and
therefore the uncertainty on the estimation) increases with the sparsity level T0
as well as the parameter d, which represents the power sum of the eigenvalue of
the Laplacian6. Specifically,

d =

K∑
k=0

N∑
l=1

λkl ≤ Ñ

K∑
k=0

λkmax = Ñ
1− λk+1

max
1− λmax

(30)

where Ñ is the number of eigenvalues considerably larger than 0, and λmax the
maximum eigenvalue of the graph Laplacian. Note that the last equality holds
from the geometric series.

We are therefore interested in studying how much the estimation error de-
pends on the connectivity of the graph, and therefore on the Laplacian. We
consider graphs generated with the RBF model. By changing the threshold pa-
rameter T , we generate more or less connected graphs. In Fig. 7, the graph
topologies for T = 0.95 and T = 0.987 when N = 400 is provided. As expected,
the smaller T is, the more connected is the graph. Higher levels of connectivity
also leads to a more narrow profile of the eigenvalues of the Laplacian λl, as
observed from Fig. 8(a), where the values of λl are provided for different graph
topologies. In particular, we provide λl for graph topologies with N = 400 and
T = 0.987, 0.95 and 0.86. In the legend, we also provide the power sum of the
eigenvalues, namely d, for each graph topology. As a consequence, more con-
nected graphs lead to a more accurate estimate of the generating kernels, see
Fig. 8(b). The intuition is that more connected graphs lead to a more informa-
tive resulting signal yyy and therefore to a better estimate. Mathematically, this
can also be deduced by observing the distribution of the Laplacian eigenvalues
(Fig. 8(a)) and the associated power sum d. Similar behavior is observed in the
case 100 nodes, as depicted in Fig. 9.

Similar results are observed in the case of scale-free graphs, as the ones
generated with the BA model. Fig. 10 depicts two graph topologies with different
m, which is the number of nodes with which a new node in the network connects
to. Therefore, the larger the m the more connected is the graph. Fig. 11 confirms
the behaviors already observed with the RBF model. Namely, more connected
graphs permit to learn better.

13.2 Influence of source sparsity

In Fig. 12, we then evaluate the mean normalized error as a function of the spar-
sity level of the source signal. {PF: maybe we can add a sentence of motivation
for this analysis.} Results are plotted as a function of the normalized sparsity
6 Note that the estimation error increases also with variance of the random noise ηηη

but this is not related to the graph topology, therefore it is beyond the scope of this
section.
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(b) Low connected graph (T=0.987)

Fig. 7. Different graph topologies in the case of N = 400 nodes, σ = 0.5 and we vary
T = 0.95 and T = 0.987.
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Fig. 8. Graph Laplacian distribution and signal estimation error for random graphs
with different levels of connectivity, N = 400 nodes, and sparsity value T0 = 25.The
estimation error is evaluated both in the case of full observability (solid line) or in the
case of partial observability (dotted line) with a mask covering 40% of the nodes.

level, defined as T0/N , and they are provided for a random graph with 100 nodes
(dashed line) and with 400 nodes (solid line). Finally, a diffusion process with
τ = 10 is considered and estimated by the polynomial ααα of degree K = 20.
Simulations are considered for different noise variances, namely 10−3 and 10−2,
which are compared to the noiseless case. It is interesting to observe that larger
sparsity levels lead to an increase of the estimation error. This is motivated by
the following observation: less source signals (i.e., smaller sparsity value T0) lead
to more localized information so that sources are more informative. Therefore, a
more sparse signal hhh leads to a better estimation. This can also be demonstrated
by Lemma 2, where mathematically it can be observed that the confidence bound
is proportional to the sparsity value T0. Therefore the higher T0 the greater the
uncertainty about the estimation. Finally, from Lemma 2 the estimation error
should increases also with the number of nodes N , while in Fig. 12 we observe
the opposite behavior. This is because the number of nodes increases but within
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Fig. 9. Signal estimation error vs noise variance for random graphs with different levels
of connectivity, N = 100 nodes, and sparsity value T0 = 15.The estimation error is
evaluated both in the case of full observability (solid line) or in the case of partial
observability (dotted line) with a mask covering 40% of the nodes.

the same unitary space (varying the density of the graph) and it is observed that
denser graphs (N = 400) outperform less dense ones (N = 100). This is in line
with the above observation that more connected (and more dense) graphs lead
to a better estimate.

14 Bandits Overview

14.1 Online Learning

{PF: +general introduction sentence that recall settings + problem + motivation
for bandits} In the classical stochastic k-armed bandit problem {PF: + ref }, at
time t, the agent (or the learner) selects an action at ∈ A, where A is the action
set with cardinality |A| = k. A non-negative mean reward is associated to each
arm following the mapping r(at) : A → R. This mapping is unknown a priori by
the agent that only observes the stochastic instantaneous reward wt = r(at)+nt,
with nt being a subgaussian random noise. This agent-environment game (that
reveals the reward) is played over T rounds, where T is a positive natural number
called the horizon and t ∈ [0, T ]. The learner goal is to choose sequential actions
that maximize the cumulative reward over all T rounds, i.e.,

∑T
t=1 wt. Equiva-

lently, it seeks to minimize the cumulative regret (i.e., cumulative loss incurred
by not selecting the optimal action a⋆) given by RT = T r(a⋆)−E

(∑T
t=1 r(at)

)
,

which corresponds to optimizing the pseudo-regret [18], as commonly done in
the MAB literature. When no prior assumption is made on the structure of the
process to be learned, the agent can only blindly infer the mapping at → r (at)
via the well-known UCB (upper confidence bound) algorithm [18]. This achieves
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(b) Low connected graph (m0 = 8)

Fig. 10. Different graph topologies generated with the BA model in the case of N = 300
nodes, m0 = 2 and m0 = 8.
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Fig. 11. Graph Laplacian distribution and signal estimation error for graphs generated
with the BA model with different levels of connectivity, N = 200 nodes, and sparsity
value T0 = 25. The estimation error is evaluated both in the case of full observability
(solid line) or in the case of partial observability (dotted line) with a mask covering
40% of the nodes.

a sublinear regret, i.e., RT = O(|A| log T ), with |A| being the cardinality of the
action space, leading to highly supoptimal network optimization in the case of
high-dimensional action sets like those on large graphs.

In most of the cases however, the learner is able to exploit some prior knowl-
edge on the environment, i.e., at time t the learner has access to a context ct ∈ C,
which provides insights about the reward mapping. For example, in the case of
recommendation systems for online purchases, the context could be prior infor-
mation about the items to sell or about the buyers. A widely used setting is the
linear stochastic (contextual) bandit in which each action at time t is identified
by the feature vector xxxt = ψ(at, ct) with xxxt ∈ Rd×1, and with ψ : A×C → Rd×1

being the contextual mapping function. In this case, the reward is a noisy linear
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Fig. 12. Mean normalized error vs the sparsity level of the source signal for graphs
with 100 (dashed line) and 400 (solid line) nodes in the case of full observability.

function given by

wt = xxxTt θθθ + nt (31)

with θθθ ∈ Rd×1 being an unknown parametric vector that the agent needs to learn
over time. When the prior knowledge related to the action is separated from any
other context information, we obtain instead a reward given by wt = xxxTt θθθit +nt.
In this case, the arm feature vector only captures key information about the
arms, xxxt = ψ(at), with ψ : A → Rd×1, and the unknown parameter θθθit captures
information about the context identified by the index it. This is usually the case
of multi-user bandit problems {PF: + ref }.

In the above cases, the linear reward allows us to apply the linear UCB
(upper confidence bound) algorithm, namely LinUCB [10], to select actions in
such a way that the exploration and exploitation phases are well balanced in
the online learning problem. In short, in LinUCB the agent selects the actions
with the highest reward, inflated by the upper confidence bound. The latter is
evaluated as the uncertainty of the least square estimator that aims at inferring
the unknown parameter θθθ in the linear reward. Given the linear reward in (31),
for example, the agent at time t has collected past experience {xxxτ , wτ}tτ=0 from
which it estimates the unknown vector θ̂t via regularized least square estimation.
The uncertainty on the estimated vector is measured by the ellipsoid Et centered
in θ̂t, which contains the ground truth θ with probability 1− δ. The agent then
chooses the best action in the best environment amongst the plausible ones (the
ones in the confidence ellipsoid)

xxxt = argmax
xxx

max
θθθ∈Et

⟨xxx,θθθ⟩ = argmax
xxx

⟨xxx, θ̂θθt⟩+ βt||xxx||VVV −1
t−1︸ ︷︷ ︸

U(Et)

(32)
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• State space dimensionality tackled via spectral theory
• Limited to simple processes.

• Context dimensionality tackled via graph theory.
• No formal mathematical modelling. Limited to simple processes.
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ĝL
<latexit sha1_base64="gpH/Sw168Q9ba/h2a8MUwAmInfw=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKWxUfNyCXjx4iGAekixhdjKbDJmZXWZmhbDkK7x4UMSrn+PNv3F2s4gaCxqKqm66u/yIM21c99MpLCwuLa8UV0tr6xubW+XtnZYOY0Vok4Q8VB0fa8qZpE3DDKedSFEsfE7b/vgq9dsPVGkWyjsziagn8FCygBFsrHTfG2GTDKf9m3654lbdDGie1HJSgRyNfvmjNwhJLKg0hGOtuzU3Ml6ClWGE02mpF2saYTLGQ9q1VGJBtZdkB0/RgVUGKAiVLWlQpv6cSLDQeiJ82ymwGem/Xir+53VjE5x7CZNRbKgks0VBzJEJUfo9GjBFieETSzBRzN6KyAgrTIzNqJSFcJHi9PvledI6qtaOq8e3J5X6ZR5HEfZgHw6hBmdQh2toQBMICHiEZ3hxlPPkvDpvs9aCk8/swi84718CqpCu</latexit>
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Fig. 13. Graphical visualisation of structured and unstructured MAB problems.

where the last equality comes from the maximization of a linear function over
a convex closed set [6], VVV t−1 =

∑t
τ=0 xxxtxxx

T
t , and βt identifies the size of the

confidence ellipsoid at t. In short, the agent selects the action with the highest
UCB index, which is the estimated mean reward inflated of a exploration bonus
term U(Et) that favors exploration in the case of large uncertainty. LinUCB is
widely adopted in small scale settings, however it becomes highly inefficient when
the search space A×C is high dimensional, as in most of real-world use cases. Such
limitation can be overcome by exploiting the structure of the context [33, 39].

14.2 Structured Bandits

In online learning in high dimensions, it becomes important to exploit the struc-
ture of the problem and of the context in order to develop effective solutions.
In [7,8,12,17,20–22], the multi-user bandit problem is considered, and the affin-
ity between users is encoded by an undirected and weighted graph G (see Fig. 13,
box “Graph-Based MAB problems”). Graph clustering is a possible solution
to reduce the dimensionality of the problem while preserving the performance
of the learning system [12, 20, 21], leading to an estimated context feature θ̂θθ

(l)

for the cluster l to which the user it belongs. The learned performance however
depends on the clustering algorithm being used, which tends to be expensive for
large-scale graphs, and does not necessarily perform well in realistic datasets [44].
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Another approach is the one in which each arm reward is shared across neigh-
bouring nodes within a graph [19, 23]. The regret bounds are then derived as a
function of the graph structure. However, the geometric information of the prob-
lem is not taken into account during the arm selection, resulting in suboptimal
strategies.

Rather than exploiting the structure of the context, recent works have stud-
ied the structure of the reward signal, looking at the arms as nodes on a graph G
and the reward as a smooth signal on this graph [13,16,37,38] (see Fig. 13, box
“Spectral MAB problems”). Differently from the above Graph-Based MAB
problems, the geometrical structure is now imposed on the observed domain (i.e.,
reward domain) instead of the context domain. This permits to define the reward
as a linear combination of the eigenvectors of the graph Laplacian matrix, where
the linear coefficients are unknown. When applying LinUCB [10] in the spectral
domain, one can learn the unknown coefficients and estimate the mean reward
associated to an action (represented as one node on the graph) at as a function
of these coefficients and the spectral graph representation given by its eigenvec-
tors χχχG(at). These algorithms achieve a regret bound of the order

√
dT , with d

being the effective dimension (linked to the dimensionality of the characteristic
eigenvalues) and T being the number of rounds. Similar intuitions have been
introduced in [36], which performs maximization over the smooth functions that
have a small Reproducing kernel Hilbert space (RKHS) norm, or in [43] for a
multi-user bandit in which the user features are modelled as a smooth signal on a
graph. These settings are also more general since they generalize linear bandits.
However, the spectral MAB problem relies on the following main assumptions:
1) the reward signal is smooth on the graph; 2) the graph represents the action
domain, i.e., one action is associated to one single node on the graph and the
reward is the signal evaluated at that given node. This limits the applications
of spectral MAB problems, preventing online network optimizations in which 1)
each action represents possibly a set on a graph (not limited to a node only)
and the reward, not necessarily smooth on the graph, is a resultant signal on the
entire graph – not necessarily the signal on one node only. Inspired by spectral
MAB problems. We aim at developing a more general framework to be applied
to a more general set of problems, namely online optimization of non-trivial
processes evolving over large-scale networks.

In the following, we formalize the online learning problem, given these two
key properties.

15 Additional pieces of text

15.1 Online Learning Solution

For the agent to select the optimal action maximizing the mean reward, the graph
generating kernel needs to be learned. It is learned given the dataset {aaaτ ,wwwτ}tτ=0

collected by the agent over time, leading to the well known exploitation-exploitation
tradeoff. In the case of linear mapping between the unknown parameters ααα and
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Step 2:Spectral Estimation

Step 1:Act and Observe

Step 3: Action Selection
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aaat = argmax
a

[r(ĝL,t(aaat)) + UL(Et)]
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UL(Et+T )
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aaat
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{aaat,wwwt}t
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ĝL,t(aaat),UL(Et)
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Fig. 14. Figurative example of the online graph-strcutured processing. Green (red)
dashed boxes are defined in the vertex (spectral) domain.

Table 1. Notation for Graph-Kernel MAB problems.

MAB Notation GSP Notation
action aaa hhh (or ααα)

mean reward r(aaa) f (gLLL(hhh;ααα)) =XXXααα

instantaneous reward www = r(aaa) +nnn www =MMMyyy =XXXααα+nnn

the actions hhhthhhthhht (hence XXXt), the tradeoff is achieved in following the linUCB algo-
rithm (32), which in our case is formalized as follow

hhht = argmax
hhh

[XXXtα̂ααt + UL(Et)] . (33)

where α̂ααt is the estimate of ααα given the dataset collected up to time t.
With our proposal, we observe that the reward is evaluated in the vertex

domain, while the confidence bound Et is computed in the spectral domain. We
recall that Et represents the uncertainty on the estimation of ααα, which represents
the graph kernel, defined in the spectral domain. Specifically, Et represents the
ellipsoid centered in α̂ααt containing the ground truth ααα with 1 − δ probability
{PF: clear? ref or pointer? with the different change, we don’t talk much about
Et before that point - maybe we can explain in two words what it is used for in the
RL algo}. Rather than acting and learning in a high-dimensional domain, we use
GSP tools to act in the vertex domain and learn in the spectral domain, which
is of lower dimensionality, see Fig. 14. This presents an important advantage, as
the regret scales as O(d

√
T log T ) in LinUCB [10], where d is the dimension of

the unknown parameter ααα (i.e., d has the dimension of K in our case, which is
much smaller than the search space |hhh| {PF: is that the correct notation? other
clearer way to denote the dimension of the search space?}).

In the next Sections, we consider a specific graph-kernel MAB problem, and
derive the corresponding bounds, which permit to eventually validate the benefits
of the proposed methods in a series of experiments.
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Algorithm 3 Act After Learning (AAL)
Input:
N : nr of nodes, T0: sparsity level of initial signal hhh, K: sparsity of the basis coefficients
λ, δ: regularization and confidence parameters
while t ≤ TL do

Select the action hhht (and therefore xxxt) uniformly at random among the all possible
actions
Take action hhh(TL) and observe the reward yt

end while
Estimate the generating kernel:
XXX1:TL = [xxx1,xxx2, . . . ,xxxTL−1]

T

YYY 1:TL = [yyy1, yyy2, . . . , yyyTL−1]
T

VVV TL =XXXT
1:TL

XXX1:TL + λIIIK+1

α̂ααTL = VVV −1
TL

XXXT
1:TL

YYY 1:TL

Select the best action based on the estimated generating kernel:
hhh(TL) : argmaxhhh∈A [111NPHPHPHα̂ααt]
t = TL + 1
while t ≤ T do

Refine estimate of the coefficients
Take action hhh(TL) and observe the reward yt
t = t+ 1

end while
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