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SYNOPSIS

Motivation: Reducing the number of parameters needed to represent and reconstruct parallel MRI
measurements. Goal: Reconstruct parallel MRI measurements with coordinate-transformed Gaussian
functions (blobs) where the forward model is formulated directly. We term this MR-blob. Approach:
MR-blob directly represents parallel MRI measurements; where coil sensitivities are modelled as isotropic
Gaussians and the image is represented by coordinate-transformed blobs. Results: Noisy, undersampled
parallel MRI simulations of Shepp-Logan phantom are reconstructed with a pixelised image, a coordinate-
transformed blob-based image, and MR-blob; all with total variation regularisation. Quality measures are
shown to be consistent across methods and regularisation strengths.
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IMPACT
Parameter-efficient image representations have the potential to reduce computational burden. This work
defines parallel MRI forward model for coordinate-transformed blobs. This includes auto-calibrating coil
sensitivities that re-scale and translate to fit the parallel MRI measurements.

INTRODUCTION
Images are functions defined on two continuous spatial coordinates rx and ry, and are discretised to
allow for digital processing. The most prevalent discretisation is via equally-spaced piece-wise-constant
basis functions, aka pixels. Other local basis functions have been developed1 and applied to image
reconstruction.2, 3 This work investigates the use of Gaussian functions, herein referred to as blobs. These
blobs are locally defined, and to globally represent an image a set of blobs is typically fixed as an equally-
spaced lattice of specific scale. Recently, Gaussian splats were proposed4 that parameterise and optimise
the covariance of the blobs. This was shown to be effective and efficient for radiance field rendering. We
re-parameterise Gaussian splats as coordinate-transformed blobs. Using such coordinate-transformed
blobs, we develop a forward model to reconstruct parallel MRI measurements and auto-calibrate the coil
sensitivities; this is termed as MR-blob.

COORDINATE-TRANSFORMED BLOBS
We consider coordinate transformed blobs of the form:

b(r) = b(r;c,T, t) = cexp
(
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where r = [rx, ry]
⊤ is the coordinate system, and c the contrast. Herein T is a general linear transform of

the coordinate system, and t is translation. A coordinate transformed blob can be rewritten as:

b(r) = cN (r;−T−1t,(T⊤T)−1), (2)

where N (r; µ,Σ) = exp
(
− 1

2 (x−µ)⊤Σ−1(x−µ)
)

is the un-normalised Gaussian function with mean µ

and covariance Σ. To represent more complex functions, e.g., images, an ensemble of blobs is used:

B(r) = B(r;C,Φ) :=
Nb

∑
i=1

b(r;ci,Ti, ti). (3)

We define C = {ci}Nb
i=1 as contrast and Φ = {(Ti, ti)}Nb

i=1 as the basis of the coordinate-transformed blobs.

SINGLE COIL MODELLING
Coil sensitivities are modelled as un-normalised isotropic Gaussians:

bκ(r) = bκ(r;sκ ,µκ) :=N (r; µκ ,s2
κ I)

with scale sκ and centre µκ . The coil sensitivity acts such that signal closer to the centre is stronger and
decays in space exponentially. A coil image, the coil sensitivities on the image, is modelled as:5

bκ(r;sκ ,µκ) ·B(r;C,Φ) =
Nb

∑
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MRI measurements acquired by a coil are in the frequency (k-space) domain. These can be modelled in
k-space coordinates k = [kx, ky]

⊤ by Fourier transforming bκ(r) ·B(r):

F{bκ(r;sκ ,µκ) ·B(r;C,Φ)}(k) = F{kκ,iN (r; µκ,i,Σκ,i)}(k) (5)

=
Nb

∑
i=1

2πkκ,i√
det(Σκ,i)

exp
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2
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)
. (6)

MR-BLOB: FORMULATION AND INVERSE PROBLEM
We define the MR-blob as:

MR-blob(k;S,M,C,Φ) :=

 F(b1(r;s1,µ1) ·B(r;C,Φ))(k)
...

F(bNκ
(r;sNκ

,µNκ
) ·B(r;C,Φ))(k)

 . (7)

The parameters of the coils are scales S := {sκ}Nκ

κ=1 and centres M := {µκ}Nκ

κ=1. The same contrast C and
basis Φ are used across all coils. The inverse problem is given by:

MR-blob(k;S,M,C,Φ) = G(k),

where parallel MRI measurements are G : Ωk 7→ CNκ with Nκ ∈ N coils. The domain Ωk = {kn}Nk
n=1 is a

set of coordinates with Nk ∈ N measurements.
In the variational framework of inverse problems,6 we recover the parameters of the reconstruction

through optimising:

S∗,M∗,C∗,Φ∗ ∈ min
S,M,C,Φ

{
1

Nk

Nk

∑
n=1

||MR-blob(kn;S,M,C,Φ)−G(kn)||2 +λR(B(r;C,Φ))

}
, (8)
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where the first term promotes data-consistency, and the second is a regulariser with strength λ . We directly
optimise over blob parameters (contrast C and basis Φ), as well as over the coil sensitivities, specified by
S and M. Thus, we jointly reconstruct the image and calibrate the coil sensitivities. The reconstruction
f : Ωr 7→ C with Ωr = {rm}Nr

m=1 is given by

f (r) = B(r;C∗,Φ∗). (9)

We study two regularisers:

Rcond(Φ) :=
1

Nb

Nb

∑
i=1

cond(T⊤
i Ti), (10)

RTV(Ωr;C,Φ) :=
1
Nr

Nr

∑
m=1

RTV(rm;C,Φ), with RTV(r;C,Φ) := ∥∇rB(r;C,Φ)∥1, (11)

promoting blob skewness and TV sparsity, respectively. We optimise Eqn. (8) by taking the gradients
using automatic (reverse-mode) differentiation with the first-order ADAM optimiser.7

METHODS
Three methods were compared to illustrate the features of reconstruction with pixels (M1), blobs (M2) and
MR-blobs (M3). We denote the pixelised image as f ∈ CNr , and Non-Uniform-Fast-Fourier-Transform
(NUFFT) with coil sensitivities forward model as A : CNr 7→ CNk×Nκ . The corresponding objective
functions are given by

M1 (Pixels): min
f

{
1

Nk
||Af−G(Ωk)||2F +

λ

Nr
||∇f||1

}
(12)

M2 (Blobs): min
C,Φ

{
1

Nk
||AB(Ωr;C,Φ)−G(Ωk)||2F +10 ·Rcond(Φ)+λRTV(Ωr;C,Φ)

}
(13)

M3 (MR-blob): min
S,M,C,Φ

{
1

Nk

Nk

∑
n=1

||MR-blob(kn;S,M,C,Φ)−G(kn)||2

+10 ·Rcond(Φ)+λRTV(Ωr;C,Φ)

}
, (14)

where G(Ωk) := [G(k1), . . . ,G(kNk)] and B(Ωr;C,Φ) := [B(r1;C,Φ), . . . ,B(rNr ;C,Φ)]⊤. TV reg-
ularisation of the same λ was tested for all three methods. For M2 and M3 we include a constant
skew-penalisation and evaluate TV at points corresponding to pixel centres.

DISCUSSION AND CONCLUSION
The same forward model used for simulation is used for reconstruction for M1 and M2. With coil
sensitivities of MR-blob initially centred in the image, the auto-calibration allows the coils to translate
and re-scale to fit the measurements. This resulted in the coil sensitivities and coil images shown in
Fig. 5. Further, the piece-wise-constant structure of the Shepp-Logan phantom is not well approximated
by smooth basis functions such as blobs. Notwithstanding, it is observed that blob-based images give
competitive performance with 2.6× less parameters than pixels. Additionally, the smoothness of blobs
provides implicit regularisation at lower regularisation values. The M2 and M3 reconstructions exhibit
bases Φ with prominent structure, see Fig. 4. It is noted that M3 gave fewer zero contrasts, less skewed
blobs and a larger range of scales compared to M2.

The data-consistency terms of M2 and M3 are smooth given positive-definite covariances, but highly
non-convex. The optimisation could benefit from more specialised algorithm. This will be investigated
further where acceleration would benefit from scaling to 3D in-vivo measurements. We have shown
coordinate-transformed blobs are able to approximate parallel MRI reconstructions efficiently and accu-
rately. Given the simplicity of the formulation it is amenable to rigorous analysis, and we leave that for
future work.
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Figure 1. Top left: ensemble of coordinate blobs specification and initialisation. Top right: phantom and
data simulation. Bottom: quality measures used in the study.

Figure 2. CRC, SSIM, PSNR, DF for all three methods swept over the same range of regularisation
parameters (log10(λ ) ∈ {1.00,1.28,1.56,1.83,2.11,2.39,2.67,2.94,3.22,3.50}).

Figure 3. Well-regularised reconstructions (λ = 1,668) from noisy, under-sampled measurements. Note
the instability exhibited in MR-blob reconstruction.

4/7



Figure 4. Coordinate transformed blob parameters of well-regularised (λ = 1,668) M2 and M3
reconstructions. Left: mean of blobs. Centre left: Condition number of covariance (skewness). Centre
right: Maximum eigenvalue (scale) of covariance. Right: Contrast of blobs.

Figure 5. Top row: Ground truth (red) and MR-blob auto-calibrated (blue) coil sensitivities, MR-blob
coils were initialised at the centre at set scale. Middle row: Ground truth coil images. Bottom row:
Well-regularised (λ = 1,668) MR-blob reconstructed coil images. Columns correspond to individual
coils.
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