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Abstract: Biogas heating plays a crucial role in the transition to clean energy and the mitigation of

agricultural pollution. To address the issue of low biogas production during winter, the implemen-

tation of a multi-energy complementary system has become essential for ensuring heating stability.

To guarantee the economy, stability, and energy-saving operation of the heating system, this study

proposes coupling biogas and solar energy with a phase-change energy-storage heating system. The

mathematical model of the heating system was developed, taking an office building in Xilin Hot, Inner

Mongolia (43.96000◦ N, 116.03000◦ E) as a case study. Additionally, the Sparrow Search Algorithm

(SSA) was employed to determine equipment selection and optimize the dynamic operation strategy,

considering the minimum cost and the balance between the supply and demand of the building

load. The operating economy was evaluated using metrics such as payback period, load ratio, and

daily rate of return. The results demonstrate that the multi-energy complementary heating system,

with a balanced supply and demand, yields significant economic benefits compared to the central

heating system, with a payback period of 4.15 years and a daily return rate of 32.97% under the most

unfavorable working conditions. Moreover, the development of a daily optimization strategy holds

practical engineering significance, and the optimal scheduling of the multi-energy complementary

system, with a balance of supply and demand, is realized.

Keywords: biogas; solar energy; sparrow search algorithm; economic optimization; coordination of

supply and demand

1. Introduction

With the advancement of society, there is a growing demand for energy, leading to the
continuous transformation of the energy structure. Currently, fossil energy constitutes the
largest proportion of the overall energy structure [1]. However, due to the non-renewable
nature of fossil energy and its detrimental impact on the environment, it has become a
bottleneck for economic and social development [2–4]. As a major energy consumer, the
building sector urgently requires the coordinated development of energy, the economy, and
environmental protection. In this context, sustainable energy development becomes an in-
evitable choice, with renewable energy being the only path towards achieving sustainability
in the building sector.

Winter heating is of great importance to residents in northern China [5]. The utilization
of clean and efficient renewable energy heating technology not only contributes to the
energy transformation of buildings, but also plays a crucial role in creating a healthy and
comfortable living environment [6]. As China is a country with a significant agricultural
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sector, the application of biomass energy in building heating is a valuable approach to
realizing the transformation and upgrading of the energy system [7,8]. In recent years,
the breeding industry has witnessed large-scale and concentrated operations, and the
utilization of farm manure as a raw material for biogas production has effectively improved
the efficiency of biomass energy utilization while addressing agricultural pollution [9,10].
Picardo et al. [11] integrated a sewage treatment plant with a district heating system,
demonstrating an annual reduction potential of 1.8 MtCO2e through the operation of the
sewage–biogas heating system. Xu et al. [12] designed a biogas building energy supply
system, considering variations in outdoor temperature and humidity. This research revealed
that lower outdoor temperatures resulted in better energy conservation, with an energy
conservation rate of 37% during winter.

However, due to the low outdoor temperatures in winter, biogas production is in-
sufficient to meet the thermal demands of individual users. Therefore, the integration of
other renewable energy systems for auxiliary heating becomes necessary [13–15]. Alkhamis
et al. [16] coupled solar energy with biogas reactors to provide the necessary heat for biogas
production, achieving an internal rate of return (IRR) of 32.7% on the investment in the
solar system. Tiwari et al. [17] conducted research on photovoltaic thermal integration
systems for biogas heating, demonstrating that the addition of solar energy increased
biogas production. Xue et al. [18] integrated a biogas power generation system with an
energy-storage system, resulting in a payback time of 4.35 years, which is a reduction com-
pared to traditional systems. In this context, the design of a multi-energy complementary
system coupled with biogas and incorporating a heat-storage device becomes a promising
approach to ensure system stability.

Given the complex structure and various operating conditions of heating systems,
optimizing the configuration and scheduling strategy is crucial to ensuring system economy
and stability [19,20]. Cao et al. [21] developed a novel biogas-cogeneration system and
utilized genetic algorithms to optimize significant design parameters, achieving a win-
win situation in terms of economy and energy efficiency. Arslan et al. [22] modeled a
combined heat, electricity, and gas supply system for a biogas power plant, analyzing the
distribution of electricity, heating, and cooling load at optimal cost. The results presented
a 39.5% increase in the overall energy efficiency of the plant. Castley et al. [23] proposed
an integrated energy-supply system consisting of an anaerobic tank and a biogas boiler,
optimizing the scheduling of eight working conditions and reducing system emissions by
as much as 93.7%. However, many studies have neglected the dynamic performance of
the relationship between supply and demand, as modeling each component of the system
poses significant challenges [24–26]. Therefore, achieving a balance between supply and
demand scheduling under all working conditions is crucial for a multi-energy coupled
phase-change heat-storage heating system.

In summary, to address the research challenges related to low biogas production in
winter, the imbalance between supply and demand in heating systems, and the dynamic
coordination of a multi-energy complementary system, we propose a comprehensive heat-
ing system that couples biogas and solar energy. We dynamically simulate the user-side
demand load and establish a mathematical model for all working conditions of the heating
system. The SSA algorithm is employed to optimize the cost and operation scheduling
of the multi-energy complementary heat-storage system, enhancing the balance between
supply and demand while improving the system’s economy and the energy-supply distri-
bution of solar energy and biogas. This approach facilitates the green transformation of
building heating, achieves high economic efficiency and zero energy waste, and guides
practical projects.

2. Building and Energy System

2.1. Case Study

In this study, we selected an office building in Xilin Hot, Inner Mongolia (43.96000◦

N, 116.03000◦ E) as the research subject. The building consists of three stories with floor
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heights of 3.9 m. The total heating area of the building is 6836 m2, with a physical coefficient
of 0.40 and a ratio of transparent area with respect to the total of 0.28. The architectural
model is depicted in Figure 1. The parameters of the envelope structure are presented
in Table 1. Furthermore, the three-dimensional measurements of the building model are
summarized in Table 2.
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Table 1. Building envelope parameters.

Buiding Envelope
External

Wall
External
Window

Partition Roof Floor
External

Door

heat transfer coefficient
/W · m−2 · K−1 0.49 2.80 0.92 0.24 0.32 1.80

Table 2. Three-dimensional measurements of the building model.

Three Dimensions L W H

size (m) 57.9 57.0 11.7

2.2. Paramerters Setting

The design parameters were determined based on the design specifications and heating
drawings. The design temperature for the Xilin Hot heating building is −27 ◦C outside
and 18 ◦C inside. Additionally, the parameters for personnel, electrical equipment, lighting
equipment, and other factors are provided in Table 3, which is from the public building
energy-saving design standards and the actual situation of the office building. The per
capita office area and the power density of the electrical and lighting equipment are
12 m2, 14 W·m−2, and 220 lx, respectively. The building ventilation frequency was set at
0.5 ac·h−1. To simulate the hourly heating load, we used EnergyPlus 9.3.0 software.

Table 3. Hourly parameters.

Idex Room Occupancy Rate
Utilization Rate of

Electrical Equipment
Utilization Rate of

Lighting Equipment

Time Workday Holiday Workday Holiday Workday Holiday

0 10 10 10 10 10 10
1 10 10 10 10 10 10
2 10 10 10 10 10 10
3 10 10 10 10 10 10
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Table 3. Cont.

Idex Room Occupancy Rate
Utilization Rate of

Electrical Equipment
Utilization Rate of

Lighting Equipment

Time Workday Holiday Workday Holiday Workday Holiday

4 10 10 10 10 10 10
5 10 10 10 10 10 10
6 10 10 10 10 10 10
7 10 10 10 10 10 10
8 50 10 50 10 50 10
9 95 10 95 10 95 10

10 95 10 95 10 95 10
11 95 10 95 10 95 10
12 80 10 80 10 80 10
13 80 10 80 10 80 10
14 95 10 95 10 95 10
15 95 10 95 10 95 10
16 95 10 95 10 95 10
17 95 10 95 10 95 10
18 30 10 30 10 30 10
19 30 10 30 10 30 10
20 10 10 10 10 10 10
21 10 10 10 10 10 10
22 10 10 10 10 10 10
23 10 10 10 10 10 10

2.3. Heating System

In this study, a phase-change energy-storage heating system coupled with biogas
and solar energy is proposed, and the municipal central heating system is taken as the
benchmark against which to compare the cost and energy saving. During the biogas
production process, the fermentation temperature is significantly affected by the cold
winter environment, which poses challenges to the stability of the biogas system. However,
Xilin Hot benefits from abundant solar-energy resources, and coupling with the solar-
energy system optimizes the efficiency of biogas production. Moreover, solar energy is
subject to time and weather limitations, necessitating the use of phase-change heat-storage
devices to address intermittency and discontinuity issues. Additionally, electricity is
employed as an auxiliary heat source to cope with extreme weather conditions. Therefore,
this study proposes a biogas and solar energy coupling and complementary phase-change
energy-storage heating system, as illustrated in Figure 2. A portion of the solar energy and
electricity is distributed to the building, while another portion is used to heat the biogas
digester to enhance biogas production. Simultaneously, the phase-change heat-storage
system ensures the stability of renewable energy and the utilization of off-peak electricity.
The generated biogas is converted into heat energy through biogas boilers to provide
thermal energy to users, thereby increasing the proportion of renewable energy in heating
the building. The main components of the system include a solar collector, electric boiler,
phase-change accumulator, heat collecting water tank, biogas digester, heating coil, biogas
boiler, biogas purification device, water pump, and other accessories.

The energy flow process of the system is depicted in Figure 3, which is divided into
four layers: energy input, transformation, storage, and utilization. The energy input layer
comprises solar energy, biomass energy, and electric energy, which are converted into heat
energy by the solar collector, biogas boiler, and electric boiler, respectively. The thermal
energy generated by the biogas boiler is directly transmitted to the thermal users, while
the solar and electric boilers convert a portion of the thermal energy to provide building
heating. The remaining thermal energy is stored in a phase-change accumulator to heat the
biogas coils.
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3. Mathematical Model

3.1. System Model

Based on the biogas and solar coupled heating system, we established a mathematical
model consisting of the biogas production, solar collector, biogas boiler, electric boiler and
phase-change heat accumulator models [27].

Biogas production model:
Biogas production is influenced by various factors, including feed amount, fermenta-

tion temperature, and external environmental temperature. Fei et al. investigated the gas
production process of biogas in livestock farms and found a significant linear relationship
between biogas production and feed volume [28], which can be represented as follows:

Vm = am + b (1)

where Vm represents the biogas output, a and b are the fitting coefficients (14.24 and 772.42,
respectively), and m represents the feed amount.

To ensure biogas production, a spiral coil is used to heat the biogas slurry. The heat
(Qheating) required by the biogas project includes the heat needed for heating the feed (Q1),
the heat dissipated by the fermentation tank (Q2), the heat carried away by the discharged
water vapor (Q3), and the heat carried away by the discharged biogas (Q4):

Qheating = Q1 + Q2 + Q3 + Q4 (2)

{

Q1 = cm(Tm − Ts)
c = 4.17 × (1 − 0.00812 × Vs)

(3)
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where c represents the specific heat capacity of the biogas slurry, Tm represents the produc-
tion temperature (35 ◦C), and Ts represents the feed temperature (10 ◦C).

Q2 = Qt + Qm + Qb = ∑ KiSi(Tm − Te) (4)

Here, K represents the heat-transfer coefficient, S represents the area, and Te is the
ambient temperature.

The heat dissipated by the fermentation tank includes the bottom, wall, and top of the
tank, taking the expressions as follows:











Q3 = Ww[Hw + cw(Tm − Tw)]

Ww = 0.804(V·Vm)Xw

f (1−Xw)

Xw = 1.27 × 106 exp[−5520/(Tw + 273)]

(5)

where Ww represents the mass flow of water vapor carried by biogas flow, calculated using
Equation (6); Hw represents the latent heat value of the vaporization of water vapor at
fermentation temperature (2.42 MJ/kg at 35 ◦C); cw is the specific heat capacity of water
vapor (1.886 kJ/(kg·◦C)); ta represents the outside air temperature; V represents the effective
volume of the fermenter; and f represents the proportion of biogas volume relative to the
volume of discharged biogas (65% in this case).

Q4 =
(1676 + 1772

1− f
f )(V · Vm)(Tm − Tw)

106
(6)

Biogas boiler model:

Qbiogas = (1 − xH2O − xH2S)Vmqmηb (7)

where Qbiogas represents the amount of biogas provided for building heating, (1 − xH2O −
xH2S)Vm represents the amount of biogas after purification, qm represents the calorific
value of biogas (20,514 kJ/m3), and ηb represents the efficiency of the biogas boiler (90% in
this case).

Electric boiler model:
{

Qvalley = Evalleyηeηw

Q f lat = E f latηe
(8)

where Qvalley and Qflat represent the amount of valley and flat electricity provided for
building heating and biogas production, Evalley and Eflat are the consumption of valley
electricity and flat electricity, and ηe and ηw represent the energy efficiency of the electric
boiler and heat-storage device (92% and 90%, respectively).

Solar energy collector model:

Qsolar = ηsηw∑ AIsts (9)

where Qsolar presents the amount of solar energy provided for building heating and biogas
production, ηs represents the comprehensive operating efficiency of the solar collector
heating season (49.8%), A is the area of the solar collector, Is represents the solar radiation
intensity, and ts represents the direct solar time. According to the geographical location
of Xilin Hot, the tilt angle of the solar collector installation is 35◦ and the azimuth is 0◦

(due south).
Phase-change accumulator model:

Qpcm = Qsensible + Qlatent = cPm∆Tp + m∆H f (10)

Paraffin is utilized as PCM and heat transfer is enhanced by heat pipes, where Qpcm

represents the heat-storage capacity of the phase-change accumulator, Qsensible represents the
sensible heat, Qlatent represents the latent heat, cP, m, ∆Tp, ∆H and f represent the specific
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heat, mass, variation temperature, unit mass latent heat, and liquid phase rate of the
paraffin, respectively.

The thermal balance of the building:

Qbuliding = Qbiogas + (Qpcm − Qheating) + Qpeak (11)

where Qbuilding represents the heat load of the building.

3.2. Minimum Cost Optimization

The objective of system optimization is to efficiently allocate daily energy distribution
to minimize heating system costs. The objective function, denoted as Fmin, is the sum of the
initial investment (Finvest) and operating cost (Foperation), and the optimal design parameter
of the system is determined by minimizing this objective function.

Fmin =
Finvest

n
+ Foperation (12)

where n represents the number of operating days, calculated as the product of heating days
and operating years (183 × 15).

The initial investment for the system includes the costs of the biogas boiler (Fbiogas),
electric boiler (Felectric), solar collector (Fsolar), phase-change heat accumulator (Fpcm), and
other attachments (Fat). Considering the heating demand in rainy weather, the biogas boiler
and electric boiler need to meet the most unfavorable heating conditions, and the size and
capacity of the fixed cost of each component are determined accordingly. The operating
cost of the system includes the cost of biogas purification (Fb), peak and valley electricity
costs, maintenance cost (Fmain), and labor cost (Flabor), as shown in Table 4. In summary, the
objective function Fmin can be expressed as a function of the variable Qsolar, Qpcm, Qbiomas,
Qvalley, and Qflat:

Fmin =
Fbiomas + Felectric + Fsolar + Fpcm + Fat

n + Foperation + Fb + Fe + Flabor + Fmain

=
Fbiomas + Felectric +

Qsolar
ηsηw Ists

× Ns +
Qpcm

cP∆Tp + ∆H f × Nt + Fat

n +
Qbiomas

(1 − xH2O − xH2 S)qmηb
∗ Nc +

Qvalley

qeηe
∗ Nv +

Q f lat

qeηe
∗ N f + Flabor + Fmain

(13)

Table 4. Initial investment and operating cost.

Initial Investment Operation

Item Cost Item Cost

solar collector (Ns) 400 CNY/m2 biogas purification (Nc) 0.4 CNY/m3

composite PCM (Nt) 185 CNY/kg flat electricity (Nf) 0.4267 CNY/kWh

biogas pit (Fbiogas)
(size: 5 m × 5 m × 10 m;

numbers: 12)
20,000 CNY valley electricity (Nv) 0.3604 CNY/kWh

biogas boiler (Fbiogas) 65,000 CNY/600 kW maintenance (Fmain) 1500 CNY/year

electric boiler (Felectric) 30,000 CNY/300 kW labor cost (Flabor) 1000 CNY/year
attachments (Fat) 15,000 CNY

Additionally, the following constraints apply:
Building thermal balance constraint:

Qbuliding = Qbiogas + (Qpcm − Qheating) + Q f lat (14)
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Solar heat collection area constraint:

Qsolar

ηsηw Ists
≤ 1000 (15)

Phase-change heat-storage constraint:

Qpcm = Qsolar + Qvalley (16)

Biogas production constraint:

Qsolar + Qvalley ≥ Qheating (17)

Once the equipment selection and initial investment are determined, the minimum
daily costs of biogas heat production, solar heat production, and peak–valley electricity for
heat production are given by the following:

Fmin = Foperation + Fb + Fe + Flabor + Fmain

= Qbiomas
(1 − xH2O − xH2S)qmηb

∗ Nc +
Qvalley

qeηe
∗ Nv +

Q f lat

qeηe
∗ N f + Flabor + Fmain

(18)

Subject to the following constraint conditions:







Qbuliding = Qbiogas + (Qpcm − Qheating) + Q f lat

Qpcm = Qsolar + Qvalley

Qsolar + Qvalley ≥ Qheating

(19)

3.3. Optimization Algorithm

The sparrow search algorithm (SSA) is a swarm optimization method [29]. It simulates
the foraging and anti-predation behaviors of sparrow groups. The population consists of
three types of sparrows: producers, scroungers, and afraid sparrows. Producers provide
food sources and foraging directions, accounting for approximately 10–20% of the popula-
tion. Scroungers, comprising about 80–90% of the population, compete for food resources
and have a high feed intake. During foraging, producers and scroungers remain vigilant
against predators. When danger arises, 10–20% of sparrows become afraid sparrows,
sounding the alarm, and quickly move to safe areas to secure better positions.

To begin, a sparrow matrix is established:

X =











x1,1 x1,2 · · · x1,d

x2,1 x2,2 · · · x2,d
...

...
...

...
xn,1 xn,2 · · · xn,d











(20)

where d represents the issue dimension and n represents the number of sparrows.
Meanwhile, population fitness is determined using Equation (21):

FX =











f (x1,1 x1,2 · · · x1,d)
f (x2,1 x2,2 · · · x2,d)

...
...

...
...

f (xn,1 xn,2 · · · xn,d)











(21)
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In SSA, priority is given to the best individuals within the group during the search
process. As producers, they have access to a larger foraging search area compared to
scroungers. During each iteration, the position of the producer is updated as follows:

Xt+1
i,j =

{

Xt
i,j · exp(− i

α·itermax
) if R2 < ST

Xt
i,j + Q · L if R2 > ST

(22)

where Xt
i,j represents the position of the i-th sparrow; α represents a random number dis-

tributed in range (0, 1]; R2 represents an alarm value in range [0, 1]; ST is the care threshold
within a smaller range of [0.5, 1]; Q is a random number from a normal distribution; and L
is a 1 × d matrix of size d with entries of 1. If the alarm value exceeds the safety threshold,
all sparrows move to a safe area. Scroungers keep an eye on the producers and immediately
leave their current positions to compete for better food when producers find it. The rules
for updating scroungers are as follows:

Xt+1
i,j =















Xt
best + β ·

∣

∣

∣
Xt

i,j − Xt
best

∣

∣

∣
if fi > fg

Xt
i,j + K

(
∣

∣

∣
Xt

i,j−Xt
worst

∣

∣

∣

(fi− fw)+ε

)

if fi = fg

(23)

where β represents the step size; K represents a random number between [−1, 1]; fi, fg and fw

represent the fitness value of the present individual, the present optimum fitness value, and
the worst globally observed fitness value, respectively; and ε is a constant that approaches
0. The flowchart for SSA is shown in Figure 4.
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4. Results and Discussion

4.1. Building Heat Load and Initial Investment

Figure 5 illustrates the hourly and daily heat load during the 2022–2023 heating season
in Xilin Hot. The heating period in Xilin Hot spans from October 15th to April 15th, totaling
183 days. The data demonstrate that the overall heat load exhibits a peak over time, with
the highest load occurring in January, reaching a maximum of 8567.37 kWh on January 11th.
Additionally, the load during the initial and final heating periods is significantly smaller.
The simulation results reveal that there are 15 days with a heat load exceeding 6000 kWh,
105 days with a load ranging between 2000 kWh and 6000 kWh, and 60 days with a load
below 2000 kWh. This highlights the potential of the load distribution in a multi-energy
complementary system with coordinated supply and demand to meet building heat-load
requirements and reduce heating energy consumption. To meet the design requirement of
at least 70% biogas heating for the building under the most unfavorable working conditions,
the initial investment is considered in the selection of minimum daily operating costs, as
summarized in Table 5.
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Table 5. Six conditions.

Condition A B C D E F

date 11 January 2023 12 January 2023 13 January 2023 3 January 2023 9 January 2023 15 December 2022
heat load/kWh 8567.37 8104.66 7550.87 7144.28 6440.61 6049.40

Based on the heating cost of public buildings in Xilin Hot, which is CNY 5.5/m2 per
month, the estimated annual heating cost of the office building amounts to approximately
CNY 22,588. The equipment selection was carried out based on the optimization algorithm
for solar-energy heating and phase-change heat storage, in order to obtain the initial
investment under various working conditions. Subsequently, the annual operating cost
of optimal scheduling for the balance of supply and demand was calculated under each
working condition selection, and the investment payback periods are presented in Figure 6.
The results indicate that the initial investment gradually decreases with the considered
daily thermal load, while the operating cost decreases due to the utilization of solar-energy
collectors and phase-change devices. The payback period of the six working conditions
exhibits a tendency of initially declining and then rising. Notably, under working condition
D, the investment recovery period is the shortest. In this case, the solar-heating panel
covers an area of 677 m2, the investment in the phase-change heat accumulator amounts to
CNY 352.64 thousand, and the cost is recovered in just 4.15 years. These results strongly
demonstrate the crucial role of considering the balance between supply and demand in
reducing initial investment and operating costs.
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4.2. Energy Distribution under the Coordination of Supply and Demand

To visualize the energy distribution of a multi-energy complementary heating system,
Figure 7 displays the daily amounts of biogas, solar, and electricity used in heating. Ad-
ditionally, the thermal production above the heat-load curve represents the heat used for
biogas production. During the first and last heating months, when there is less heat-load
demand, solar energy predominantly provides the heat. This is due to the combination
of solar energy and phase-change heat-storage devices, which can meet the building’s
heat load throughout the day. In the remaining four heating months, with a thermal load
ranging between 2000 kWh and 7000 kWh, most of the solar energy is utilized for biogas
production, with a small portion used for building heating. The optimization algorithm
is employed to achieve the minimum cost of energy consumption ratio. Under working
conditions exceeding 7000 kWh, the amount of biogas heated using solar energy needs to
be combined with valley power heat storage and peak power direct supply to meet the
requirements of biogas heating and building heat load. In rainy weather, when the work of
solar collectors is not considered, valley electric heat storage is used for heating biogas. By
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considering the coordination of supply and demand, the heat-supply system achieves a
rational distribution and optimal operation under multiple working conditions.
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Figure 8 further illustrates the distribution of solar energy and electricity between
biogas production and building heating. From the first heating month to the third heating
month, the heat utilized for biogas production continues to increase. This is because the
heating demand of the building increases as the weather gets colder, and solar energy alone
cannot meet the heat demand of thermal users. The use of direct electricity for heating
supply is not conducive to economical operation. From the fourth month until the end of the
heating period, the amount of solar energy used for building heating gradually increases
as the temperature rises. Moreover, in rainy weather, the highest benefit is achieved
when electricity is used to fully heat the biogas without providing building heating. The
coordinated operation of solar energy and electric power facilitates the formulation of daily
operation strategies and improves the energy efficiency and economy of the heating system.
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4.3. System Benefit Analysis

Figure 9 presents the operation and maintenance costs and daily returns of the supply
and demand coordination system. In general, the daily return rates exceed 30%, with
the biogas purification cost being the main expense, accounting for 93.68% of the an-
nual operating cost. Additionally, electricity consumption occurs when the load exceeds
7000 kWh. The cost of electricity is also taken into account during rainy weather. When
the solar load meets the heating demand, the daily cost consists solely of the maintenance
cost, resulting in a daily income of CNY 1219.06 and a return rate as high as 98.89%. As the
temperature continues to decrease, the operating cost increases, reaching its highest point
of CNY 826.28 on January 11th, with a return rate of 32.97%. In summary, the demand for
heating directly determines the daily return, and the rational distribution of heating energy
is crucial for improving the return rate.
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5. Conclusions

Based on an office building in Xilin Hot, this paper presents the establishment of a
biogas and solar energy coupling and complementary phase-change energy-storage heating
system and proposes operation optimization strategies based on balancing supply and
demand. The main conclusions are as follows:

(1) Utilizing the SSA algorithm, the minimum cost under six working conditions is
determined. Combined with the annual operating cost of the heating season un-
der different working conditions, it is found that, when the solar collector area is
677 m2 and the capacity of the phase-change heat accumulator is 1900 kWh, the
shortest payback period is 4.15 years. This system achieves remarkable economic
benefits and zero waste of system energy at the same time.

(2) The daily return rate of the multi-energy complementary heating system exceeds
30%, with biogas purification accounting for 93.68% of the operating cost. When
solar energy fully meets the heating demand, the daily return reaches as high as
98.89%. In addition, it can be seen that the optimal dispatch, under the coordination
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of supply and demand, has significant economic and energy benefits compared with
the benchmark municipal heating system.

(3) The energy distribution strategy, which is based on the balance of supply and de-
mand, ensures the production of biogas and the economic operation of the system.
Meanwhile, the flexible scheduling of the system brings a large cost recovery rate for
the building. This provides valuable guidance for practical projects.
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