
Normative studies of single-event
memories and multitask

decision-making

Lucas Silva Simões

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Gatsby Computational Neuroscience Unit

University College London

November 15, 2023

2

I, Lucas Silva Simões, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has been

indicated in the work.

Abstract

In recent decades, there have been significant advancements in the study of cognition

and behaviour, with various aspects of memory, learning, and decision-making being

characterised and analysed. One important approach in this endeavour is computa-

tional modelling, which allows researchers to explore the normative mechanisms

underlying cognitive phenomena. This thesis is situated within this line of research,

and investigates the normative principles governing two aspects of cognition and be-

haviour: the appropriateness of single-event memories and optimal decision-making

in multi-task environments.

Single-event memories are a typical aspect of human life but stand in contrast to

common practice in machine learning, where it is better to condense information from

several experiences into a set of statistics for robust and generalisable representations.

In the first part of this thesis, we build on past research and postulate that single-event

memories can support common statistical learning approaches. We provide analytical

calculations and simulations to demonstrate that this cannot entirely account for the

existence of single-event memories in the human brain.

The second part of the thesis examines the fact that humans and other animals

have multiple decisions to make in a day and can decide to move from one to the

other at will. While it is understood that they do this to maximise rewards such as

food, social validation, and pleasure, current models at times fail to explain behaviour

observed in the lab. We use ideas from foraging theory and reinforcement learning to

study optimal behaviour in this problem, first in static environments, then in dynamic

ones.

Impact Statement

This thesis presents analytical and simulation analyses to, separately,

investigate normative aspects of single-event memories and decision-

making in multi-task environments.

In the memory part of this thesis, we provide a novel account that

sheds light on our understanding of single-event memories from a com-

putational perspective. We offer a comprehensive assessment of the

advantages and limitations of this approach, highlighting its potential as

a foundation for future research.

A robust grasp of the mechanisms and purpose of single-event mem-

ories has the potential to enhance the development of more efficient,

less biased artificial agents. These agents can learn to utilize local in-

formation effectively while avoiding unwarranted generalizations from

out-of-distribution data.

Regarding the decision-making part of this thesis, we present an ex-

planation for the issue of ”overstaying” that has been documented in

the literature. Furthermore, our work introduces innovative approaches

to understanding optimal behavior in multi-task environments, with a

particular focus on dynamic settings. These findings contrast with prior

research in the field.

A profound comprehension of optimal behavior in dynamic multi-task

environments can empower the creation of artificial agents capable

of operating effectively in uncertain and diverse contexts. This has

Impact Statement 5

practical applications in robotics and various other domains. Moreover,

our research carries potential implications not only in academic and

industrial domains but also in clinical applications, as it can be extended

to model everyday human decision-making.

Acknowledgements

It has been an incredible journey from the beginning to the completion of this

PhD. I could not have gotten this far without the support of numerous remarkable

individuals.

Firstly, my parents (Marcio and Adriana) and my brother (Gabriel): for the

crucial moments of unwavering support and love, I am immensely grateful. Thank

you for always standing by my side.

Then I also want to express my gratitude to friends in Brazil and in England;

there are too many to name individually without the risk of overlooking someone

important. To my friends well-versed in science, academia, and the unique challenges

of this journey – you helped me carry the weight of this distinctive path. To those

(lucky) friends less involved in academia – you provided a much-needed escape from

it all.

Special thanks to Peter Latham for all the stimulating discussions we’ve had,

and for believing in me even when I didn’t; to Alberto Pezzotta, whose support

and collaboration during the last year and a half have been invaluable; to Thomas,

for helping me not embarrass myself (too much) with mistakes with the English

language; and to the Gatsby Unit and Gatsby Charitable Foundation, for the privilege

of studying in a thriving research environment with generous funding.

Last but not least, to Carol and Manuela – my true purpose and calling lie with

you both.

“In all give thanks to God,” and here it could not be different.

Contents

1 General Introduction 18

I Memory 20

2 A mathematical study of single-event memories in learning 21

2.1 Problem setup . 23

2.2 Calculating the performance for the different algorithms 27

2.3 Expectations over Nearest Neighbour quantities 35

2.4 Comparing the algorithms . 41

2.5 Model mismatch . 47

2.6 Extension to L closest neighbours 53

2.7 Discussion . 58

II Decision-making 60

3 Optimal reward-rate in foraging-like multi-task environments 61

3.1 A framework for multi-task decision-making 63

3.2 A local algorithm to optimise the reward rate 66

3.3 Evidence accumulation tasks . 68

3.4 Explaining apparent suboptimal human behaviour 72

3.5 Discussion . 78

4 Multi-task decision-making with time-dependent environments 80

Contents 8

4.1 Problem setup . 82

4.2 Theoretical results . 85

4.3 Policy Gradient methods . 91

4.4 Numerical results . 94

4.5 Discussion . 100

Bibliography 105

Appendices 106

A Introduction to Supervised Learning 107

B Introduction to Order Statistics 109

C About Lambert W functions 112

D Asymptotics of the functions βk(M) 114

E Approximating the integrals for expectations over the nearest neighbour

quantities 117

F Foraging and the Marginal Value Theorem 120

G Introduction to Reinforcement Learning 122

H Deriving average reward and time for the evidence accumulation task 127

I Neural Network for REINFORCE 131

J Description of the environments for Chapter 4 132

List of Figures

2.1 A graphical depiction of how the memory-adjustment procedure

works. The black and blue dots are previously seen datapoints,

that were used to train the parameter vector (the linear fit in black).

In order to better predict a given test point (pink point), the closest

memory is selected to update the parameters of the model, generating

the new linear fit (the green line). This informs a more suitable output

for that region of the input space. 27

2.2 The decomposition of the selected memory xNN into zNNx̂, a compo-

nent aligned with the test point x, and x⊥NN, a perpendicular compo-

nent. In high-dimensional spaces vectors become further apart, and

the largest contribution will be from the perpendicular component,

suppressing signal with noise. 31

2.3 The integrands of the expectations in Equation 2.49 as functions

of s and M. The nearest neighbour factor, ζNN(s,M), is defined in

Equation 2.50a and modulates the expectation; φ(s) is the pdf for a

standard Gaussian, over which we take the expected values. 38

2.4 Functions βk(M) for selected values of k. We plot the functions

for odd values of k with a flipped sign for easiness of comparison.

Higher powers of k yield faster scaling with the number of memories,

M. 39

List of Figures 10

2.5 Ratio between numerical integration of the functions βk and the

asymptotics β̂k for selected values of k. The error is larger for higher

values of k, but all the curves saturate to a constant for high values

of M, indicating the validity of the approximation 40

2.6 The generalisation error for the fully memory-based model, com-

pared with theory and the standard baseline model (which does

gradient descent on the loss). Both theoretical curves approach

simulations better as the dimesionality of the space, N, is larger. . . 42

2.7 Improvement ε as a function of the number of memories M, for

different values of dimensionality of the space N. Here there is

no learning of the parameter vector w. Light purple lines are the

average of different runs of the simulation (∼104 runs); dark purple

lines are medians over windows of size 100 of the light curves.

The value for improvement predicted by the theory (purple, dashed)

agrees well with simulations especially as N increases. Also, as

the dimensionality increases, the effectiveness of using memories

decreases, making this method unsuitable for high-dimensional tasks

in this setting. 44

2.8 Improvement ε as a function of the previously seen data, used both

for training the parametric model w and for the memory-adujstment

procedure. Light purple lines are the average of different runs of the

simulation (∼104 runs); dark purple lines are medians over windows

of size 100 of the light curves. The different panels correspond to

different dimensionalities of the space, N. Slow learning, η = 1/N2. 44

List of Figures 11

2.9 Improvement ε as a function of the previously seen data, used both

for training the parametric model w and for the memory-adujstment

procedure. Light purple lines are the average of different runs of the

simulation (∼104 runs); dark purple lines are medians over windows

of size 100 of the light curves. The different panels correspond

to different dimensionalities of the space, N. Optimal learning

η∗ = 1/(N +2). 45

2.10 Generalisation error for baseline and the memory-adjustment models,

considering no learning η = 0. 46

2.11 Generalisation error for baseline and the memory-adjustment models,

considering slow learning η∗ = 1/N2 46

2.12 Generalisation error for baseline and the memory-adjustment models,

considering optimal learning η = 1/(N +2) 47

2.13 Improvement in the model-mismatch condition, y0 =
√

N, for zero

learning. Simulation plots (solid lines) and theory (dashed lines) are

plotted for dimensionalities N = 20 (purple) and N = 100 (green). . 49

2.14 Improvement in the model-mismatch condition, y0 =
√

N, for slow

learning. Simulation plots (solid lines) and theory (dashed lines) are

plotted for dimensionalities N = 20 (purple) and N = 100 (green). . 49

2.15 Improvement in the model-mismatch condition, y0 =
√

N, for opti-

mal learning. Simulation plots (solid lines) and theory (dashed lines)

are plotted for dimensionalities N = 20 (purple) and N = 100 (green). 49

2.16 Generalisation error curves for numerical simulations of baseline

model and memory-adjusted model 50

2.17 Change in improvement ∆ε when comparing model mismatch y0 =
√

N and within model-class y0 = 0 scenarios. Again, shown for

different values of dimensionality of the space N as a function of

the number of memories M, with the darker purple line being the

median of the lighter purple curves. As before, the theory agrees

well with the no-learning simulations 51

List of Figures 12

2.18 As we move to the other learning profiles, here shown η = 1
N2 , the

theory captures well the simulation results up to a certain point,

where there seems to be a transition. In Figure 2.16 we see this is

due to a saturation of the learning. 52

2.19 Similarly for the situation where η∗ = 1
N+2 , the theory captures the

overall trend of the (change in) improvement, but fails to do so as

the learning reaches a plateau, as seen in Figure 2.16 52

2.20 As the number of memories, L, being used in the adjustment proce-

dure increases, the improvement, ε , is larger. As M increases the

approximations done to calculate the learning rate α become less

precise, and a suboptimal adjustment rate might explain the fall in

improvement. 55

2.21 As the learning rate becomes non-zero, the theory still captures most

of the simulation results. Again, the improvement decays after a

number of memories/trials being stored/seen, perhaps indicating the

suboptimal adjustment rate due to the aproximations made. Also,

similar effects to before can be observed due to learning not being a

negligible effect anymore. 56

2.22 Generalisation error for different dimensionalities of the space, N,

and different learning rates, η . As before, we see how the effect

of learning renders the contribution from the memories as almost

irrelevant. 57

3.1 Optimal behaviour in a task is effectively decoupled from other

tasks. The coupling is only done through the global variable ρ ,

which tracks the estimate of the overall reward rate across the whole

environment. By optimising ρ locally on each task, one at a time,

the agent is guaranteed to never decrease their overall reward rate. . 68

List of Figures 13

3.2 A static sketch of the dynamic input a subject faces in a random-dot

kinnematogram task. The arrows represent the velocities of the dots,

and the goal is to integrate information from those velocities in order

to determine which distribution generated the input. 69

3.3 A sketch of the task actually implemented, that captures the impor-

tant features from the random-dot kinematogram task. The Gaussian

curves are the different options of probability distributions that could

be generating the inputs. In this plot the blue curve is the one gener-

ating the data (red dots). 70

3.4 Depiction of the evidence accumulation process for the problem de-

scribed in Equations 3.10 and 3.11, and Figure 3.3. As the evidence

accumulator em incorporates the information from datapoint xm+1

it can go towards either the positive or negative boundaries, ±B,

depending on its sign. 71

3.5 The environment considered in our example: there is a high-value

decision task that is accessed with probability p1 and a low-value

task that the agent encounters with probability 1− p1. Open-licensed

icons were taken from SVG Repo. 73

3.6 Optimal reward gained, R∗, and time spent in task T ∗, for the high-

value decision (Task 1) and the low-value one (Task 2), as a function

of p1, the probability of visiting Task 1. The dashed lines are the

baseline set by an agent that maximises the reward rate per task,

instead of the global one, as defined in Equations 3.23 76

3.7 Relative difference between the optimal reward, R∗i , as calculated

in Equation 3.21 and the reward from the strategy that maximises

reward rate per task, R0
i . 76

https://www.svgrepo.com/

List of Figures 14

3.8 Reward rates for the strategy that maximises the global reward rate,

r∗ (solid gold line), and for the strategy that maximises the local

reward rates, r0 (dashed gold line), for different values of the prob-

ability of visiting the high-value task, p1. Dashed purple line on

the top is the maximum reward rate for the high-value task, and

the dotted green line on the bottom is the maximum reward rate for

the low-value task, which are the limiting cases when p1 = 1 and

p1→ 0, respectively. 77

4.1 Example of a reward function from Equation 4.2 for a set of pa-

rameters and different values of the resource level θi, which acts

multiplying the whole function. The effect of the modulation, since

θi is limited between [0,1] is to bring the reward closer to zero, keep-

ing the point where R = 0 the same. As explained in Equation 4.3, it

also means the time for maximum reward is unaffected. 83

4.2 Comparisons of leaving times between the REINFORCE-learnt poli-

cies (green) and the local optimal leaving time (purple). 95

4.3 Environment 1. Left. Reward as function of leaving time for varying

levels of θ . Right. Reward rate, as function of leaving time and for

a few levels of θ . In both panels the dashed lines are the leaving

times that maximise reward rate for each task 96

4.4 Comparison between the reward rates found by REINFORCE and

Actor-Critic, and those predicted by theory. 96

4.5 Comparison between predicted frequencies of time spent in each

task, fi, and measured ones. 97

4.6 REINFORCE through learning. Environments 1 and 2 are the same

from Table 4.1. A, C. Environment 1 B, D. Environment 2. Dashed

lines are theory predictions for the stationary θ ∗i s and stationary

reward rates, r(π∗). 98

List of Figures 15

4.7 REINFORCE through learning. Environments 3 and 4 are the same

from Table 4.1. A, C. Environment 3 B, D. Environment 4. Dashed

lines are theory predictions for the stationary θ ∗i s and stationary

reward rates, r(π∗). 98

4.8 REINFORCE through learning. Environments 5 and 6 are the same

from Table 4.1. A, C. Environment 5 B, D. Environment 6. Dashed

lines are theory predictions for the stationary θ ∗i s and stationary

reward rates, r(π∗). 99

4.9 Internal consistency between stationary resource levels θ ∗i and mea-

sured vistation frequency of different tasks, fi. Dashed lines are the

identity. Both are averages over M = 500,000 trials. 99

C.1 Left: Real branches of the Lambert W function. The split between

W0 and W−1 happens at (−1/e,−1). We only work with W0 in

this work since we are concerned with real-valued x Right: The

asymptotics of the Lambert W function as the argument goes to

infinity, x→ ∞ gets sandwiched between L2(x) = logx− log logx

and L3(x) = logx− log logx− log
(

1− log logx
logx

)
. 113

F.1 Example of a monotonically increasing function that can be used in

the modelling proposed by Charnov (1976). It has the characteristic

of being concave, as necessary by the theory. Furthermore it saturates

at R(T →∞) = 2.2, so the effect of diminishing returns is very marked.121

G.1 Diagram of the basic formulation of an MDP. The agent selects

actions that influence the state of the environment. The environment

then “gives” the agent information about its state and a reward

conditioned on the previous state and the action taken by the agent.

Figure adapted from TeX StackExchange. 123

https://tex.stackexchange.com/a/461318

List of Tables

3.1 Parameters used for the environment with a high-value and a low-

value tasks. 74

4.1 Description of the different environments studied in Section 4.4. A

more complete description is given in Appendix J. 95

J.1 Environment 1. Short duration task with higher optimal reward rate ,

and long duration task with lower optimal reward rate. 132

J.2 Environment 2. 133

J.3 Environment 3. 133

J.4 Environment 4. 133

J.5 Environment 5. 133

J.6 Environment 6. 133

Introduction

17

Chapter 1

General Introduction

This thesis is divided into two separate parts:

• Part I (Chapter 2) is focused on single-event memories, and trying to under-

stand their advantages in learning;

• Part II (Chapters 3 and 4) presents two studies on optimal decision-making in

multi-task problems.

In the first part, we investigate the possible benefits of using single-event mem-

ories in learning and prediction. The approach consists in exploring two different

algorithms that use information contained in individual datapoints for prediction, and

compare those with a standard model of supervised learning. We derive analytical

results and compare those with numerical simulations, recovering results previously

reported in the literature, now with analytical backing. The conclusion found is that

single-event memory can be useful in specific scenario where the standard model of

supervised learning is still learning the correct data mapping (very low data regime),

or when this model does not contain the model class that generates the data (model

mismatch). Nonetheless, single-event memories sufer from the “curse of dimension-

ality”, and their improvement scales poorly with the dimensionality of the space for

the problem.

19

The second part of the thesis deals with the question of optimal decision-making

in multi-task environments. The agent sees one task at a time, where the reward rate

obtainable decreases over time, and needs to decide how to behave in the current

task, and when to leave to another one. In Chapter 3 we formalise the problem of

deciding how to behave optimally in this problem when the environment is static and

the agent cannot choose which task to engage with. We prove that an algorithm can

learn an optimal policy effectively using only information local to each task and a

global reward rate signal. We recover the same results as past work in the foraging

literature, where the optimal time to move out of a task can be found by considering

the global reward rate in the environment, now in a more general setting where there

can be complex policies for behaving in each task. We use this framework to suggest

an explanation for apparent suboptimal human behaviour described in the literature.

In Chapter 4 we delve into scenarios where the agent can choose which task to

engage with and the environment is now dynamic. We suggest a strategy an agent

might choose for optimising their reward rate in this problem, and compare our

theoretical predictions with numerical simulations. The resulting optimal policy

is different to the one in Chapter 3 and those considered in the foraging literature,

with the main distinction being that now the agent can maximise the leaving time

considering only the maximum reward rate in the current task, and not the whole

environment. We discuss the possible consequences this result might have for

behaviour.

Part I

Memory

20

Chapter 2

A mathematical study of single-event

memories in learning

It has long been observed that humans have a remarkable ability to remember specific

memories of individual experiences in their lives, and can retell them with an intricate

level of detail (Tulving (1972)). Despite the consensus that this capacity exists, a

wealth of literature has sought to characterise which features are essential to this

type of memory (Mahr and Csibra (18ed); Madan (2019)), which brain regions are

responsible for enabling it (McClelland and O’Reilly (1995); Kumaran et al. (2016)),

which other species have it too Clayton and Russell (2009); Applegate and Aronov

(2022), and what function it serves (Biderman et al. (2020); Mahr and Csibra (18ed)).

In this work, we study different learning algorithms that involve using single-event

memories, to try to explain the normative appropriateness of those memories and

what function they might serve an agent learning about the world.1

The question of the function of single-event memories becomes more interesting

as one notices that the concept of a memory system that extensively stores individual

rich memories of every single lived experience is at odds with the current under-

standing about learning and memory in the machine learning (ML) and statistics

1The name customarily given to memories of individual events is of “episodic memories”. Follow-
ing Mahr and Csibra (18ed), this work keeps a distinction between those and “single-event memories”,
which is used throughout this thesis. In short, it is understood that when an agent retrieves an episodic
memory they are not just thinking about an individual event of the past but also “reliving” that
experience and generating further experiences from it. This additional aspect of episodic memories
introduces questions about e.g. replay and reliving experiences which are out of the scope for this
study, justifying the choice for the alternative name.

22

communities. It is widely known that, when training a statistical model on data,

individual datapoints are not presentative of, and only provide partial information

about, the full underlying process generating the data. Even more so, the presence of

noise in the observation of the data might limit even further the degree to which one

datapoint can contribute to the full understanding of the process that one is trying to

learn. Therefore, to better extract meaningful information when learning from data it

is useful – and indeed common practice in ML – to consider the aggregate of several

datapoints. In light of this, utilizing individual memories for learning would seem

like an inneficient approach at best, or even a damaging one.

Others in the computational neuroscience and ML communities have noticed

this problem and engaged with it in different ways: A seminal study is the work by

Lengyel and Dayan (2008), where authors explored a sequential decision task in

which the agent could either utilise an episodic controller (i.e. single-event memory

controller) or a model-based controller to decide which action to take next, and

had the goal of maximizing total accumulated reward in an episode. The episodic

controller consisted of keeping track of past decisions and the reward associated with

those, and simply repeating the decisions that led to higher rewards; the model-based

one involved learning a model of the world and using this model to determine the best

course of action according to its expected trajectory. The authors then found with

simulations that the agent endowed with the episodic controller could outperform

a non-episodic one in situations of computational complexity and low-data regime,

presenting a possible explanation for the benefits for using individual memories in a

sequential decision task.

More recently, work by Sprechmann et al. (2018), inspired by neuroscience

research and the complementary learning systems (CLS) framework (McClelland and

O’Reilly (1995)), proposed an ML model that used memories of individual datapoints

to locally augment the predictions of neural networks trained in supervised learning

tasks. They found that this procedure improved the performance of the models in

common benchmarks and was helpful mitigating catastrophic forgetting in continual

learning tasks.

2.1. Problem setup 23

Even though the works referenced above shed light on the possible advantages

and limitations of single-event memory systems, neither conducted a comprehen-

sive mathematical investigation of the benefits and limitations associated with the

utilisation of single-event memories in learning and prediction. In this chapter we

analyse mathematically and validate with computer simulations the influence of using

single-event memories in a supervised learning task (i.e. predicting an input-output

mapping).

Section 2.1 explains the problem setting and the different models used to explore

the question on the usefulness of single-event emmories. Then we calculate the

performance for the differen models in Section 2.2, which is incomplete until we

calculate different averages over nearest neighbour memories in 2.3. The theoretical

and numerical results are presented and analysed in Section 2.4, both presenting the

inneficient scaling of the memory methods with the dimensionality of the problem.

Then Sections 2.5 and 2.6 extend the results respectively to out-of-model class

learning, and multiple memories models. We show how for more complex problems

such as the out-of-model class the strategy of using memories to improve ones model

could prove helpful. In short, this work presents a novel theoretical approach to study

the normative appropriateness of single-event memories in learning, and connects

the derived results with prior work in the literature.

2.1 Problem setup
Consider a supervised learning setting, like the one from Section A, and consider

that the mapping being learned is linear and without noise,

y = f (x) = w∗ ·x , (2.1)

where x and w∗ are vectors in RN , which we assume are sampled from isotropic

Gaussians,

x∼N (0, I) (2.2a)

w∗ ∼N (0, I) . (2.2b)

2.1. Problem setup 24

Assuming also that there is no noise in the mapping f from x to y leads to a

joint distribution p(x,y) = p(x)δ (y− f (x)) and the assumption on the distributions

above leads to the variance of the output to scale as the dimensionality of the space,

V[y] =
〈
(w∗ ·x)2〉= 〈∥w∗∥2〉= N . (2.3)

In line with usual experiences in the life of an animal, we consider the data

batches to be seen only once and to consist of a single training pair, (xm,ym), where

m indexes the trial number.

To explore the advantages single-event memories might bring in the task pre-

sented above, we study two different single-event memory models, and contrast their

performance with a standard model of learning (henceforth called “parametric model”

or “baseline model”). We present these three models below.

Parametric model

The baseline model is a parametric model, the standard in ML practice, which

follows the common ideas of statistical learning for a supervised learning problem,

as explained in Appendix A. The model lives in the same parametric family as the

true mapping, f , that is,

ŷw(x) = w ·x . (2.4)

As this model is in the correct parametric family it is the natural baseline for

the performance in the task, so we contrast its performance to the other two models,

which make use of single-event memories.

Learning in this model consists of following the direction of the steepest gradi-

ent, such that we update the parameter vector with the gradient of the quadratic loss,

ℓ(w,xm,ym) =
1
2
(ym−w ·xm)

2 (2.5a)

∆w =−η∇wℓ(w,xm,ym) = η(ym−w ·xm)xm , (2.5b)

where η is the learning rate – a hyperparameter that one can optimise over depending
on the task.

2.1. Problem setup 25

Fully memory-based model

The second model considered is an entirely (single-event) memory-based model.

This means it does not have any learned parameters and only uses memories of

previously seen data to make its predictions. It does so by comparing the test input

x with the stored “memories” of previously seen inputs {xm}, selecting that of the

memories that is the closest in input space to the test input, and outputting as its

prediction the output, ym, relative to that memory. Mathematically, at a training trial

t we store the data as a new memory,

DM←DM−1∪ (xm,ym) , (2.6)

where DM is the collection of memories stored, indexed by the number of memories,

M.

Then, at test time, when trying to predict the output for input x, this model uses

the nearest neighbour to x amongst the memories,

ŷ = yNN where NN = argmin
m∈DM

d(x,xm) . (2.7)

There is a decision that must be made at this point with regards to the criteria

that defines “closeness” in input space. For simplicity, we consider the Euclidean

distance in RN (the space where the input vectors live),

d(x,xm) = ∥x−xm∥2 , (2.8)

where the ∥ · ∥ denotes the Euclidean or ℓ2−norm, given by

∥v∥=
√

v ·v =
√

∑
i

vi . (2.9)

This model is a simple one to describe and represents the extreme case for the

hypothesis of the usefulness of single-event memories. We now consider a hybrid

approach that mixes ideas from both models above.

2.1. Problem setup 26

Memory-augmented model

The third model is a memory-augmented (or memory-adjusted) model. It is inspired

by work in Sprechmann et al. (2018), where the authors used a similar construct, but

did not analyse its performance analytically.

In short, the idea is to take the parametric model and improve it using the mem-

ories of previously seen data. More specifically, this model follows the parametric

model in that it learns a parameter vector w using gradient descent (see Equation

2.5b), and alongside this it also stores all datapoints used at train-time in a mem-

ory database, DM, like the previous model. Unlike both previous models, it uses

both memories and a parameter vector w to make its prediction: the memories are

accessed at test-time to locally adjust w for the region close to that particular test

point.

Mathematically, for each test point, x, one tries to predict, the model takes the

memory closest to the test point,

xNN = argmin
m∈DM

d(x,xm) , (2.10)

and uses it to adjust the parameters of the model from w to w̃. This can be done in

different ways, but since our measure of performance is the loss function, the natural

choice is to take an extra gradient step along the empirical loss evaluated at that

memory,

w̃ = w+∆wNN (2.11a)

∆wNN =−α∇wℓ(w,xNN,yNN)

= α (yNN−w ·xNN)xNN ,
(2.11b)

where α is the adjustment rate that can also be optimised – independently of the

learning rate η .

The adjusted parameter vector w̃ is used temporarily for the response due to

input x,

ŷadj = w̃ ·x , (2.12)

2.2. Calculating the performance for the different algorithms 27

then it gets discarded and the model returns to w for the usual gradient update. A

depiction of the memory-adjustment procedure can be seen in Figure 2.1.

x

y

NN memory

test point

original w adaptation to w̃

Figure 2.1: A graphical depiction of how the memory-adjustment procedure works. The
black and blue dots are previously seen datapoints, that were used to train the
parameter vector (the linear fit in black). In order to better predict a given test
point (pink point), the closest memory is selected to update the parameters of
the model, generating the new linear fit (the green line). This informs a more
suitable output for that region of the input space.

2.2 Calculating the performance for the different

algorithms
To compare the performance of the different algorithms outlined in the preceding

section, we calculate their generalisation error,

L(w) = ⟨ℓ(w,x,y)⟩= 1
2
〈
(y−w ·x)2〉 . (2.13)

By definition this depends on averages over the data distribution, p(x,y). Fur-

thermore, the nearest neighbour among the stored memories, xNN, is also stochastic,

and for the memory models we need to average over the nearest neighbour contribu-

tions also.

We start this section calculating the generalisation error for the baseline. Al-

though it is a common result we include it for completeness and as a warm-up

exercise in preparation for the calculation of the improvement given by memory

updates in the memory-augmented model. Then we share an intuition behind the

nearest neighbour contribution to the performance of the memory algorithms, and

2.2. Calculating the performance for the different algorithms 28

calculate their performance. Some details of the calculation of the averages over

nearest neighbours are left to Section 2.3.

Parametric model

Here we want to understand how training updates in the parameter vector w –

henceforth referred to as ∆wm to stand for the update due to observing data (xm,ym)

–, affect changes in the generalisation error. Following stochastic gradient descent,

this update is given by

∆wm =−η∇wℓ(w,xm,ym) , (2.14)

where (xm,ym) is the new training pair, and η is a learning rate.

Recall that we choose the pointwise loss ℓ to be the quadratic loss, so we have

∆wm =−η

2
∇w (ym−w ·xm)

2 =+η (ym−w ·xm)xm . (2.15)

After updating from w to w+∆wm, the pointwise loss for a given new test pair

(x,y) becomes ℓ(w+∆wm,x,y). However we are not interested in calculating the

loss for just one test datapoint, but across all possible datapoints, weighed by their

probability, so we want the generalisation error as in Equation 2.13,

L(w+∆wm) = ⟨ℓ(w+∆wm,x,y)⟩x,y , (2.16)

where the average is taken over the joint distribution

p(x,y|w∗) = p(y|x,w∗)p(x) = δ (w∗ ·x− y)N (x|0, I) . (2.17)

In order to take this average, we need to express the pointwise loss ℓ(w+

∆wm,x,y) in terms of quantities we now. Expanding the squared terms, we have

ℓ(w+∆wm,x,y) =
1
2
[y−w ·x−η (ym−w ·xm)(xm ·x)]2

=
1
2
(y−w ·x)2−η(y−w ·x)(ym−w ·xm)(xm ·x)

+
η2

2
(ym−w ·xm)

2(x ·xm)
2 .

(2.18)

2.2. Calculating the performance for the different algorithms 29

Defining the discrepancy between the true vector generating the data and the

parameter vector,

∆w∗ = w∗−w , (2.19)

we can write

ℓ(w+∆wm,x,y) =
1
2
(∆w∗ ·x)2−η(∆w∗ ·x)(∆w∗ ·xm)(xm ·x)

+
η2

2
(∆w∗ ·xm)

2(x ·xm)
2 .

(2.20)

Finally, we can average over all the data variables using the known results for

the Gaussian variables,

⟨xx⊺⟩= ⟨xmx⊺m⟩= I (2.21a)〈
(xm ·xm)

2∥xm∥2〉= (N +2)I , (2.21b)

and obtain the generalisation error after a training update,

L(w+∆wm) = ⟨ℓ(w+∆wm,x,y)⟩

=
〈
∥∆w∗∥2〉[1−η +

1
2

η
2(N +2)

]
.

(2.22)

We further notice that the first term in the expansion of ℓ(w+∆wm,x,y), after

averaging, is equal to the generalisation error before the training update, and write

L(w) =
1
2
〈
∥∆w∗∥2〉 (2.23a)

L(w+∆wm) = L(w)

[
1−η +

1
2

η
2(N +2)

]
. (2.23b)

Since η is a free hyperparameter, we can tune it to maximise the drop in gener-

alisation error with each datapoint. Doing so we find the equation for the optimal

learning rate and the corresponding optimal average change in the generalisation

error,

η
∗ =

1
N +2

(2.24a)

L(w+∆wm) = L(w)

[
1− 1

N +2

]
. (2.24b)

2.2. Calculating the performance for the different algorithms 30

One can also write the result above as a function of the initial parameter vector,

w0, and number of learning steps M taken up to that point by recurrently applying

the same update,

L(w0, t) = L(w0)

[
1− 1

N +2

]t
≈ L(w0)exp

(
− t

N +2

)
. (2.25)

Intuition behind using nearest neighbours

In both the memory-augmented and fully memory-based models, the idea of using the

memory closest to test point x is informed by the notion that one can use the shared

information from the closeness of test point x and xNN to improve the estimation

of target y by using the memorised pair (xNN,yNN). This is an assumption on the

continuity of the mapping f .

Ideally there would be a relevant memory near in input space to the test point,

xNN ≈ x, and the use of memory would be maximally informative – this is evidently

true in the limit of the number of memories going to infinity, M→ ∞. However, for

finite M it will generally not be the case that there is a memory close enough to the

test point, and memories will only be partially informative about the correct output

to the test point. This is especially true for high dimension input spaces, RN with

large N.

In fact, we can decompose the memory nearest to the test point, xNN, into a

component aligned with the test point - which is the informative part of the memory

for the task - and a perpendicular component,

xNN = zNNx̂+x⊥NN , (2.26)

where x̂ = x/∥x∥ is the unit vector in the direction of the test point, and x⊥NN ·x = 0 is

the part of the nearest neighbour memory that is orthogonal to the test point. This

can be seen graphically in Figure 2.2.

Since each memory (xm,ym) (and in particular the nearest neighbour one) is a

stochastic draw from the data distribution, both components will be noisy, and not

fully informative about the mapping f . However, the information about the correct

2.2. Calculating the performance for the different algorithms 31

prediction for test point can only be contained in the memories in the component that

is aligned with it, zNN. In that sense the perpendicular component can be seen as the

main source of noise when using the information in the nearest neighbour memories

for prediction.

xNN

x
zNNx̂

x⊥
NN

Figure 2.2: The decomposition of the selected memory xNN into zNNx̂, a component aligned
with the test point x, and x⊥NN, a perpendicular component. In high-dimensional
spaces vectors become further apart, and the largest contribution will be from
the perpendicular component, suppressing signal with noise.

Therefore, the scalar zNN is the contribution to xNN along the relevant direction,

parallel to the test point, and all the rest is accounted by x⊥NN. If one has the perfect

memory for a given test point, xNN = x, then the perpendicular term is identically

zero, x⊥NN = 0, and the signal is maximal, zNN = ∥x∥, otherwise there is a trade-off

between zNN and ∥x⊥NN∥. This is in line with the intuition articulated before.

Fully memory-based model

Recall that this model simply uses the output of the corresponding nearest neighbour

as its prediction,

ŷ = yNN where NN = argmin
m∈M

d(x,xm) . (2.27)

As described in Section 2.1, we use the generalisation error, L, to estimate the

average error for each model and we want to understand how changes to the model

(in this case, the set of memoriesM) propagate into improvements to the error.

2.2. Calculating the performance for the different algorithms 32

Applying Equation 2.27 into the quadratic loss, we have

L(yNN;M) =

〈
1
2
(y− yNN)

2
〉

=
1
2
〈[
(w∗ ·x)2−2(w∗ ·x)(w∗ ·xNN)+(w∗ ·xNN)

2]〉 . (2.28)

Assuming that w∗ ∼ N (0, I) and that the standard Gaussian vector x self-

averages as ∥x∥ ≈
√

N, we can write the different expectations as

〈
(w∗ ·x)2〉= ⟨x ·x⟩= N (2.29a)

⟨(w∗ ·x)(w∗ ·xNN)⟩= ⟨x ·xNN⟩= ⟨zNN∥x∥⟩=
√

N ⟨zNN⟩ (2.29b)〈
w∗ ·x2

NN

〉
=
〈
∥xNN∥2〉= 〈z2

NN(x̂ · x̂)
〉
+
〈
∥x⊥NN∥2

〉
+2
〈

zNNx̂ ·x⊥NN

〉
=
〈
z2

NN

〉
+
〈
∥x⊥NN∥2

〉
, (2.29c)

and obtain the result

L(yNN;M) =
1
2

[
N−2

√
N ⟨zNN⟩+

〈
z2

NN

〉
+
〈
∥x⊥NN∥2

〉]
. (2.30)

The loss initially is order N, as expected since we defined the output variable y

to be order
√

N, in Equation 2.3.

We derive explicit expressions for the averages ⟨zNN⟩ ,
〈
z2

NN

〉
and

〈
∥x⊥NN∥2〉 in

Section 2.3.

Memory-augmented model

The generalisation error for the memory-augmented model involves two different

gradient steps: the training step, identical to what was done for the the parametric

model, leading up to Equation 2.24b; and the memory-adjustment step, which is the

distinctive aspect of this model.

The change in the parameter vector due to memory adjustment is given by a step

in the direction of gradient descent for the quadratic loss, evaluated on the nearest

2.2. Calculating the performance for the different algorithms 33

neighbour memory

∆wNN =−α∇wℓ(w,xNN,yNN) = α(∆w∗ ·xNN)xNN , (2.31)

where we use again the discrepancy between the true vector generating the data and

the parameter vector,

∆w∗ = w∗−w . (2.32)

The memory-adjustment update in Equation 2.31 is similar to the learning

update in Equation 2.14, in the sense that both are steps in the direction of gradient

descent for the quadratic loss, but with the important distinction that now the loss is

evaluated on the nearest neighbour tuple (xNN,yNN) instead of a new draw from the

training data distribution. This means we need to take averages over the identity of

the nearest neighbour among the memories.

As in Equation 2.20, we write the pointwise loss for a test point, ℓ(w +

∆wNN,x,y), and expand the squared terms that depend on the update,

ℓ(w+∆wNN,x,y) =
1
2
[y−w ·x−α (yNN−w ·xNN)(xNN ·x)]2

=
1
2
(y−w ·x)2−α(y−w ·x)(yNN−w ·xNN)(xNN ·x)

+
α2

2
(yNN−w ·xNN)

2(x ·xNN)
2

=
1
2
(∆w∗ ·x)2−α(∆w∗ ·x)(∆w∗ ·xNN)(xNN ·x)

+
α2

2
(∆w∗ ·xNN)

2(x ·xNN)
2 .

(2.33)

Then, averaging over the relevant quantities we can obtain the generalisation

error,

L(w+∆wNN) = ⟨ℓ(w+∆wNN,x,y)⟩x,xNN
, (2.34)

for which we need to use the decomposition from Equation 2.26, xNN = zNNx̂+

x⊥NN, noticing that x · x̂ = ∥x∥ and x ·x⊥NN = 0, so that

2.2. Calculating the performance for the different algorithms 34

L(w+∆wNN) =

〈
1
2
(∆w∗ ·x)2−α(∆w∗ ·x)

[
∆w∗ · (zNNx̂+x⊥NN)

]
(zNNx̂ ·x))

〉
+

〈
α2

2

[
∆w∗ · (zNNx̂+x⊥NN)

]2
(zNNx̂ ·x)2

〉
= L(w)−α

[〈
z2

NN(∆w∗ ·x)2〉+〈zNN∥x∥(∆w∗ ·x)(∆w∗ ·x⊥NN)
〉]

+
α2

2

[〈
z4

NN(∆w∗ ·x)2〉+〈z2
NN∥x∥2(∆w∗ ·x⊥NN)

2
〉

+2z3
NN∥x∥(∆w∗ ·x)(∆w∗ ·x⊥NN)

2
]
.

(2.35)

Assuming that averages over the test vector, x, can be done first, we get

L(w+∆wNN) = L(w)−α
〈
∥∆w∗∥2〉〈z2

NN

〉
(2.36)

+
1
2

α
2
[〈
∥∆w∗∥2〉〈z4

NN

〉
+
〈
∥∆w∗∥2〉〈z2

NN∥x⊥NN∥2
〉]

.

This last assumption is an approximation, since by definition the nearest neigh-

bour quantities depend on the value of x. When estimating these averages over

nearest neighbours in Section 2.3 we do assume that the test point self-averages,

which justifies the step above, but can be a source of error. Another approxima-

tion made is that the discrepancy vector ∆w∗ decouples from the nearest neighbour

quantities. This also cannot be the case, as the same data points that become the

memories were originally used for training, hence they determined the evolution of

the parameter vector w. Nonetheless, Equation 2.36 should be approximately correct

in high-dimensional spaces and for situations with a slow learning rate, η ≈ 0.

Optimising the adjustment rate to decrease the generalisation error as much as

possible per step, we obtain

α
∗ = argmin

α

L(w+∆wNN) =

〈
z2

NN

〉
⟨z4

NN⟩+
〈
z2

NN∥x⊥NN∥2
〉 , (2.37)

and the associated improvement ε in the generalisation error

ε =

〈
z2

NN

〉2

⟨z4
NN⟩+

〈
z2

NN∥x⊥NN∥2
〉 , (2.38a)

L(w+∆wNN) = L(w) [1− ε] . (2.38b)

2.3. Expectations over Nearest Neighbour quantities 35

2.3 Expectations over Nearest Neighbour quantities

Here we present the calculations of the averages over nearest neighbour contributions

in more detail. As shown in Equations 2.30, 2.37 and 2.38a, we are interested in

averages of the kind, 〈
zp

NN∥x⊥NN∥2q
〉
, (2.39)

where p, q are integers. As described in the previous section, every memory xm can

be decomposed into a component aligned with the test point, zmx̂, and a perpendicular

one, x⊥m , but we do not simply want the averages over the distribution p(zm,∥x⊥m∥2
∣∣ x)

defined over a memory m. Instead, we want those conditioned on the fact that a

particular memory is the nearest neighbour to x. Therefore, taking those averages is

a non-trivial problem, and this work presents a method to derive those quantities.

We start considering the distance between the test point x and a memory xm,

γm ≡ ∥xm−x∥2 = (zm−∥x∥)2 +∥x⊥m∥2 . (2.40)

The conditioning procedure takes the collection of distances {γm} for all memo-

ries, orders them {γ(m)} – where lower subscript indices represent smaller distances

and closer points –, and selects the nearest neighbour, γ(1) ≡ γNN. Then the rele-

vant probability distribution over the pair from the decomposition in Equation 2.26,

(z,∥x⊥∥2) is the one that is conditioned on the identity of the nearest neighbour,

xm ≡ xNN, that is,

p(z,∥x⊥∥2 | NN,x) , (2.41)

where the conditional NN indicates that the memory we picked – say, m – is the nearest

neighbour to x. Now we need to decompose this distribution in terms of quantities

we can calculate. First we can use Bayes’ theorem to write

p(z,∥x⊥∥2 | NN,x) =
p(z,∥x⊥∥2|x)p(NN|z,∥x⊥∥2,x)

p(NN|x)
. (2.42)

The probability distributions are: a prior p(z,∥x⊥∥2|x), which tells us the prior

probability that a memory m has a decomposition of values (z,∥x⊥∥2) under the

2.3. Expectations over Nearest Neighbour quantities 36

direction of x; the likelihood p(NN|z,∥x⊥∥2,x), which reads: the probability that a

given memory m we picked is the nearest neighbour memory to x given we know

its decomposition has the values (z,∥x⊥∥2); and the evidence p(NN|x), which is the

probability that the memory we picked, m, is the nearest neighbour memory to x

without knowing anything else about it – this is usually seen as a normalisation.

Now we can use marginalisation to introduce another variable, γ , the distance

between the test point x and the memory xm (that becomes the nearest neighbour

memory xNN after the conditioning NN). This is needed because we only know how to

rank memories by closest or farthest in a real line – the scalar space of distances – not

in the space of (z,∥x⊥∥2) ∈ R2 – despite those being the quantities we are interested

in. Then,

p(z,∥x⊥∥2|NN,x) =
p(z,∥x⊥∥2|x)

p(NN|x)

∫
dγ p(NN,γ|z,∥x⊥∥2,x)

= p(z,∥x⊥∥2|x)
∫

dγ p(γ|z,∥x⊥∥2,x)
p(NN|γ,x)
p(NN|x)

(2.43)

where we used the fact that the evidence does not depend on γ , so it can go inside

the integral; and also the fact that conditioned on γ the distribution for the identity of

the nearest neighbour is independent of the components of the decomposition of the

memory.

Here we need results from Order Statistics, a subfield of Statistics which con-

cerns the study of probability distributions for ordered sets. A brief introduction on

Order Statistics is given in Appendix B. Using Equations B.5 and B.11 to substitute

the densities over the identity of the nearest neighbour, we can write an expression

for the uknown terms in the right-hand side of Equation 2.43 as

p(NN|γ,x)
p(NN|x)

= M [1−C(γ)]M−1 , (2.44)

and using the fact that given z,∥x⊥∥ and x the distance γ is completely determined

through γ = ∥xm−x∥2 = (z−∥x∥)2 +∥x⊥∥2 (Equation 2.40), we also have that

p(γ|z,∥x⊥∥2,x) = δ

(
γ− (z−∥x∥)2−∥x⊥∥2

)
. (2.45)

2.3. Expectations over Nearest Neighbour quantities 37

Collecting those results we can use the Dirac delta to do the integral, and write

p(z,∥x⊥∥2 | NN,x) = p(z,∥x⊥∥2|x) M
[
1−Cγ((z−∥x∥)2 +∥x⊥∥2)

]M−1
, (2.46)

where M is the number of memories and C(γ) is the cumulative distribution function

(cdf) for the distance, γ , calculated in Appendix E to be approximately a Gaussian

distribution,

γ ∼N
(
∥x∥2 +N,4∥x∥2 +2N

)
. (2.47)

A description for Equation 2.46 in words is as follows: given the known

prior distribution for the quantities (z,∥x⊥∥) for any memory, what is the shifted

distribution for those quantities if we know that the memory picked is the nearest

neighbour to the test point, x. This can be done because the pair (z,∥x⊥∥) fully

determines the distance γ , which is the scalar quantity used to rank the memories.

Through the distance (and indirectly through the components (z,∥x⊥∥)) one can

estimate how likely it is that the memory picked is the nearest neighbour to the test

point. From Order Statistics we obtain that the values more likely are those that

make the cdf Cγ((z−∥x∥)2 + ∥x⊥∥2) closer to zero, and more so when there are

more memories (because with more memories it is more likely to get a memory close

to the test point).

We can then take the expectation of powers of those quantities, as discussed,

〈
zp

NN∥x⊥NN∥2q
〉
≡
∫

dzd∥x⊥∥2 zp∥x⊥∥2q p(z,∥x⊥∥2|NN,x)

=
∫

dzd∥x⊥∥2 zp∥x⊥∥2q p(z,∥x⊥∥2)

×M
[
1−Cγ((z−∥x∥)2 +∥x⊥∥2)

]M−1
,

(2.48)

where p,q ∈ N.

The missing piece now is the prior distribution for the pair (z,∥x⊥∥2) before

conditioning on the nearest neighbour. The steps involved in finding this distribution

and solving the integral in Equation 2.48 do not provide further intuition to the

problem that was not given already, so they are omitted from the main text and can be

2.3. Expectations over Nearest Neighbour quantities 38

found in Appendix E. In short, the distribution for (z,∥x⊥∥2) decouples if one is not

conditioning on other quantities, and both can be seen as approximately Gaussian.

The results are

〈
zp

NN∥x⊥NN∥2q
〉
=

〈[
u√
3
− s

√
2
3

]p[
N +

√
2N
3

(
u
√

2+ s
)]q

ζNN(s,M)

〉
u,s

,

(2.49)

where u,s are standard Gaussian variables, and we defined the nearest neighbour

factor and cdf for a standard Gaussian as

ζNN(s,M) = M[1−Φ(s)]M−1 (2.50a)

Φ(s) =
∫ s

−∞

dq√
2π

e−
1
2 q2

. (2.50b)

Average functions, βk(M)

There are two averages over different standard Gaussian variables, s and u. The aver-

age over the u variable depends only on the powers uk; therefore it is straightforward

with the values being the moments of a standard normal distribution.

The average over s is not as immediate, since the nearest neighbour factor,

ζNN, modulates the expectation. In the left panel of Figure 2.3 we see how ζNN

functions similarly to a step function, selecting the negative semi-half of the real line,

especially for larger values of M – it becomes sharper and shifts towards selecting

more negative values as M increases.

Figure 2.3: The integrands of the expectations in Equation 2.49 as functions of s and M. The
nearest neighbour factor, ζNN(s,M), is defined in Equation 2.50a and modulates
the expectation; φ(s) is the pdf for a standard Gaussian, over which we take the
expected values.

2.3. Expectations over Nearest Neighbour quantities 39

Alternatively, one can see the effect that ζNN has on the averages as shifting and

reshaping the Gaussian distribution, φ(s), when calculating its moments, sk. This

leads to a sharper and more negative Gaussian distribution, which can be seen in

the right panel of Figure 2.3. The shift and scaling of the expectation values for the

powers sk follows from this: as the number of memories increases the mean becomes

more negative and the variance smaller.

Since the averages of different powers of s modulated by the nearest neighbour

factor, ζNN, come up frequently in the next sections, it is convenient to define them as

βk(M)≡
〈
(−1)ksk

ζNN(s,M)
〉

s

= (−1)kM
∫

∞

−∞

ds√
2π

e−
1
2 s2

sk [1−Φ(s)]M−1 .
(2.51)

As the βks are integrals of just one scalar variable, they can be easily integrated

numerically. The results for the lower powers is shown in Figure 2.4. In order to

better understand the behaviour of these functions, we derive approximate analytical

results for their scaling when the number of memories, M, grows.

Figure 2.4: Functions βk(M) for selected values of k. We plot the functions for odd values
of k with a flipped sign for easiness of comparison. Higher powers of k yield
faster scaling with the number of memories, M.

Coming back to the intuition at the beginning of this subsection, we notice

from Figure 2.3 how the nearest neighbour modulation, ζNN(s), shifts and scales the

2.3. Expectations over Nearest Neighbour quantities 40

standard Gaussian distribution, φ(s), but its shape still looks approximately Gaussian.

We then use Laplace’s saddle point method to expand each of those as an exponential

of a quadratic function and solve the integral approximately. The full calculation can

be found in Appendix D, with the final result being

βk(M)
M→∞∼

e
1
2 log logM+o(1)

[
W
(

M2

2π

)] k
2

2
[
1+W

(
M2

2π

)] 1
2

, (2.52)

where W (x) is the Lambert W function. The Lambert W function W (x) is such

that it satisfies wew = x. For large arguments, x≫ 1, it can be proven to scale as

W (x) = logx− log logx+ o(1). More information about the Lambert W function

can be found in Appendix C.

To investigate how precise are the approximations β̂k in Equation 2.52, we

plot in Figure 2.5 the ratio between the numerical integration of the true βk (from

Equation 2.51) and the approximations shown above. The error generally decays

with M and given large enough M the ratios for different values of k converge. They

do not converge exactly to 1 as the calculations done in Appendix D discards some

minor terms in favour of interpretability.

Figure 2.5: Ratio between numerical integration of the functions βk and the asymptotics β̂k
for selected values of k. The error is larger for higher values of k, but all the
curves saturate to a constant for high values of M, indicating the validity of the
approximation

In summary, we have shown that the contribution from the number of memories,

M, for the averages of Equation 2.14 come exclusively through the βk functions

2.4. Comparing the algorithms 41

defined in Equation 2.51. Those were shown graphically and analytically to scale

close to logarithmically with M, indicating that their influence in the value of the

averages can be limited depending on the powers of p and q and the dimensionality

of the space of the problem, N.

2.4 Comparing the algorithms

In the previous sections, we provided the theoretical predictions for performances of

the three algorithms, restated below for reference. Now we present the experimental

results, comparing the algorithm performances both among themselves and with the

predictions.

We first compare the generalisation error of the parametric model, as given in

Equation 2.25,

L(w0, t) = L(w0)

[
1− 1

N +2

]t
≈ L(w0)exp

(
− t

N +2

)
, (2.53)

where, assuming w0 ∼N (0, I), we have that

L(w0) =
1
2
〈
(w0 ·x)2〉= 1

2
⟨x ·x⟩= N

2
, (2.54)

and that of the fully memory-based model, as first shown in Equation 2.30,

L(yNN;M) =
1
2

[
N−2

√
N ⟨zNN⟩+

〈
z2

NN

〉
+
〈
∥x⊥NN∥2

〉]
. (2.55)

The averages over nearest neighbour quantities can be obtained from Equation

2.49,

⟨zNN⟩=
√

2
3

β1(M) , (2.56a)〈
z2

NN

〉
=

1
3
(1+2β2(M)) , (2.56b)〈

∥x⊥NN∥2
〉
= N−

√
2N
3

β1(M) , (2.56c)

2.4. Comparing the algorithms 42

which leads to the expression for the loss,

L(yNN;M) = N− 1
2

√
6Nβ1(M)+

1
6
(1+2β2(M)) . (2.57)

Simulation results and corresponding theoretical curves are presented in Figure

2.6 (for dimensionalities of the space N = 20 and N = 100). Early in training the fully-

memory based approach can outperform the baseline one as the parameter vector

w is still being learned. After a number of training points are seen, the parametric

model starts outperforming the fully-memory based one. This result corroborates

Lengyel and Dayan (2008), where authors report the “episodic controller” performed

better than the “semantic controller” early in training in a reinforcement learning

task. After some trials and efficient learning the performance for the “semantic

controller” greatly improves and surpasses the “episodic” one.

Figure 2.6: The generalisation error for the fully memory-based model, compared with
theory and the standard baseline model (which does gradient descent on the
loss). Both theoretical curves approach simulations better as the dimesionality
of the space, N, is larger.

2.4. Comparing the algorithms 43

We proceed to compare the parametric model with the memory-augmented

one. From Section 2.2, the improvement due to the memory-adjustment is given by

Equations 2.37 – 2.38a,

α
∗ =

〈
z2

NN

〉
⟨z4

NN⟩+
〈
z2

NN∥x⊥NN∥2
〉 , (2.58a)

L(w+∆wNN) = L(w) [1− ε] , (2.58b)

ε =

〈
z2

NN

〉2

⟨z4
NN⟩+

〈
z2

NN∥x⊥NN∥2
〉 . (2.58c)

Returning to Equation 2.49, the relevant averages are

〈
z2

NN

〉
=

1
3
(1+2β2(M)) (2.59a)〈

z4
NN

〉
=

1
3

(
1+4β2(M)+

4
3

β4(M)

)
(2.59b)〈

z2
NN∥x⊥NN∥2

〉
=

N
3
[1+2β2(M)]+

√
2N
27

[5β1(M)+2β3(M)] . (2.59c)

Keeping only the dominant terms for large N ≫ 1, the average
〈
z2

NN∥x⊥NN∥2〉
dominates the denominators with its Nβ2(M) term, implying that the scalings for

the optimal learning rate and improvement are

α
∗ ∼ 1

N
, (2.60a)

ε ∼ β2(M)

N
. (2.60b)

This means that the optimal adjustment rate, α∗, should have, to first order, the

same scaling as the optimal learning rate, η∗, calculated in Equation 2.24a, and the

improvement brought by the memory-adjustment step scales slowly with the number

of memories (through the β2(M) term in the numerator), the effect being suppressed

by the dimensionality of the space in the denominator.

Figure 2.7 shows these effects in the improvement ε for different values of N as

a function of the number of memories M. This plot was done considering η = 0, i.e.

without any learning by the underlying parametric model. This is to verify that the

approximations done to derive the results presented earlier were valid.

2.4. Comparing the algorithms 44

Figure 2.7: Improvement ε as a function of the number of memories M, for different
values of dimensionality of the space N. Here there is no learning of the
parameter vector w. Light purple lines are the average of different runs of the
simulation (∼104 runs); dark purple lines are medians over windows of size
100 of the light curves. The value for improvement predicted by the theory
(purple, dashed) agrees well with simulations especially as N increases. Also,
as the dimensionality increases, the effectiveness of using memories decreases,
making this method unsuitable for high-dimensional tasks in this setting.

Figure 2.8: Improvement ε as a function of the previously seen data, used both for training
the parametric model w and for the memory-adujstment procedure. Light purple
lines are the average of different runs of the simulation (∼104 runs); dark purple
lines are medians over windows of size 100 of the light curves. The different
panels correspond to different dimensionalities of the space, N. Slow learning,
η = 1/N2.

2.4. Comparing the algorithms 45

Figure 2.9: Improvement ε as a function of the previously seen data, used both for training
the parametric model w and for the memory-adujstment procedure. Light purple
lines are the average of different runs of the simulation (∼104 runs); dark purple
lines are medians over windows of size 100 of the light curves. The different
panels correspond to different dimensionalities of the space, N. Optimal learning
η∗ = 1/(N +2).

Figures 2.8 and 2.9 show, respectively, how the simulation results change

when the learning rate is slow, η ∼ 1/N2, and optimal, η∗ = 1
N+2 . We see that

the approximations assuming that there are no strong correlations between the

discrepancy vector ∆w∗ and the nearest neighbour quantities still stand qualitatively

correct for the values of M and N shown for the slow learning case, but break down

when learning becomes stronger. We notice that there are clear nonlinear aspects in

the optimal learning plots (Figure 2.9) which cannot be accounted by the theoretical

results.

Then, Figures 2.10 – 2.12 present the generalisation error of the baseline and

the memory-adjustment models, which displays the same results as the other figures:

for no or slow learning there is a noticeable improvement from using memories to

adjust the parameter vector, but in the case of slow learning this improvement scales

poorly with the dimesionality of the space, N, and does not affect the performance

considerably when learning is optimal. While the right panel of Figure 2.9 jumps

upward at the end of the regime might seem to indicate a relevant improvement

from memories in the optimal learning scenario, one needs to keep in mind the

2.4. Comparing the algorithms 46

associated plot in the right panel of Figure 2.12, which shows that the generalisation

error is essentially zero, and the decrease in the loss due to the memory-adjustment

procedure does not yield a relevant change in absolute terms.

Figure 2.10: Generalisation error for baseline and the memory-adjustment models, consid-
ering no learning η = 0.

Figure 2.11: Generalisation error for baseline and the memory-adjustment models, consid-
ering slow learning η∗ = 1/N2

2.5. Model mismatch 47

Figure 2.12: Generalisation error for baseline and the memory-adjustment models, consid-
ering optimal learning η = 1/(N +2)

2.5 Model mismatch
Now we modify the task the algorithms need to learn by introducing a non-zero bias

in the true mapping between input and output, i.e. y0 ̸= 0 in the generative process

that describes the learning problem,

y = f (x) = w∗ ·x+ y0 . (2.61)

This is to make the problem more complicated in general, and to introduce

a model mismatch for the baseline. Depending on the size of the bias term this

change can drastically impair the performance of that model, as presented later in

this section. The hypothesis here is that the small improvements presented in the

previous section were due to the parametric model being in the same family of

functions as the true model, and instead memories would be useful in cases with

more complicated mappings between input and output, such as when there is a model

mismatch.

This seems to make intuitive sense: if an agent has a good model of the mapping

it is trying to predict then it does not need to remember individual events anymore,

it must only follow its model. Conversely, if the agent does not have a good model

of the mapping, then having memories of individual events can fix those gaps in

2.5. Model mismatch 48

knowledge and help make better predictions.

Following the same procedure as in preceding sections, we can derive the

optimal adjustment rate α∗,

α
∗ =

〈
z2

NN

〉
+
⟨y2

0⟩
2
√

N
⟨zNN⟩

⟨y2
0⟩
2 ⟨z2

NN⟩+ ⟨z4
NN⟩+

〈
z2

NN∥x⊥NN∥2
〉 , (2.62)

and the average improvement associated with it,

ε(y0) =

[〈
z2

NN

〉
+
⟨y2

0⟩
2
√

N
⟨zNN⟩

]2

[
1+ ⟨y

2
0⟩

2N

][
⟨y2

0⟩
2 ⟨z2

NN⟩+ ⟨z4
NN⟩+

〈
z2

NN∥x⊥NN∥2
〉] . (2.63)

The results are mostly similar to those in Equation 2.59, with important additions

due to the bias term, y0. The terms that depend only on powers of zNN scale as

⟨zp
NN⟩ ∼ βp(M) , (2.64)

and therefore do not contribute to the overall scaling unless the number of memories

is exponentially large. The largest term in the denominator is typically
〈
zNN∥x⊥NN∥2〉∼

Nβ2(M). But now, if the bias term is of an order comparable with the dimensionality

of the space, y2
0 ∼N, then there would be a contribution to the numerator of Equation

2.63 such that it would be of the same order as the denominator, making the effect

from the memories more noticeable. This scaling is in line with Equation 2.3, where

we saw that the scaling of the output is in general order
√

N for randomly sampled

isotropic Gaussian variables w∗ and x.

The comparison between theoretical calculation for the improvement and numer-

ical simulations can be seen in Figures 2.13 – 2.15. The results mostly recapitulate

what was shown in Section 2.4, with the main difference that now the improvement

in the higher-dimensional case, N = 100, isn’t negigible.

2.5. Model mismatch 49

Figure 2.13: Improvement in the model-mismatch condition, y0 =
√

N, for zero learning.
Simulation plots (solid lines) and theory (dashed lines) are plotted for dimen-
sionalities N = 20 (purple) and N = 100 (green).

Figure 2.14: Improvement in the model-mismatch condition, y0 =
√

N, for slow learning.
Simulation plots (solid lines) and theory (dashed lines) are plotted for dimen-
sionalities N = 20 (purple) and N = 100 (green).

Figure 2.15: Improvement in the model-mismatch condition, y0 =
√

N, for optimal learning.
Simulation plots (solid lines) and theory (dashed lines) are plotted for dimen-
sionalities N = 20 (purple) and N = 100 (green).

2.5. Model mismatch 50

Furthermore, there are clear regions of the improvement curves that the theory

misses. In order to understand those we look into the generalisation error curves,

shown in Figure 2.16. As expected from the mismatch between the class of models

that the parametric model can represent and the true model generating the data, every

learning profile plateaus at a certain level. For slow learning rate η = 1
N2 this is at

the optimal value the parametric model can go, where w = w∗ but there is still an

error of order ⟨y
2
0⟩
2 = N

2 . It seems the slower learning rate does a better job in the

case of mismatch, as in the simulations using η∗ lead to a worse plateau. This could

be caused by the faster learning rate method falling into a local optima.

Figure 2.16: Generalisation error curves for numerical simulations of baseline model and
memory-adjusted model

2.5. Model mismatch 51

In order to quantify how much improvement, ε , is gained in the mismatch

condition on top of what was originally gained in the within model class situation,

we quantify it in the simulations by looking at the difference between those,

∆ε(N,M) = ε(N,M,y0 =
√

N)− ε(N,M,y0 = 0) . (2.65)

As one can see in Figures 2.17 – 2.19, the benefit from using memories to

adjust the model remains of considerable effect for a range of values of N, even

when learning is not slow. However, as in the case within model class, the learning

causes correlations between the discrepancy vector ∆w∗ and the nearest neighbour

quantities that are not fully accounted for in the theoretical results.

Figure 2.17: Change in improvement ∆ε when comparing model mismatch y0 =
√

N and
within model-class y0 = 0 scenarios. Again, shown for different values of
dimensionality of the space N as a function of the number of memories M,
with the darker purple line being the median of the lighter purple curves. As
before, the theory agrees well with the no-learning simulations

2.5. Model mismatch 52

Figure 2.18: As we move to the other learning profiles, here shown η = 1
N2 , the theory

captures well the simulation results up to a certain point, where there seems to
be a transition. In Figure 2.16 we see this is due to a saturation of the learning.

Figure 2.19: Similarly for the situation where η∗ = 1
N+2 , the theory captures the overall

trend of the (change in) improvement, but fails to do so as the learning reaches
a plateau, as seen in Figure 2.16

2.6. Extension to L closest neighbours 53

2.6 Extension to L closest neighbours

In the preceding sections, we considered how and when using one single-event

memory could be an effective strategy for prediction or for updating a parametric

model used in prediction. A natural extension is to extrapolate the reasoning to

using L single-event memories – this seems to still consider the different memories

individually, while also perhaps extracting from each their differential contribution to

prediction. In this section we consider this development of having the L closest mem-

ories adjust the parametric model. We update the equations presented before, noting

their differences, and present the new results, again comparing with simulations.

The main change we make is to consider the adjustment update now as an

average update over directions corresponding to different memories,

∆wL =−α

L

L

∑
l=1

∇wℓ(w,x(l),y(l)) =
α

L ∑
l
(∆w∗ ·x(l)) x(l) . (2.66)

From this change we can obtain new equations for the optimal adjustment step

α∗ and the associated improvement ε by following the same procedure as in Section

2.2 (i.e. calculating the change in the pointwise loss and taking the average to obtain

the generalisation error). The formal results are

α
∗ =

L∑l
〈
z2

l

〉
2∑l

〈
z4

l

〉
+∑l

〈
z2

l ∥x⊥l ∥2
〉
+2∑l′ ̸=l

〈
z2

l z2
l′
〉
+∑l′ ̸=l

〈
zlzl′(x⊥l ·x⊥l′)

〉 (2.67a)

ε =

[
∑l
〈
z2

l

〉]2
2∑l

〈
z4

l

〉
+∑l

〈
z2

l ∥x⊥l ∥2
〉
+2∑l′ ̸=l

〈
z2

l z2
l′
〉
+∑l′ ̸=l

〈
zlzl′(x⊥l ·x⊥l′)

〉 . (2.67b)

Also similar to before, we need to take expectations over the nearest L neigh-

bours. The procedure – once more applying results from Order Statistics, as described

in Section B – is similar to the one that led to Equation 2.46, except that now we are

interested in each of the lth closest neighbours, where l ∈ {1, . . . , L}, instead of just

2.6. Extension to L closest neighbours 54

the nearest one. The marginal distributions for each l are given by

p
(

z,∥x⊥∥2
∣∣∣ lth, x

)
= p(z,∥x⊥∥2)

∫
dγ p(γ |z,∥x⊥∥2,x) (2.68)

× M!
(l−1)!(M− l)!

C(γ)l−1 [1−C(γ)]M−l ,

and the joint distributions for neighbours l < k are

p
(

z1, ∥x⊥∥2
1, z2, ∥x⊥∥2

2

∣∣∣ lth, kth, x
)
= p(z1, ∥x⊥∥2

1, z2, ∥x⊥∥2
2) (2.69)

×
∫

dγldγk 1{γl ≤ γk} p
(

γl,γk

∣∣∣zl,∥x⊥∥2
l ,zk,∥x⊥∥2

k

)
× M! C(γl)

l−1 [C(γk)−C(γl)]
k−l−1 [1−C(γk)]

M−k

(l−1)!(k− l−1)!(M− k)!
.

To follow from the distributions above to the averages needed to compute

Equations 2.67a and 2.67b, one needs to follow the same approach as the one

described in Appendix E, but adapted for L > 1 memories: do the γ integrals using

delta functions, make change of variables and approximations, to obtain

〈
zp

l |x
⊥
l |2q

〉
=

〈[
u√
3
− s

√
2
3

]p[
N +

√
2N
3

(
u
√

2+ s
)]q

ζl(s,M)

〉
u,s

(2.70)

and, for l < k,

〈
zp

l zr
k|x⊥l |2q|x⊥k |2u

〉
=

〈[
ul√

3
− sl

√
2
3

]p[
N +

√
2N
3
(ul
√

2+ sl)

]q

(2.71)[
uk√

3
− sk

√
2
3

]r[
N +

√
2N
3
(uk
√

2+ sk)

]u

ζlk(sl,sk,m)

〉
ul ,uk,sl ,sk

where the marginal factors, ζl , and joint factors, ζlk, are given by

ζl(s) =
M!

(l−1)!(M− l)!
Φ(s)l−1 [1−Φ(s)]M−l , (2.72a)

ζlk(sl,sk) =
M! 1{sl ≤ sk}

(l−1)!(k− l−1)!(M− k)!
Φ(sl)

l−1 [Φ(sk)−Φ(sl)]
k−l−1 [1−Φ(sk)]

M−k .

(2.72b)

2.6. Extension to L closest neighbours 55

The averages using just one of the neighbours, l, are relatively simple and similar

to the averages we had before, but the averages for joint terms are more complicated

and require further consideration. In particular, it is not possible to calculate exactly

the quantity
〈
zlzl′(x⊥l ·x⊥l′)

〉
with the averages we know from Equation 2.71, but

we can make the following approximations that should be reasonable for large N

and small M. First, the dot product between the perpendicular components of both

memories can be rewritten as x⊥l ·x⊥l′ = ∥x
⊥
l ∥∥x⊥l′ ∥cosθll′ . So far this is exact, but

we don’t know the cosine, this is where the approximation comes: initially the

vectors x⊥l and x⊥l′ are approximately orthogonal as they are random vectors in a

high dimensional space, so cosθll′ ∼ 1√
N

. This breaks down later in training, since

memories will be more correlated due to the fact that they are conditioned on both

being close neighbours to the test point.

Figures 2.20 – 2.22 present, as before, the improvement and generalisation

error for different dimensionalities of the space and different learning condition (no

learning, slow learning, and optimal learning), in a within model class situation.

Figure 2.20: As the number of memories, L, being used in the adjustment procedure in-
creases, the improvement, ε , is larger. As M increases the approximations
done to calculate the learning rate α become less precise, and a suboptimal
adjustment rate might explain the fall in improvement.

2.6. Extension to L closest neighbours 56

A couple of points are worth noticing about the improvement curves when using

L > 1 nearest neighbours for the adjustment update: first, as before, the theoretical

predictions match the numerical results reasonably well for large dimensionality

spaces and slow learning regimes; then, the increased improvement from using

more memories in the adjustment procedure is present for low and intermediate data

regimes, but there is a sharp decrease as the number of available memories grows,

presumably due to a suboptimal adjustment rate α∗, leading to an over-adjustment

of the model.

Figure 2.21: As the learning rate becomes non-zero, the theory still captures most of the
simulation results. Again, the improvement decays after a number of memo-
ries/trials being stored/seen, perhaps indicating the suboptimal adjustment rate
due to the aproximations made. Also, similar effects to before can be observed
due to learning not being a negligible effect anymore.

2.6. Extension to L closest neighbours 57

Figure 2.22: Generalisation error for different dimensionalities of the space, N, and different
learning rates, η . As before, we see how the effect of learning renders the
contribution from the memories as almost irrelevant.

2.7. Discussion 58

2.7 Discussion

In this chapter, our objective was to study computational models in order to under-

stand the possible uses for the capacity observed in humans and other animals to

recall individual past experiences. For that we compared two different supervised

learning algorithms that used memories of single-events with an algorithm that did

not use single-event memories. Our main contribution was to calculate analytically

the performance of those models, and the improvement that was gained from using

single-event memories.

Employing techniques from order statistics and machine learning, we found an

analytical expression for the scaling of this improvement with the dimensionality

of the problem and the number of memories in a supervised learning problem. The

result was corroborated with simulations proving to be robust ouside of the main

assumptions, and precise when the dimensionality of the problem was large. How-

ever, the scaling was inneficient with the number of memories stored, rendering the

proposed procedure impractical to use in simple and/or high-dimensional environ-

ments. In fact, the limitedness of the brain (be it in number of neurons or in physical

space) has been proven to be tightly linked to its storage capacity (see e.g. Amit

et al. (1985)), constraining the number of rich memories such a system can reliably

store. Additionally, it is not clear that an exponentially large number of memories is

available for most tasks, and outside of this regime the benefits of the single-event

memory augmentation are small.

However, we cannot completely rule out the usefulness of single-event memo-

ries in more complex tasks, or situations of model mismatch, as evidenced in Section

2.5. In fact, work by Sprechmann et al. (2018) proposes a similar mechanism as

a solution to prevent catastrophic forgetting and enable fast acquisition of new in-

formation in a continual learning task. Their setting is more comparable with our

model mismatch setting, as in both cases the parametric model for learning (here,

the vector w; there, a deep neural network) is not necessarily in the correct model

family for describing the data. In their work, the memories present a non-negligible

improvement over the other method, which might indicate that a model mismatch

2.7. Discussion 59

scenario is the more likely to showcase the benefits of using memories for improve-

ment. Furthermore, Nagy and Orbán (2017) illustrates how having memories of

single events can be helpful when the agent has a collection of imperfect models

and has to decide online which one best represent the data at hand. The theoretical

framework provided in this chapter corroborates those findings, with the benefit of

allowing approximate calculations to be made, rendering the intuition more precise

through the scalings with the relevant quantities of the problem, N and M. With that

in mind, further analyses are needed to consolidate whether strategies employing

memories are in fact more effective in situations where it is hard to learn the mapping

generating the data, or that mapping changes over time.

The approach presented in this chapter might be improved by exploring other

extensions: taking more gradient steps with the memories (which indeed was done

in Sprechmann et al. (2018)), or performing preprocessing in the data before using

it as an input to the model. While we expect the “curse of dimensionality” and its

trade-off with the number of memories to remain true, further studies are needed to

validate or eliminate the possibility that single-event memories are more useful in

more complex scenarios, and the mathematical tools derived in our work should be

useful for those analyses.

Part II

Decision-making

60

Chapter 3

Optimal reward-rate in foraging-like

multi-task environments

In this chapter we consider reward-maximiser agents, and a type of task where

the agent gathers information over time to make a decision. For instance, this

could involve collecting information to choose a brand of cereal, pick a vacation

destination, or determine whether there are more dots moving left or right in a visual

task. In all these these tasks taking more time to gather information often leads to

better decisions and the potential for greater rewards, like making the right choice or

enjoying a better holiday. However, time is also valuable, and the expected reward

rate from a single decision drops as the agent spends more time in the task.

Furthermore, biological agents have different tasks available to them, and cannot

spend endless amounts of time on a single decision. By devoting too much time

to make one decision they miss out on other opportunities, and, as a result, do not

accrue as much reward as they could. In this research, we investigate how the optimal

decision to stay or leave a single task is influenced by the existence of different tasks

in the environment.

The notion that an agent cannot optimise jointly for both speed and accuracy

is at times called the Speed-Accuray Tradeoff, and has been studied extensively

both theoretically and experimentally. For a review of this literature, see e.g. Heitz

(2014); Bogacz (2022). Past research has shown both theoretically (Bogacz et al.

(2006)) and experimentally (Gold and Shadlen (2007)) that it is possible to formalise

62

mathematically the notion of optimally accumulating evidence for a decision, and

that it can be quantified in animal brains. However, researchers have found that

humans don’t always behave optimally as prescribed by theory. Both Bogacz et al.

(2010); Simen et al. (2009) found that some participants would spend more time

in a decision (therefore being more accurate) than expected of an optimal agent.

Nonetheless, further work by Balci et al. (2011) presents contrasting evidence that

subjects could learn to behave optimally after enough practice.

Typically, these evidence accumulation tasks are studied in controlled experi-

mental settings where subjects (usually humans or macaques) repeat the same task

during a session. However, in real life, humans and animals have a variety of tasks

they can engage with simultaneously. We refer to this as a multi-task environment.

The availability of multiple potential tasks can significantly impact behaviour.

An agent’s performance in a particular task may be influenced not only by their

considerations on how to optimise the speed-accuracy tradeoff for that specific task

but also by the presence of other available tasks. For instance, a (hypothetical) person

considering the upcoming decision of buying a yacht may not spend too much time

pondering which brand of bleach to purchase at the supermarket right now.

Another situation where animals are presented with multiple opportunities at

their disposal and must decide how much time to allocate in each of them is foraging.

When foraging, animals can either exploit the food patch closest to them, or move on

to seek food elsewhere. In order to decide between these options, the animal needs

to estimate how much food they expect to obtain by staying in the current patch,

and compare with the amount of food expected from the rest of the environment.

Considering an animal with complete information about the environment, Charnov

(1976) calculates that the optimal behaviour consists in leaving the current patch

when the instantaneous energy rate falls below the environment’s average rate.

Extensions to Charnov’s result have been proposed, such as allowing revisitation of

patches (Possingham and Houston (1990)), and limited information on patch identity

(Kilpatrick et al. (2021)), but so far there has been no study for when the agent can

select a general policy for deciding when to leave the current patch type.

3.1. A framework for multi-task decision-making 63

In this chapter we merge the two lines of thought presented in this introduction:

the speed-accuracy tradeoff in evidence accumulation decision-making tasks, and

multi-task decision-making from Foraging Theory. This allows studying the optimal

behaviour for an agent seeking to maximise reward rate in a multi-task foraging-

like environment. We extend the usual foraging setting to include more complex

tasks and policies for behaving in a food patch, or task. This makes the previous

solution to the problem unfeasible in practice, so in Section 3.2 we discuss a new

algorithm for solving the problem efficiently. Then, in Section 3.3 we investigate

a particular evidence accumulation decision-making task as an example of tasks

that can be studied with this new formulation, and in Section 3.4 use the framework

proposed previously to provide an alternative explanation for apparent suboptimal

decision-making by humans, inspired by analogous results reported in the literature

(Bogacz et al. (2010); Simen et al. (2009); Balci et al. (2011)).

3.1 A framework for multi-task decision-making

Let us consider an agent that is in an environment where there are i = 1, . . . , N tasks

available, and only one of those can be visited at any given time. For example, as in

foraging, where the agent has different “food patches” they can collect food from, or

in real life, where they have different tasks where they need to accumulate evidence

to make informed decisions. For now we consider the case where the tasks cannot be

chosen by the agent, but are randomly assigned with probabilities pi. Even though

this is an artificial assumption – which will not be used in Chapter 4 – it is helpful

to develop intuition and is sufficient to explain seemingly suboptimal behaviour

observed in humans (Section 3.4). This setting up to now is also similar to the one

studied by Charnov (1976) and reviewed in Appendix F.

What the agent can choose in this multi-task environment are the actions inside

the task they’re currently in, in order to accumulate evidence and eventually leave

the task. We represent these actions the agent can take with policies, πi, also indexed

by i as in for each task.

3.1. A framework for multi-task decision-making 64

We subsume the reward structure and stochasticity of a task into an average

reward function, R, that only yields reward to the agent upon leaving to a new task.

The reward functions of the tasks depend explicitly on the agent’s policies, so that

when an agent follows policy πi in task i they can expect to obtain an average reward

of Ri(πi).

Time is also a crucial factor. We consider tasks in which the average reward

does not increase indefinitely with time spent in task, but, on the contrary, the reward

rate decreases with time after a while in that task. Let us represent by T i(πi) the time

the agent spends in task i when following policy πi. Then, in line with the above,

we assume that the quantity the agent seeks to maximize is the amount of reward

collected for the minimum amount of time spent, i.e. the reward rate

r(π) =
∑i piRi(πi)

∑i piT i(πi)+T0
, (3.1)

as a function of the policies in each task π = (π1, . . . ,πN) through their impact on

the average rewards Ri and average times T i. A transit time, T0 > 0, is introduced so

that the reward rate cannot be infinite.

This quantity can be shown to correspond to the overall reward rate over a large

number of trials, M, which is used in the Average-Reward setting in Reinforcement

Learning (see e.g. Blackwell (1962); Puterman (1994); Dewanto et al. (2021); Sutton

and Barto (2018)). The simplifying factor that the problem in this chapter assumes,

and a generic Average-Reward RL problem does not, is that here the only state

variable is the task the agent is currently in, which is visited stochastically with fixed

probability pi. This means we can exchange the average over time (sums over trials)

for averages over states (tasks), as shown in the following calculation. Let us denote

superscript t, •t , as an index over trials, and subscript i, •i, as an index over tasks,

rARL(π) = lim
M→∞

M

∑
t=1

Rt

M

∑
t=1

T t

= lim
M→∞

N

∑
i=1

Mi

∑
ti=1

Rti

N

∑
i=1

Mi

∑
ti=1

T ti

, (3.2)

3.1. A framework for multi-task decision-making 65

where Mi represents the number of trials that visitation to task i if the total number

of trials was M.

Then, for a fixed policy, we can use the law of large numbers to equate the sum

of different R’s coming from a same task into their average conditioned on the policy

for the limit of many trials in that task. This is valid since we assume the distribution

that generates the rewards and times is the same for all those times (i.e. the state of

the environment is stationary). The final result becomes

lim
M→∞

∑i ∑ti Rti

∑i ∑ti T ti
= lim

M→∞

∑i MiRi

∑i MiT i
=

∑i piRi

∑i piT i
= r(π) . (3.3)

Note that the objetive function r(π) is also similar to the one assumed by

Charnov (1976) (see Appendix F). There the animal explicitly selects the amount of

time to stay in a task, whereas here the focus is on the policy, with the time spent in

task being a consequence of the policy. In both formulations, the agent is making

similar decisions – to decide when to leave a task and move (stochastically) to the

next one – but the apparently superficial change of introducing policies supports

modelling essentially arbitrary behaviour, and also allows a stochastic mapping from

behaviour to time spent in the task.

In order to optimise r(π), we consider, in the first instance, that the Ris and T is

are differentiable functions of the policies, and look for the extrema of r(π) with

respect to the policies through differentiation,

∇πir(π) =
pi

∑i piT i(πi)+T0

(
∇πiRi− r(π)∇πiT i

)
(3.4a)

∇πir(π)
∣∣∣
π∗

= 0 ⇒ ∇πiRi

∣∣∣
π∗i

= r(π∗)∇πiT i

∣∣∣
π∗i
. (3.4b)

The extremum above recovers the solution found by Charnov (1976) for their

analogous problem – the optimal strategy being to leave a task when the instantaneous

reward rate in a task matched the global reward rate (see Equation F.2b). In Section

F we proved how Charnov’s solution is a maximum when the rewards are concave

functions. In theory one can follow the same procedure and differentiate Equation

3.4a once more to look at the Hessian matrix and see if this is a maximum.

3.2. A local algorithm to optimise the reward rate 66

In practice the procedure above can be difficult to carry out in general, as

policies can be very high-dimensional objects, and because the explicit dependences

of the Ris and T is with the policies are needed. Hence, although mathematically

correct, using Equation 3.4b to improve a policy is not a feasible option for an agent.

In the next section we propose a local algorithm to solve this optimisation problem

in a practical way. We prove that the algorithm cannot decrease the global reward

rate, making it a suitable option for a biological agent.

3.2 A local algorithm to optimise the reward rate

Let us consider an agent currently in task i, and consider also the following local

problem where the agent tries to maximize the reward under that particular task

discounted by a cost of time ρ , to account for the opportunity cost of spending time

in task i,

π
∗
i (ρ) = argmax

πi

[
Ri(πi)−ρ T i(πi)

]
. (3.5)

We can prove that if an agent updates ρ such as to map the estimated global

reward rate r(π) at each step,

ρ ≡ r(π) =
∑i piRi(πi)

∑i piT i(πi)
, (3.6)

and iteratively follows through the process of (i) improving the policy through

Equation 3.5 and (ii) updating the cost of time ρ , then the global reward rate r(πt),

as a sequence in t, cannot decrease.

This process defines an effective algorithm that an agent can use to improve their

performance in the multi-task problem described in the preceding section, where

the optimal performance in a given task depends on the other tasks only through the

global scalar quantity ρ , and not on the other various aspects of those tasks.

To show this, let us consider an improvement on the policy for task j, and con-

sider the shorthand notation R t
j = R j(π

t
j) and T t

j = T j(π
t
j), and define the auxiliary

3.2. A local algorithm to optimise the reward rate 67

quantities at
j ≡ ∑i ̸= j piR

t
i and bt

j ≡ ∑i ̸= j piT
t
i . Then,

ρ
t+1 =

at+1
j + p jR

t+1
j

bt+1
j + p jT

t+1
j

=

(
bt

j + p jT
t
j
)
r(πt)+ p j

(
Rt+1

j −Rt
j
)

bt
j + p jT

t+1
j

.

(3.7)

Now we can use the fact that the policy update πt
j

Eq. 3.5−→ π
t+1
j improves on the

local problem,

Rt+1
j −ρ

t T t+1
j ≥ Rt

j−ρ
t T t

j , (3.8)

and insert Equation 3.8 into Equation 3.7 to obtain that the reward rate cannot

decrease,

ρ
t+1 ≥

(
bt

j + p jT
t
j
)
ρ t + p j

(
ρ tT t+1

j +Rt
j−ρ tT t

j−Rt
j
)

bt
j + p jT

t+1
j

=

(
bt

j + p jT
t
j
)
ρ t + p j

(
T t+1

j −T t
j
)
ρ t

bt
j + p jT

t+1
j

= ρ
t .

(3.9)

This result indicates that for the agent to optimise their global reward rate

performance in the environment they can simply solve local optimisation problems

while tracking the global variable ρ . By employing ρ as a cost per time the agent can

tradeoff the amount of reward they expect to get from staying longer in the current

task with the amount of reward they could obtain outside of it. See Figure 3.1 for a

graphical representation of this concept.

This is crucial because ρ reflects the overall richness of the environment. When

ρ is high, it indicates that the cost per unit of time is also high. In such cases,

the agent tends to leave a task earlier, anticipating greater overall gains from other

opportunities in the environment.

The algorithm presented above is independent of the particular way in which

an agent might optimise the local problem. As long as the local objective

3.3. Evidence accumulation tasks 68

ρ

Task 1 Task 2

Task 3 Task 4

Figure 3.1: Optimal behaviour in a task is effectively decoupled from other tasks. The
coupling is only done through the global variable ρ , which tracks the estimate of
the overall reward rate across the whole environment. By optimising ρ locally
on each task, one at a time, the agent is guaranteed to never decrease their overall
reward rate.

Ri(πi)−ρ T i(πi) is increased at every step, any stable optimisation procedure should

work. In particular, a wide range of Reinforcement Learning approaches can be used

to improve the policy. For the remainder of the current chapter we focus on envi-

ronments in which the policy is simple enough that one can optimise with simpler

methods, such as Newton-Raphson method.

3.3 Evidence accumulation tasks
In order to make the problem more concrete we apply the concepts from the preceding

section into a class of evidence accumulation tasks. In particular, we are inspired by

random-dot kinematogram tasks, which are common in experimental settings.

On a random-dot kinematogram task the subject is shown a screen with ran-

domly moving dots, where the velocities of the dots are sampled independently from

one of a limited set of different distributions. In each trial, the subject must integrate

visual information to determine which distribution is generating the data, specifically,

the predominant direction of dot movement. A sketch exemplifying the task can be

seen in Figure 3.2.

We work with a simplified version of the random-dot kinematogram, presented

in Figure 3.3. Instead of moving dots there are real scalar values that the agent needs

to integrate as evidence. The generative model that generates the data is hierarchical:

for each trial the parameters of a distribution are sampled, then the datapoints are

sampled from that distribution. In our case the distributions are Gaussians,N (µ,σ2),

3.3. Evidence accumulation tasks 69

Figure 3.2: A static sketch of the dynamic input a subject faces in a random-dot kin-
nematogram task. The arrows represent the velocities of the dots, and the
goal is to integrate information from those velocities in order to determine which
distribution generated the input.

and the only parameter that can change is the mean of the distribution, which can be

either of ±µ0, as in

µ ∼ p(µ) =
1
2

δ (µ−µ0)+
1
2

δ (µ +µ0) . (3.10)

For simplicity we assume that the possible mean values are symmetrically

opposite, ±µ0, such that the possible means for the Gaussian differ only by a sign

flip. This is not as restrictive as it might first seem, since when given a generic

pair µ1 > µ2 one can always stretch and shift the real numbers to arrive at the pair

±µ0. We also assume that the variance of the distributions, σ2, (the only other

hyperparameter) is known to the agent.

Then, within a trial the agent observes samples x1, . . . ,xn, . . . that they use in

the evidence accumulation. Conditioned on knowing that the data was generated by

a particular mean µ , the generative model for the samples is given by

xn|µ ∼ p(x|µ) =N
(
µ,σ2) . (3.11)

In fact, the agent does not know which mean is generating the data, and the

point of the task is to use the sampled data to invert the generative model described by

3.3. Evidence accumulation tasks 70

R0−µ0 +µ0

2σ

Figure 3.3: A sketch of the task actually implemented, that captures the important features
from the random-dot kinematogram task. The Gaussian curves are the different
options of probability distributions that could be generating the inputs. In this
plot the blue curve is the one generating the data (red dots).

Equations 3.10 and 3.11 and compare the possible options of distributions generating

the data to make the correct decision – in the same way that a subject in a random-dot

kinematogram task needs to identify the most common direction the dots are moving.

This is done via the log ratio of the posterior probabilities, a quantity that is positive

if the probability of µ =+µ0 is larger, and negative otherwise,

log
[

p(+µ0|D)
p(−µ0|D)

]
. (3.12)

Using Bayes’ rule to express the posterior distributions in terms of the likelihood

of independently sampled data and the prior distributions, we have

log
[

p(+µ0|D)
p(−µ0|D)

]
= log

[
p(+µ0)∏n p(xn|+µ0)

p(−µ0)∏n p(xn|−µ0)

]
= ∑

n
log
[

p(xn|+µ0)

p(xn|−µ0)

]
, (3.13)

where we use the assumption that, in the absence of further information, the alterna-

tives must be equally likely, i.e. p(+µ0) = p(−µ0) = 1/2.

The ratios inside the sum in Equation 3.13, log
[

p(xn|+µ0)
p(xn|−µ0)

]
, is the evidence from

datapoint xi in favour of option +µ0 (−µ0) if it is positive (negative). For the particular

case of Gaussian distributions, this is given by

log
[

p(xn|+µ0)

p(xn|−µ0)

]
=− 1

2σ2

[
[xn− (+µ0)]

2− [xn− (−µ0)]
2
]
=

2µ0

σ2 xn . (3.14)

3.3. Evidence accumulation tasks 71

This means that by doing the inversion of the generative model and comparing

the evidence for all datapoints for the different alternatives, one finds that evidence

accumulation depends only on the estimated average over the samples, ∑n xn, so that

we can define, for a given instant t, the evidence accumulator variable

em =
m

∑
n=1

xn . (3.15)

Combining Equation 3.12-3.15, the posterior log ratio depends only on the

sampled data through the evidence accumulator variable, em, as in

log
[

p(+µ0|Dm)

p(−µ0|Dm)

]
=

2µ0

σ2 em , (3.16)

which means that the optimal decision policy must depend on the data only through

the em as well. With that in mind, we choose a family policy that has fixed boundaries

±B and decides to choose the alternative whenever em = ∑
m
n=1 xn reaches either side

of the decision boundary. See Figure 3.4 for an illustration of this process. The

symmetric boundaries result from the symmetric nature of the problem. Given that

the value B is the sole parameter for this class of policies, optimising the policy

merely involves tuning it.

R−B Bem

em−|xm+1| em + |xm+1|

Figure 3.4: Depiction of the evidence accumulation process for the problem described in
Equations 3.10 and 3.11, and Figure 3.3. As the evidence accumulator em

incorporates the information from datapoint xm+1 it can go towards either the
positive or negative boundaries, ±B, depending on its sign.

Now, in order to connect the evidence accumulation process described above

with the multi-task decision-making framework from the previous sections, we need

to compute average rewards and times as functions of the policy, R(π) and T (π),

both necessary for the optimization of objective 3.5. For this problem it can be done

3.4. Explaining apparent suboptimal human behaviour 72

analytically, which we present in Appendix H. The final results become

R(π) =
R+

exp
(
−2µ0B

σ2

)
+1

+
R−

exp
(
+2µ0B

σ2

)
+1

(3.17a)

T (π) =
B
µ0

tanh
(

µ0B
σ2

)
(3.17b)

where R+ is the reward for a correct choice, and R− (usually negative) is for an

incorrect one. As expected, having a larger threshold B implies taking more time to

make a decision and on average acquiring more reward.

We can then apply Equations 3.17 into the objective in Equation 3.5 to optimise

the policy. The optimisation of B depends on the reward rate ρ , which is the variable

through which all the tasks are coupled. This means that the same task, when

embedded in different multi-task environments, can yield different optimal policies.

We explore this in more detail in the next section.

3.4 Explaining apparent suboptimal human

behaviour

In everyday life, individuals often encounter situations where they must choose

between two closely comparable options, such as deciding to go on holiday either

to Paris or to Lisbon. At first it might not be clear to an agent which of those is the

better alternative, so they need to accumulate evidence (e.g. browse the Internet for

ideas of things to do in each city), which takes time. If the alternatives are equally

attractive, an ideal agent that maximises reward rate would not spend a long time

accumulating evidence, as the difference in reward would be negligible compared

with the extra time gained.

In this section we situate the problem of deciding between two similar alter-

natives within the context of multi-task environments, applying the results from

preceding sections. We claim that humans do not necessarily maximise the reward

rate in each task they engage with, but they maximise the global reward rate. This

leads to behaviour that is different to what was previously expected in the literature,

3.4. Explaining apparent suboptimal human behaviour 73

and could explain the apparent suboptimality just described.

Let us consider an environment where there are two decision tasks: a choice

between two high-value options, and a choice between two low-value options. Fol-

lowing the assumption laid down in Section 3.1, we consider an agent in this environ-

ment cannot choose which of the tasks to engage with at a given time, but they are

presented with the high-value decision task with probability p1, and with probability

1− p1 for the low-value one. For example, the high-value decision could be the

choice for the destination of a future holiday, and the low-value decision could be

what dessert to have.

Figure 3.5: The environment considered in our example: there is a high-value decision
task that is accessed with probability p1 and a low-value task that the agent
encounters with probability 1− p1. Open-licensed icons were taken from SVG
Repo.

We consider the decision tasks to be similar to those in Section 3.3: the agent

continually accumulates evidence until deciding to go with one of the alternatives.

For example, they want to spend time researching about the possible venues for the

holiday, or they ask the waiter for more information about the ingredients in the

dessert. The objective is to maximise reward rate over long periods of time. For that,

for either task, the agent receives signals that come from a Gaussian distribution,

xn ∼N (µ,σ2), where µ can be either of {+R0,−R0} and must be inferred by the

agent. The noise level σ2 is fixed and assumed known.

Upon corrrectly choosing which gaussian is generating the data, the agent

receives reward Ra; alternatively they receive Rb if they make the wrong choice.

Furthermore, the difficulty of the task (i.e. how large R0 is, if it is close to zero the

task is a hard one) depends on the distance between those rewards,

R0 =
Ra−Rb

2
. (3.18)

https://www.svgrepo.com/
https://www.svgrepo.com/

3.4. Explaining apparent suboptimal human behaviour 74

The parameters chosen for the environment in the numerical simulations are

shown in Table 3.1, where Task 1 is a high-value task, and Task 2 is a low-value one.

Ra Rb R0 σ2

Task 1 100 90 5 5

Task 2 11 −7 9 15

Table 3.1: Parameters used for the environment with a high-value and a low-value tasks.

Since we have the explicit dependencies of the average rewards and times on

the policies (which are parametrised only by the thresholds for each task, B1 and

B2) we can optimise the global reward rate directly. Rewriting the objective from

Equation 3.1, we seek to optimise

r(B1,B2) =
p1R1(B1)+(1− p1)R2(B2)

p1T 1(B1)+(1− p1)T 2(B2)+T0
, (3.19)

where T0 is the average time that takes for the agent to switch tasks, which we set to

T0 = 0.1, and the average rewards and times are given by Equations 3.17, repeated

below with the variables adjusted for this problem,

R(B) =
Rb

exp
(
−2R0B

σ2

)
+1

+
Ra

exp
(
+2R0B

σ2

)
+1

(3.20a)

T (B) =
B
R0

tanh
(

R0B
σ2

)
(3.20b)

We denote the optimal thresholds after maximising over Equation 3.19 as

B∗1,B
∗
2 = argmax

B1,B2

r(B1,B2) , (3.21)

and the corresponding optimal rewards and times are given by

R∗1 = R1(B∗1), T ∗1 = T 1(B∗1) (3.22a)

R∗2 = R2(B∗2), T ∗2 = T 2(B∗2) . (3.22b)

3.4. Explaining apparent suboptimal human behaviour 75

In order to compare the solution found by a maximiser of the global reward rate

(Equation 3.19), and the performance of an agent that maximises the reward rate per

task, we consider denote the latter as

B0
1 = argmax

B1

R(B1)/T (B1) (3.23a)

B0
2 = argmax

B2

R(B2)/T (B2) , (3.23b)

and the corresponding optimal rewards and times are given by

R0
1 = R1(B0

1), T 0
1 = T 1(B0

1) (3.24a)

R0
2 = R2(B0

2), T 0
2 = T 2(B0

2) . (3.24b)

As explained earlier in this section, we expect the overall performance of the

global maximiser to be better than that of the agent that maximises reward rate per

task. The results are shown Figure 3.6.

The results in the top panel of Figure 3.6 show how the leaving times that

maximise the global reward rate deviate from those that maximise the reward rate on

each task separately. For the high-value task the global optimal leaving time takes

longer than the local optimal, T ∗1 ≥ T 0
1. The opposite is true for the leaving time

of the low-value task, T ∗2 ≤ T 0
2. The equalities happen in the limits of visiting one

of the tasks only, respectively p1 = 1 or p1→ 0. This is because the agent visiting

just one of the tasks only has the one task to optimise. In the bottom panel we see

the rewards also do not follow the result expected from a maximiser of the reward

rate for a single task. This is shown with more detail in Figure 3.7, with the relative

difference in the rewards,
(R∗i −R0

i)

R0
i

. (3.25)

3.4. Explaining apparent suboptimal human behaviour 76

Figure 3.6: Optimal reward gained, R∗, and time spent in task T ∗, for the high-value decision
(Task 1) and the low-value one (Task 2), as a function of p1, the probability of
visiting Task 1. The dashed lines are the baseline set by an agent that maximises
the reward rate per task, instead of the global one, as defined in Equations 3.23

Figure 3.7: Relative difference between the optimal reward, R∗i , as calculated in Equation
3.21 and the reward from the strategy that maximises reward rate per task, R0

i .

The result in Figure 3.7 corroborates that of Figure 3.6, presenting how the

global reward rate maximiser agent does not maximise the local reward rate per

task in this problem (for p1 ̸= 0,1). For visitation probabilities p1 < 1, the global

3.4. Explaining apparent suboptimal human behaviour 77

maximiser agent spends more time in the high-value task and collects more reward

than the local optimiser agent (indicated by the black dashed line). Again, the

opposite is true in the low-value task.

Intuitively, from the perspective of an agent currently in the high-value task, the

low-value one can be seen as part of the transit time – it adds extra time that one

cannot be in the high-value task. The less frequent the high-value task (p1→ 0), the

longer the agent stays far from it, and the more time they should spend on it. This

is because in the extreme of very long waiting times, spending some extra time on

the high-value task is beneficial, as it can be very valuable and the agent does not

incur in a large cost. If, on the other hand, the high value task happens almost every

time (p1 ≈ 1), the effective transit time is negligible, and one should just optimize

the high value task. In this case, spending longer on the high-value task decerases

the average reward rate. This can be seen in Figure 3.8, which compares the reward

rates of the different strategies.

Figure 3.8: Reward rates for the strategy that maximises the global reward rate, r∗ (solid
gold line), and for the strategy that maximises the local reward rates, r0 (dashed
gold line), for different values of the probability of visiting the high-value task,
p1. Dashed purple line on the top is the maximum reward rate for the high-
value task, and the dotted green line on the bottom is the maximum reward rate
for the low-value task, which are the limiting cases when p1 = 1 and p1→ 0,
respectively.

3.5. Discussion 78

These results provide another possible explanation as to why humans spend

more time in high-value tasks: when the availability of the high-value tasks is low

and the amount of reward one can expect to obtain in the rest of the environment is

also low, it is better to perform as best as one can (therefore spending more time to

make a more informed decision) in the high-value task to accumulate more reward.

As the high-value task becomes more frequent, the agent can safely spend less time

in each visitation, since they visit that task more often.

3.5 Discussion

This study contributes to the expanding field of research focused on understanding the

decision-making behaviour of optimal agents. Specifically, we explored a category

of problems wherein an agent operates within an environment containing multiple

tasks, or food patches, and the goal of the agent is to determine the actions that

maximize their reward or food acquisition. We developed an algorithm designed

to enhance the global performance of the agent by optimising each local problem

(i.e. each task) individually, and connecting those via one single scalar parameter, ρ .

This parameter tracks the total reward rate that can be achieved in the environment,

and functions as an opportunity cost, or cost per unit of time, in the optimisation

procedure.

Previous work by Charnov (1976) has indeed offered a solution for determining

optimal departure times in environments featuring multiple tasks. This was achieved

through the direct optimisation of the global objective. However, these findings do

not extend to scenarios where the agent has the liberty to adopt a more complex

policy. Consequently, the algorithm outlined in Section 3.2 provides an alternative

approach to optimising the global reward rate, so that it might be more suitable in

certain applications. Nevertheless, in instances where the policy can be simplified to

merely selecting the departure time, both approaches should yield consistent results,

as demonstrated in Equation 3.4b.

Inspired by prior studies (Bogacz et al. (2010); Simen et al. (2009); Balci et al.

(2011)), which observed subjects in similarly-valued two-alternative forced choice

3.5. Discussion 79

tasks (2AFC) making decisions at a slower pace than expected from reward rate

maximisers, we proposed a hypothesis to explain similar seemingly suboptimal

human behaviour. We argued that individuals taking too long to make high-value

decisions could be optimising their behaviour to maximise reward rate in a multi-task

environment and, in this context, we proved that it is in fact optimal to allocate more

time to a high-value task when the overall expected reward rate in the environment

is low, for example when the high-value task is rarely visited. This is because in an

environment with low overall average reward it is crucial to maximise reward when

one can, whereas in a rich environment this is not as imperative. While this does not

explain the specific examples in Bogacz et al. (2010); Simen et al. (2009); Balci et al.

(2011) (as those involve an overstaying behaviour presumably in a low-value task),

the importance of examining multi-task considerations as possible confound factors

should not be neglected.

Other explanations have been proposed in the literature: results by Balci et al.

(2011), Ması́s et al. (2020) suggest that subjects might take some time to learn the

contingencies of the task, and if left longer in the experiment they might learn to

behave as expected of an agent that maximizes reward rate; alternatively, Constantino

and Daw (2015) hypothesise that subjects possibly make use of a nonlinear utility

function when evaluating the different options. At this stage there is no conclusive

evidence to either explanation, and an account that combines those factors should

also not be discarded.

While past work has proposed investigating foraging and RL conjunctively

(Constantino and Daw (2015); Kolling and Akam (2017)), and others have studied

extensions of Foraging Theory in cases where the agent must accumulate evidence in

order to make more informed decisions (Davidson and Hady (2019)), the work pre-

sented in this chapter is unique to have studied the setting of multi-task environments

where the policy can be more complex than merely deciding when to leave a task or

a food patch. The results presented are consistent with and expand the literature on

foraging and decision-making.

Chapter 4

Multi-task decision-making with

time-dependent environments

In their daily lives, people engage in a wide range of activities, such as writing a PhD

thesis, preparing meals, or watching a movie. Often, these tasks cannot be performed

simultaneously, requiring individuals to transition sequentially and make decisions

about how to allocate their time and effort. These decisions are influenced by the

expected enjoyment or reward associated with each activity, leading individuals to

adjust their time investments accordingly.

In real-life environments, dynamic factors can also influence the reward levels

associated with different tasks. For instance, factors like satiation and motivation

levels fluctuate, affecting how much an agent values activities such as eating or

working long hours. Additionally, resource depletion can occur in tasks like foraging,

where the availability of resources diminishes as the agent exploits them. Moreover,

new opportunities may emerge or disappear, necessitating rapid adaptation.

Given these complexities, how should an agent decide to transition between

tasks, considering the various rewarding activities available for them to choose, and

taking into account the changes in the environment?

As discussed in Chapter 3, previous work by Charnov (1976) addressed a

similar problem in the context of foraging. However, that work considered a static

environment where the agent’s only decision was the time to leave a food patch, and

very little is currently known about decision-making in scenarios where (i) the agent

81

can also choose the next task they engage with, and (ii) the state of the environment

changes in response to the agent’s decisions.

Possingham and Houston (1990) develops a theoretical account for optimal

behaviour when the agent revisits a number of identical food patches. This introduces

a dynamics in the environment, as the availability of resources decreases with time

spent visiting a given patch, but this formulation does not consider an environment

with a variety of food patches, where the agent can choose the next place to visit.

The only other study found addressing similar conditions is Hall-McMaster et al.

(2021), where authors contrast the behaviour of human participants between two

experimental setups: when the subjects can decide which task to visit next, and when

they cannot. The authors found that when the subjects could choose where to go

next they chose to visit fast-replenishing sites, and attained higher reward rate. When

comparing amongst different models, this behaviour was best captured by one that

uses information about both average reward rate for the environment and reward

information.

While Hall-McMaster et al. (2021) makes a significant contribution to char-

acterising the behaviour for this problem, there remains an opportunity to further

explore the underlying theoretical questions about optimal behaviour in multi-task

dynamic environments. The research presented in this chapter builds upon this work,

with a particular focus on delving deeper into the theoretical aspects. The findings in

this chapter offer compelling evidence that the deviations from the original foraging

formulation create a setting in which optimal behaviour is strikingly different from

that presented by Charnov (1976). Whereas in Charnov’s work the optimal leaving

time depends on the overall reward rate of the environment, the results obtained for

this new setting indicate that policies where the leaving time optimises the reward

rate in each task separately are the optimal ones.

The structure of the chapter is as follows: Section 4.1 presents the problem

setup and key definitions. Next, in Section 4.2 we derive the theoretical predictions

about the optimal policy. For that we make an assumption about the speed of the

environment dynamics, and an informed ansatz about the optimal leaving times an

4.1. Problem setup 82

agent should pick. In Section 4.3 we explain the Policy-Gradient Reinforcement

Learning (RL) methods used to validate the theory, presenting, and comparing, the

numerical results for the RL methods and the theory in Section 4.4.

4.1 Problem setup
Similar to Chapter 3, we examine an environment where an agent faces multiple

tasks, denoted i = 1, . . . , N, and at each trial t the agent must decide how long to

stay in the current task, st = i, before moving to the next one. In this chapter, we add

two new elements to the problem: now the agent can choose the next task they visit;

and the environment is dynamic.

This second property means, in a foraging setting, that an animal spending time

in one food patch depletes the resources in that patch, and allows resources in other

patches to restore; or, a person with different levels of motivation for different tasks

gets tired after engaging with the same one repeatedly.

We assume that the dynamics of the environment happens over a vector θ ∈

[0,1]N , where each entry, θi, is associated with one task, i, and the dynamics is

governed by the differential equations

τ
in
i θ̇i =−θi if st = i (4.1a)

τ
out
i θ̇i = 1−θi if st = j ̸= i . (4.1b)

The time constants τ in
i and τout

i , respectively for when the agent is in task i or

in task j ̸= i, can be set to be different. This flexibility enables different rates of

depletion and replenishment, which is especially valuable when modeling concepts

like hunger, where appetite decreases rapidly but recovers slowly. For results in the

following section the time constants are set to be equal unless specified otherwise.

We conveniently define the dynamics to ensure that θi is constrained between [0,1].

The variables θ are state variables, and necessarily part of the environment.

However their interpretation can vary depending on the specific problem being

modeled: the level of motivation for the reward that can be obtained in a given task;

or the amount of resources in a food patch, in the case of foraging.

4.1. Problem setup 83

Still in the context of foraging, we define the reward functions for each task.

The resource level θi modulates the amount of food (and, therefore, of reward) that

the agent can obtain in food patch i. For a lower level, θi ≈ 0, the agent can find less

food than for a higher level, θi ≈ 1. We consider reward functions of the kind

Ri(θi,Ti) = θi
(
RM

i tanh(kiTi)−R0
i
)
, (4.2)

where the parameters RM
i −R0

i and R0
i define the maximum and minimum levels of

reward, and ki defines the steepness of the hyperbolic tangent. This reward function

for a choice of parameters can be seen Figure 4.1.

Time, T

Resources, R

R(θi = 1,T) = 3.2tanh(T/2)−1

R(θi = 0.4,T) = 0.4∗ (3.2tanh(T/2)−1)

Figure 4.1: Example of a reward function from Equation 4.2 for a set of parameters and
different values of the resource level θi, which acts multiplying the whole
function. The effect of the modulation, since θi is limited between [0,1] is
to bring the reward closer to zero, keeping the point where R = 0 the same.
As explained in Equation 4.3, it also means the time for maximum reward is
unaffected.

Ideally an agent seeking to maximise rewards would like to keep the levels

fixed at the maximum θi = 1 (for all i), but this is not possible due to the dynamics

described by Equations 4.1.

The functional form chosen in Equation 4.2 decouples the influence of resources

level θi on the reward obtained from the effect due to the leaving time Ti,

Ri(θi,Ti)≡ θiRi(Ti) , (4.3)

where from now on we refer to Ri as the function depending only on the leaving

time, Ti.

4.1. Problem setup 84

This modelling choice has the advantage that an agent can optimise θi separately

from optimising Ti, as we explore later on.

Then, we assume that the goal of an agent in this environment is to find the best

policy that maximises the expected reward rate over long stretches of time,

r(π) = lim
M→∞

Eπ

M

∑
t=1

Rt

M

∑
t=1

T t

∣∣∣∣∣ s0,θ0

 (4.4)

where M is the number of trials, which we take on the limit to infinity, and the

expectation is taken over the possible trajectories when following policy π . We

assume that the dependence on the initial state (s0,θ0) is only temporary and does

not carry on in the limit to infinity.

By taking the limit to infinity we expect the sums over time to self-average and

we can consider the expectation of the ratio to be well approximated by the ratio of

the expectations,

r(π) = lim
M→∞

M

∑
t=1

Eπ

[
Rt |s0,θ0

]
M

∑
t=1

Eπ

[
T t |s0,θ0

] . (4.5)

In fact, in the next section we prove sufficient conditions for this to be the case

(see the calculation leading from Equation 4.9 to Equation 4.13).

The objective in Equation 4.4 is similar to the objective in Chapter 3 (Equations

3.1 – 3.3), as both involve optimising the reward rate. Therefore, it is also comparable

to the Average-Reward setting in Reinforcement Learning (for which a few relevant

references are Blackwell (1962); Puterman (1994); Dewanto et al. (2021); Sutton

and Barto (2018)). The difference from the previous chapter is that now we must

take into account the environment’s dynamics and the agent’s freedom to select their

next destination when calculating the expectations. Those are dealt with in the next

section.

4.2. Theoretical results 85

4.2 Theoretical results

Here we propose a policy for the problem defined by Equation 4.4, where the choice

of leaving times is given by an informed ansatz, and the choice of where to go next is

a calculated theoretical optimal. This informs theoretical predictions for the optimal

policy, which are then validated in Section 4.4.

Let us restrict ourselves to situations in which the dynamics in the environment

(as set by the τs in Equations 4.1) is slow when compared with the leaving times.

This means that a single decision imparts a small effect on the long-term state of

the environment. This simplifies the problem letting us further assume that by

following the optimal policy the agent ends up spending stationary fractions of times

in each task, fi, and the environment reaches stationary values for the resource levels,

θ ∗i . The stationary fractions fi define a probability distribution of task visitation,

for which the optimal values are calculated in this section. Given that we restrict

ourselves to the slow dynamics regime, this stationarity assumption is a reasonable

one, but there is no guarantee that this will indeed be the case, and this is validated

with numerical simulations in Section 4.4.

Due to the slow environment assumption, we assume the agent can choose the

best leaving times, T ∗, without changing the resource levels substantially,

θ
post
i = θ

pre
i e−

T∗i
τi ≈ θ

pre
i

(
1− T ∗i

τi

)
≈ θ

pre
i . (4.6)

In this case, a reasonable ansatz is that the agent can optimise the leaving time

for the current task without considering the repercussions over the trajectory in

the environment, and, to a first approximation, the best thing an agent can do is

to optimise the reward being received now. We then propose the ansatz that the

optimal agent chooses the leaving time for current task i as the time that maximises

the reward rate for that task,

T ∗i = argmax
Ti

Ri(Ti)

Ti
, (4.7)

independently of the current resource levels in the environment, and independently

4.2. Theoretical results 86

of the parameters for the other tasks. Again, this is a heuristic that is validated in

Section 4.4. Furthermore, this ansatz only makes sense if the agent can then choose

the transitions between tasks in order to maximise the reward rate globally, which is

done by tuning the amount of time spent in each task.

Let us denote by fi the stationary quantity that describes the fraction of time the

agent spends in task i,

fi =
amount of time in task i

total time
=

∑t T t1{st = i}
∑t T t , (4.8)

where T t is the time spent in trial t.

This hypothesis for the optimal policy is starkingly different from what Charnov

(1976) and the results of Chapter 3 suggest for the agent’s optimal behaviour. In

those, the optimal time to leave a food patch or a task is when the instantaneous

reward rate surpasses the level set by the average reward rate in the environment.

This time is typically different to the optimal time for a single task.

To validate this proposal, we derive theoretical predictions for the optimal

stationary frequency of time spent in each task, f = [f1, . . . , fN], and the associated

reward rate associated, and then test those with numerical simulations in Section 4.4.

Let us consider the stochastic reward rate for a single trajectory,

r̂ = lim
M→∞

M

∑
t=1

Rt

M

∑
t=1

T t

. (4.9)

We now prove that this quantity can be simplified to depend only on the reward

rates for each task, ρi, the fractions of time the agent spends in each task, fi, and the

stationary values for the resource levels, θ ∗i . This happens because the sums over

time self-average into sums over states, and the r̂ becomes equivalent (in the limit to

4.2. Theoretical results 87

infinity) to the expected reward rate r(π). Grouping the rewards and times by tasks,

r̂ = lim
M→∞

N

∑
i=1

Mi(M)

∑
ti=1

Rti

N

∑
i=1

Mi(M)

∑
ti=1

T ti

, (4.10)

where the Mi(M) are the number of visits to task i, indexed by the trials ti.

Assuming that the leaving times are those given by Equation 4.7, and that the

resource levels are the stationary ones, the expression becomes

r̂ = lim
M→∞

N

∑
i=1

Mi(M)θ ∗i Ri(T ∗i)

N

∑
i=1

Mi(M)T ∗i

. (4.11)

Then we can multiply the numerator inside the sum by T ∗i /T ∗i and obtain

r̂ = lim
M→∞

N

∑
i=1

MiT ∗i θ
∗
i

Ri(T ∗i)
T ∗i

N

∑
i=1

MiT ∗i

= lim
M→∞

N

∑
i=1

fi(M)θ ∗i ρi . (4.12)

Assuming the stationarity of the frequencies of time spent in each task, we

obtain the expression for the ensemble average defining the reward rate:

r̂ =
N

∑
i=1

fiθ
∗
i ρi

= r(f;θ ,ρ) ,

(4.13)

which is equal to the expected reward rate in Equation 4.4 since the quantities in the

right-hand side of Equation 4.13 were already self-averaged by the sums over trials.

We can further simplify the expression for the expected reward rate by consider-

ing another aspect of the stationarity assumption. In the steady-state, the resource

levels do not deviate substantially from the optimal value, and we can consider that

4.2. Theoretical results 88

after moving from task i to other tasks and back the level θ ∗i should oscillate and

return to the same value. After spending fiT time in task i and (1− fi)T on other

tasks, we have

θ
∗
i = 1−

(
1−θ

∗
i e−

fiT
τi

)
e−

(1− fi)T
τi . (4.14)

Solving for θ ∗i , we obtain

θ
∗
i =

1− e
−
(1− fi)T

τi

1− e
−

[
(1− fi)

τi
+

fi

τi

]
T

. (4.15)

As long as the duration T is long enough to accomodate the oscillation of levels

θi back to stationary values, but not too long so that it is still smaller than the time

constants, T ≪ τi, we can Taylor expand the exponentials and obtain

θ
∗
i = 1− fi , (4.16)

which leads to the expression for the reward rate as a function of the frequencies

only,

r(f) = ∑
i

fi(1− fi)ρi . (4.17)

Now the expression for the reward rate depends only on the stationary distribu-

tion fi, which we can optimise over, and on the optimal reward rates ρi, which are

assumed to be known. Since the fis need to describe a probability distribution we

need to consider a constrained optimisation problem,

max
f ∑

i
fi(1− fi)ρi

s.t. fi ≥ 0, for all i

∑
i

fi = 1 .

(4.18)

This can be done using the Karush–Kuhn–Tucker (KKT) conditions for the

4.2. Theoretical results 89

Lagrangian

L(f,λ ,ν) = r(f)+λ

(
∑

i
fi−1

)
+∑

i
νi fi . (4.19)

Then the corresponding KKT conditions are: the stationarity condition,

∂L

∂ fi
= (1−2 fi)ρi−λ +νi = 0 , (4.20)

the primal and dual feasibility conditions,

∑
i

fi = 1 (4.21a)

fi ≥ 0 (4.21b)

νi ≥ 0 , (4.21c)

and the complemetnary slackness condition,

νi fi = 0 . (4.22)

From the KKT stationarity condition (Equation 4.20) we can isolate the multi-

plier νi, and then use the dual feasibility (Equation 4.21c) to obtain the inequality

λ ≥ (1−2 fi)ρi . (4.23)

Applying the equation from the KKT stationarity condition to that of the com-

plementary slackness condition (Equation 4.22), we obtain that

fi[λ − (1−2 fi)] = 0 . (4.24)

From those we know that the frequency fi is either zero, or such that it zeros

the quantity in square brackets, leading us to the result

fi = max
{

0,
1
2
− 1

2
λρ
−1
i

}
. (4.25)

4.2. Theoretical results 90

Then, using the condition that the frequencies mut be normalised, we get that

1 = ∑
i

fi = ∑
i

max
{

0,
1
2
− 1

2
λρ
−1
i

}
. (4.26)

This normalisation condition implies that the value of the multiplier λ sets the

scale of overall reward rate for the environment, which in turn defines which tasks

are visited and with which frequency (Equation 4.25). If one of the tasks has very

low reward rate in comparison with the rest of the environment, ρi≪ λ , the optimal

solution is to not visit that task, fi = max{0,something negative}= 0.

The result in Equation 4.26 is similar to the “water-filling” problem, commonly

discussed in the constrained optimisation literature (see e.g. (Boyd and Vanden-

berghe, 2004, Section 5.5, Example 5.2)), and one cannot find a closed-form solution

for it. For a fixed set of {ρi} it can be solved approximately using numerical methods,

iterating over different values for λ .

Nonetheless, it is the case that for some choices of the parameters {ρi}, the

solution is in the interior of the feasible domain (that is, fi ̸= 0 for all tasks i) which

means the multipliers associated with inequalities must be zero (due to comple-

mentary slackness, Equation 4.22). Assuming we are in this case, Equation 4.20

simplifes to

(1−2 f j)ρ j−λ = 0 . (4.27)

Isolating the f j in order to use the normalisation constraint, we find an expres-

sion for the Lagrange multiplier,

λ = (N−2)

(
∑

i
ρ
−1
i

)−1

, (4.28)

which can then be used in Equation 4.27, to obtain an expression for the optimal

frequencies,

fi =
1
2

1+(2−N)

(
ρi ∑

j
ρ
−1
j

)−1
 , (4.29)

and from those the optimal reward rate (using Equation 4.17).

4.3. Policy Gradient methods 91

This solution is only valid if all the tasks are visited by the agent, fi > 0. This

will be the case for the numerical results we discuss in Section 4.4. In particular,

some special cases are straightforward to calculate and present intuitive results.

For example, in the case where the are only two tasks in the environment,

Equation 4.29 prescribes that the optimal strategy is to visit each task equally

frequently, f1 = f2 = 1/2, regardless of the reward rates in each task. This leads to

an average reward of r(f) = 21
2

1
2(ρ1 +ρ2) = ρ , an average between the reward rates.

Another easy case is one in which there are N tasks with similar reward rates,

ρi = ρ for all i. Then the sum over the reward rates per task (in Equation 4.29)

simplifies, and we obtain the uniform frequencies fi =
1
N , reasonable for when all

the tasks are effectively the same. The reward rate is then r(f) = (1− 1
N)ρ , which

makes sense in light of the interim results we used to get to the final equation, namely

Equation 4.16, θi = 1− fi, and Equation 4.13, r(f,θ) = ∑i fi.

4.3 Policy Gradient methods

In order to test the theoretical results derived in Section 4.2, we employ Policy-

Gradient Reinforcement Learning methods to solve the problem defined by Equation

4.4. The reasons for choosing a policy gradient approach are twofold: first, it

naturally handles continuous actions, such as the leaving time, T t ; second, policy

gradient methods are more suitable for the goal of studying the behavior of an agent

as they do not need to learn the policy through a value function.

In this section we explain the basic concepts behind the algorithms used in the

simulations, and also clarify specific nuances needed to use them in the multi-task

problem described in this chapter. In the next section we show that the RL methods

explore similar solutions to the ones predicted by the theory for a number of different

environments.

The objetive function we seek to optimise is the expected reward rate for a

parameterised policy, r(πw), which the Policy Gradient Theorem (see (Sutton and

Barto, 2018, Section 13.6)) asserts can be optimised by following the direction of

4.3. Policy Gradient methods 92

the gradient of the policy,

∇wr(πw) ∝ Eπ

[
Gt

∇w logπw(at ,T t |st ,θ tt)
]
, (4.30)

where Gt is the differential return, defined as

Gt = Rt− r(π)T t +Gt+1 . (4.31)

Intuitively, Equation 4.30 affirms that to change parameters w in order to follow

the direction that increases the reward rate, ∇wr(πw), one can follow the direction

that increases the probability of visiting state st and choosing action (at ,Tt), weighed

by the differential return, Gt , observed after following that state-action pair. This is

then averaged over different trajectories when following policy π .

In the following sections, we present results using two policy gradient algo-

rithms: REINFORCE, which is a Monte Carlo method; and Actor-Critic, which is a

Temporal Difference method. For an introduction to Monte Carlo and TD methods

in RL see Appendix G.

REINFORCE is the simplest policy gradient method, and directly optimises the

policy without a critic – that is, without the need to estimate the value function –,

which means it requires batches of data to estimate the return in Equation 4.30.

As a Policy-Gradient method, REINFORCE requires an explicit parameterisa-

tion for the policy. We use a lognormal distribution for the leaving times, Tt , and a

softmax on a scores table for the choice of next task, at , such that

π(T |s,θ ,w) =
1

T σw(s,θ)
√

2π
exp
(
−(lnT −µw(s,θ))2

2σw(s,θ)2

)
(4.32a)

π(a|s,θ ,w) =
eS(a|s,θ)

∑a′ eS(a′|s,θ) , (4.32b)

where the parameters of the distributions – µ,σ and S – are constructed through a

forward pass on feedforward neural networks parameterised by w. See Appendix I

for more details.

4.3. Policy Gradient methods 93

The learning rules for REINFORCE are given by

δ
t =

tmax−t

∑
k=1

(
Rt+k−ρT t+k

)
(4.33a)

∆w = ηw
〈
δ

t
∇w logπ(at |st ,θ t ,w)

〉
t (4.33b)

∆ρ = ηρ

〈
δ

t〉
t , (4.33c)

where the averages ⟨·⟩t are over the trials in a batch. The calculation of the gradients

is done via automatic differentiation (see Appendix I for more details).

The Actor-Critic algorithm, as an online algorithm, updates its parameters at

every trial instead of only in batches. Additionally, it is a Temporal-Difference

method, meaning it learns a value function as well as the policy, in order to estimate

the differential return. Defining the differential value as the expected differential

return from Equation 4.31, we have

vπ(s,θ) = E
[
Gt |st = s,θ t = θ

]
= Rπ(s,θ)− r(π)T π(s,θ)

+ ∑
s′,θ ′

π(a,T |s,θ)p(s′,θ ′|s,θ ,a,T) vπ(s′,θ ′) .

(4.34)

For the Actor-Critic we assume the leaving times are fixed at the optimal times

from Equation 4.7,

T ∗i = argmax
Ti

Ri(Ti)

Ti
, (4.35)

and the decision of the next task is sampled from a softmax on the table h(a|s), with

the addition of a linear layer on the resource levels θ ,

π(a|s,θ) = eh(a|s)+wa·θ t

∑ j eh(j|s)+w j·θ
. (4.36)

The update rules for the Actor-Critic with eligibility traces, in a continuing

4.4. Numerical results 94

problem, are then given by

δ
t = Rt−ρT t +V (st+1)−V (st) (4.37a)

∆zh = (1−λ
h)∇h logπ(at |st ,θ t) (4.37b)

∆zw = (1−λ
w)∇w logπ(at |st ,θ t) (4.37c)

∆zV = (1−λ
V)δs,st (4.37d)

∆h = η
h
δ

tzh (4.37e)

∆w = η
w

δ
tzw (4.37f)

∆V = η
V

δ
tzV (4.37g)

∆ρ = η
ρ

δ
t , (4.37h)

where all trace-decay parameter, the λ s, and learning rates, ηs, are hyperpa-

rameters that take value in the interval [0,1]. Notice that we decide to not give

information about θ t to the value table V , despite those being state variables – this

is an approximation to avoid needing to use function approximation due to the

continuous variables θ .

The gradients in Equations 4.37b and 4.37c can be calculated analytically, and

are given by

∂h(a|s) logπ(at |st) =
[
δa,at −π(a|st ,θ t)

]
δs,st (4.38a)

∂wa,s logπ(at |st) =
[
δa,at −π(a|st ,θ t)

]
θ

t
s . (4.38b)

4.4 Numerical results

In this section we compare the performance expected from the theoretical predicitons

and that of the Policy Gradient method described in Section 4.3 across 6 different

environments, described in Table 4.1. These environments differ by the choice of

parameters – RM and R0, that define the maximum and minimum reward, k, the

steepness of the hyperbolic tangent in Equation 4.2, and τ , the time constant for the

dynamics – for which a full account of task parameter values is given in Appendix J.

4.4. Numerical results 95

Name # Tasks Short description
Env 1 2 Optimal times in different timescales (T ∗2 > T ∗1); Task 1 faster and more rewarding
Env 2 2 T ∗2 ∼ 3 T ∗1 ; Task 2 is more rewarding than Task 1
Env 3 2 T ∗2 ∼ 3 T ∗1 ; Task 2 is less rewarding than Task 1
Env 4 3 All 3 tasks are equal, but with different time constants τi
Env 5 5 All 5 tasks are identical
Env 6 11 Task 1 is very rewarding; other 10 tasks are less rewarding; optimal time are similar

Table 4.1: Description of the different environments studied in Section 4.4. A more com-
plete description is given in Appendix J.

By running for a number of trials the policies learnt by REINFORCE and Actor-

Critic after a number of training iterations, we can assess how these policies compare

with the prediction set in Section 4.2. Firstly, Figure 4.2 shows a comparison between

the leaving times learnt by REINFORCE and those given by the ansatz in Equation

4.7. The leaving times for the Actor-Critic model are not presented since those were

hardcoded to be the same as the ansatz. The leaving times are mostly congruent,

with the notable exception of that associated with Task 2 in Environment 1. As can

be seen in the right panel of Figure 4.3, this is due to the flatness of the reward rate

for that task around the optimal time, making it a harder optimisation problem.

Figure 4.2: Comparisons of leaving times between the REINFORCE-learnt policies (green)
and the local optimal leaving time (purple).

4.4. Numerical results 96

Figure 4.3: Environment 1. Left. Reward as function of leaving time for varying levels of
θ . Right. Reward rate, as function of leaving time and for a few levels of θ . In
both panels the dashed lines are the leaving times that maximise reward rate for
each task

Then, Figure 4.4 presents the performance of the theoretical optimal and that

of the policies found by the algorithms. The results are consistent with the theory

in most cases, and the discrepancies between theory and simulations might be

attributable to stopping the learning too early.

Figure 4.4: Comparison between the reward rates found by REINFORCE and Actor-Critic,
and those predicted by theory.

4.4. Numerical results 97

The relative frequencies of time spent in each task, fi, are shown in Figure 4.5.

The figure shows that simulation results are moderately consistent with the theoretical

predictions: overall the policies found by Actor-Critic had a better agreement with

the theory, but neither REINFORCE or Actor-Critic achieved the levels set by the

theory for Environment 1.

Figure 4.5: Comparison between predicted frequencies of time spent in each task, fi, and
measured ones.

Overall the results presented above indicate that the Policy Gradient methods

seem to obtain policies that are similar amongst them, and similar to the theoretical

predictions. The discrepancies between them might be explained mostly by stopping

the algorithms before they had fully learned the optimal policy. In order to better

assess this, Figures 4.6 – 4.8 present the performance of the policies learnt by

REINFORCE through learning. Panels C and D from these figures show that

REINFORCE quickly (in the order of tens of thousands of episodes) learns a policy

for which the reward rate is close to the theoretical optimal. The baseline ρ , which

is learned by the algorithm to track the reward rate correctly does so. Panels A and

B from the figures show that the solutions encountered by REINFORCE in fact

maintain the resource levels θ around stationary values, although not always exactly

4.4. Numerical results 98

the ones predicted by the theory. The results are relatively robust throughout different

environments with varying: number of tasks, optimal leaving times, maximum

reward rate, and time constants.

Figure 4.6: REINFORCE through learning. Environments 1 and 2 are the same from
Table 4.1. A, C. Environment 1 B, D. Environment 2. Dashed lines are theory
predictions for the stationary θ ∗i s and stationary reward rates, r(π∗).

Figure 4.7: REINFORCE through learning. Environments 3 and 4 are the same from
Table 4.1. A, C. Environment 3 B, D. Environment 4. Dashed lines are theory
predictions for the stationary θ ∗i s and stationary reward rates, r(π∗).

4.4. Numerical results 99

Figure 4.8: REINFORCE through learning. Environments 5 and 6 are the same from
Table 4.1. A, C. Environment 5 B, D. Environment 6. Dashed lines are theory
predictions for the stationary θ ∗i s and stationary reward rates, r(π∗).

Finally, as shown in Figure 4.9, the policies found by the algorithms are inter-

nally consistent with the theoretical predictions for the relation beween stationary

values θ ∗i and frequencies of time spent in each task, fi, despite not achieving the

theoretical optimal policy.

Figure 4.9: Internal consistency between stationary resource levels θ ∗i and measured vis-
tation frequency of different tasks, fi. Dashed lines are the identity. Both are
averages over M = 500,000 trials.

4.5. Discussion 100

These results indicate that in the regime of slow dynamics, τ ≫ T ∗, an agent

that chooses the leaving times as to optimise the local reward rate for each task can

indeed achieve a stationary state for the resource levels, θ ∗, and task visitation, f, as

postulated in Section 4.2. Furthermore, generic Policy-Gradient algorithms from RL

for learning optimal policies learn similar policies than the ones predicted by theory,

but perhaps due to early stopping of their training procedures, fail to reach the level

of performance expected from the theoretical predictions.

4.5 Discussion

In this chapter, we extended the foraging problem to encompass more naturalistic

environments, where the state of the world evolves over time, varying based on

task visits. Additionally, we let the agent select their next destination, aligning

with scenarios commonly encountered by biological agents. This extension of the

problem led to notably different outcomes compared to prior formulations of the

multi-task leaving time decision problem.

While in Charnov (1976) and in Chapter 3 the optimal time for an animal to

leave a food patch was determined by the global reward rate, in the formulation

explored in the current chapter the best policy prescribes a departure time based

solely on local factors. In this way, in order to maximise the global reward rate, the

agent needs to adjust the transition probabilities only.

This chapter provided theoretical results to support this claim, and verified

those with simulation experiments. The main assumptions used to derive the results

were: a slow dynamics in the environment (when comparing the time constants τ

with the leaving times), and the stationarity of the environment for long durations.

Those proved sufficient to derive results for the optimal policy, which were then

corroborated by simulations using Policy-Gradient RL methods under the same

assumptions.

This behavior is convenient in the context of a dynamic environment where the

agent faces a variety of tasks. Rather than attempting to simultaneously optimise all

tasks, it is more efficient to initially master the optimal leaving time for each task

4.5. Discussion 101

separately, and subsequently learn how to better integrate them by selecting future

tasks among the available options. Consequently, if there are any changes to the

availailty of tasks (say the agent encounters a new task, or one of the previous tasks

becomes unavailable), the optimal leaving tasks can still be the same; rather, the

agent only needs to adjust the transition probabilities between tasks. In Charnov

(1976) and in Chapter 3 this is not the case, and the agent needs to review the leaving

times for all tasks whenever there is a change to the environment.

It is left for further research to assess whether one can relax the assumptions

made in this chapter and still obtain similar results. Biological agents often encounter

situations in which the dynamics of the environment is fast, or situations in which

the rates of depletion of resources are different to those of replenishment.

In sum, this work presents a new multi-task decision-making setting, extending

the usual foraging problem where an animal moves between food patches. In our

setting, the agent can decide not only when to leave a food patch (or a task), but

also which one to engage with next. We further introduce a slow dynamics to the

environment, and provide theoretical and numerical evidence to substantiate the

novel claim the the optimal behaviour in this environment differs from the behaviour

described in the literature, in particular that of Charnov (1976). This has implications

for the broad understanding of optimal behaviour in multi-task problems decision-

making problems, and raises questions for future research.

Bibliography

Amit, D. J., Gutfreund, H., and Sompolinsky, H. (1985). Storing Infinite Numbers of

Patterns in a Spin-Glass Model of Neural Networks. Phys. Rev. Lett., 55(14):1530–

1533.

Applegate, M. C. and Aronov, D. (2022). Flexible use of memory by food-caching

birds. eLife, 11:e70600.

Balci, F., Simen, P., Niyogi, R., Saxe, A., Hughes, J. A., Holmes, P., and Cohen, J. D.

(2011). Acquisition of decision making criteria: Reward rate ultimately beats

accuracy. Atten Percept Psychophys, 73(2):640–657.

Biderman, N., Bakkour, A., and Shohamy, D. (2020). What Are Memories For? The

Hippocampus Bridges Past Experience with Future Decisions. Trends in Cognitive

Sciences, 24(7):542–556.

Blackwell, D. (1962). Discrete Dynamic Programming. Ann. Math. Statist.,

33(2):719–726.

Bogacz, R. (2022). Speed Accuracy tradeoff. In Jaeger, D. and Jung, R., editors,

Encyclopedia of Computational Neuroscience. Springer New York, New York,

NY.

Bogacz, R., Brown, E., Moehlis, J., Holmes, P., and Cohen, J. D. (2006). The

physics of optimal decision making: A formal analysis of models of performance

in two-alternative forced-choice tasks. Psychological Review, 113(4):700–765.

Bogacz, R., Hu, P. T., Holmes, P. J., and Cohen, J. D. (2010). Do humans produce

BIBLIOGRAPHY 103

the speed–accuracy trade-off that maximizes reward rate? The Quarterly Journal

of Experimental Psychology, 63(5):863–891.

Boyd, S. P. and Vandenberghe, L. (2004). Convex Optimization. Cambridge Univer-

sity Press, Cambridge, UK ; New York.

Charnov, E. L. (1976). Optimal foraging, the marginal value theorem. Theoretical

Population Biology, 9(2):129–136.

Clayton, N. S. and Russell, J. (2009). Looking for episodic memory in animals and

young children: Prospects for a new minimalism. Neuropsychologia, 47(11):2330–

2340.

Constantino, S. M. and Daw, N. D. (2015). Learning the opportunity cost of time in

a patch-foraging task. Cogn Affect Behav Neurosci, 15(4):837–853.

Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffrey, D. J., and Knuth, D. E. (1996).

On the LambertW function. Adv Comput Math, 5(1):329–359.

David, H. A. and Nagaraja, H. N. (2004). Order Statistics. John Wiley & Sons.

Davidson, J. D. and Hady, A. E. (2019). Foraging as an evidence accumulation

process. PLOS Computational Biology, 15(7):e1007060.

Dewanto, V., Dunn, G., Eshragh, A., Gallagher, M., and Roosta, F. (2021). Average-

reward model-free reinforcement learning: A systematic review and literature

mapping.

Gold, J. I. and Shadlen, M. N. (2007). The Neural Basis of Decision Making. Annual

Review of Neuroscience, 30(1):535–574.

Hall-McMaster, S., Dayan, P., and Schuck, N. W. (2021). Control over patch

encounters changes foraging behavior. iScience, 24(9).

Heitz, R. P. (2014). The speed-accuracy tradeoff: History, physiology, methodology,

and behavior. Frontiers in Neuroscience, 8:150.

BIBLIOGRAPHY 104

Kilpatrick, Z. P., Davidson, J. D., and El Hady, A. (2021). Uncertainty drives

deviations in normative foraging decision strategies. Journal of The Royal Society

Interface, 18(180):20210337.

Kolling, N. and Akam, T. (2017). (Reinforcement?) Learning to forage optimally.

Current Opinion in Neurobiology, 46:162–169.

Kumaran, D., Hassabis, D., and McClelland, J. L. (2016). What Learning Systems

do Intelligent Agents Need? Complementary Learning Systems Theory Updated.

Trends in Cognitive Sciences, 20(7):512–534.

Lengyel, M. and Dayan, P. (2008). Hippocampal Contributions to Control: The

Third Way. Neural Information Processing Systems, page 8.

Madan, C. R. (2019). Rethinking the definition of episodic memory. PsyArXiv.

Mahr, J. B. and Csibra, G. (2018/ed). Why do we remember? The communicative

function of episodic memory. Behavioral and Brain Sciences, 41.

Ması́s, J., Chapman, T., Rhee, J. Y., Cox, D. D., and Saxe, A. M. (2020). Rats

strategically manage learning during perceptual decision making.

McClelland, J. L. and O’Reilly, R. C. (1995). Why There Are Complementary Learn-

ing Systems in the Hippocampus and Neocortex:InsightsFrom the Successesand

Failuresof Connectionist Models of Learning and Memory. Psychological Review,

3(102):419–457.

Nagy, D. G. and Orbán, G. (2017). Episodic memory for continual model learning.

arXiv:1712.01169 [cs, stat].

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,

Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito,

Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and

Chintala, S. (2019). Pytorch: An imperative style, high-performance deep learning

library. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox,

BIBLIOGRAPHY 105

E., and Garnett, R., editors, Advances in Neural Information Processing Systems,

volume 32. Curran Associates, Inc.

Possingham, H. P. and Houston, A. I. (1990). Optimal patch use by a territorial

forager. Journal of Theoretical Biology, 145(3):343–353.

Puterman, M. (1994). Average Reward and Related Criteria. In Markov Decision

Processes: Discrete Stochastic Dynamic Programming, chapter 8, pages 331–440.

John Wiley & Sons, Ltd.

Simen, P., Contreras, D., Buck, C., Hu, P., Holmes, P., and Cohen, J. D. (2009).

Reward rate optimization in two-alternative decision making: Empirical tests of

theoretical predictions. Journal of Experimental Psychology: Human Perception

and Performance, 35(6):1865–1897.

Sprechmann, P., Jayakumar, S. M., Rae, J. W., Pritzel, A., Badia, A. P., Uria, B.,

Vinyals, O., Hassabis, D., Pascanu, R., and Blundell, C. (2018). Memory-based

Parameter Adaptation. arXiv:1802.10542 [cs, stat].

Sugiyama, M. (2015). Statistical Reinforcement Learning: Modern Machine Learn-

ing Approaches. CRC Press.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning, Second Edition: An

Introduction. MIT Press.

Tulving, E. (1972). Episodic and Semantic Memory. In Organization of Memory.

Academic Press.

Appendices

106

Appendix A

Introduction to Supervised Learning

In a supervised learning scenario the goal is to learn a mapping f from an input

variable x to an output one y = f (x). This is a general framework and applies to

the case where one uses information about the state of the world x to estimate an

approximation of the value of being in that state f (x).

Data for training comes in input-output pairs (x,y), and we denote collections

of such pairs with a full dataset DM, where M is the number of pairs in the dataset.

Different models are used to learn the mapping from input to output data, and each

of them makes (possibly different) prediction ŷ(x) of the output given the input.

In order to quantify how much error a given model is making, one needs to

define a pointwise error function, such as the square loss:

ℓ(ŷ,y) =
1
2
(y− ŷ)2 . (A.1)

Furthermore, we do not want a given model simply to perform well on a

particular pair (x,y), but on the whole set of possible inputs and outputs X ×Y ,

weighted by the probabilities that a given pair can be observed, p(x,y). Therefore,

we want the prediction of the model to minimise the generalisation error, which is

the loss function of the model under the probability distribution that generates the

data,

L(ŷ(.)) = ⟨ℓ(ŷ(x),y)⟩x,y =
〈

1
2
(y− ŷ(x))2

〉
x,y

, (A.2)

where ⟨.⟩x,y represents an average taken over p(x,y).

108

However, by definition, one does not have access to the joint distribution p(x,y)

in actual train time, so the generalisation loss cannot be calculated. This implies

that a proxy must be sought. Simply substituting the analytical average ⟨.⟩x,y for the

sampling average one obtains the empirical loss,

L̂(ŷ(.),DP) = ∑
(x,y)∈DP

ℓ(ŷ(x),y) =
1
2

P

∑
p=1

(yp− ŷ(xp))
2 , (A.3)

where DP is the train dataset with P training pairs as examples.

Typically one works with parametric models, where we express the collection

of parameters generically as a vector w,

ŷ≡ ŷw(x) . (A.4)

The goal of learning the mapping f becomes that of optimising the parameter

vector w→ w∗ such that the parameters minimise the loss

w∗ = argmin
w
L(ŷw(.)) . (A.5)

Since the generalization loss cannot be calculated directly the empirical loss is

used. A common way to learn with this model is to follow gradients of the loss for

training datapoints (x,y) in the dataset D, either online or in batches of data. This

procedure is known as stochastic gradient descent (SGD).

∆w =−η∇wL̂(w,Dt) , (A.6)

where η is the learning step, a hyperparameter than can be tuned.

Appendix B

Introduction to Order Statistics

Order Statistics is a subfield of Statistics that is concerned with the study of probabil-

ity distributions of ordered sets. We refer the interested reader to the book by David

and Nagaraja (2004) for a thorough exposition of the basic results presented here.

Let us consider a distribution p(x), from which we sample X1,X2, · · ·XM
i.i.d.∼

p(x), and we order them in ascending order

X(1) ≤ X(2) ≤ ·· · ≤ X(M) . (B.1)

By definition,

X(1) = min{X1, · · · , XM} (B.2a)

X(N) = max{X1, · · · , XM} (B.2b)

A common result from Order Statistics describes how to obtain the distributions

for each of the X(i), or their joints.

We present in particular the cdf for the first statistic, X(1), as we are interest in

Chapter 2 on the distribution of the nearest neighbour,

C(1)(x) = 1− [1−C(x)]M , (B.3)

110

where C(x) is the cumulative distribution function (cdf) for the X random variable,

C(x) =
∫ x

−∞

dx′p(x′) , (B.4)

which is non-decreasing by definition.

By the Fundamental Theorem of Calculus, one can differentiate the cdf to

recover the pdf,

p(1)(x) =
d
dx

C(1)(x) = M [1−C(x)]M−1 p(x) . (B.5)

Another way to derive this pdf is as follows: from all the M samples only one

can be the smallest1, but a priori the smallest can be any of them, then we need

to sum over all of the possible samples. Following this reasoning, the smallest

sample is associated with the pdf given by the orginal p, and by construction all the

other samples need to have larger values, hence the converse of the cdf. Expressing

mathematically the procedure above, we have

p(1)(x) =
M

∑
i=1

P(xi = x, x¬i > x)

= Mp(x)
[∫

∞

x
dx′p(x′)

]M−1

= M [1−C(x)]M−1 p(x).

(B.6)

One can follow similar procedures in general and obtain the marginal for any

order statistic,

p(l)(x) =
1
1
[C(x)]l−1 [1−C(x)]M−l p(x) , (B.7)

and the joint for a pair of order statistics X(l) and X(m) (where l < m),

p(l)(m)(x,y) =
M!

(l−1)!(m− l−1)!(M−m)!
[C(x)]l−1 p(x) (B.8)

[C(y)−C(x)]m−l−1 p(y) [1−C(y)]M−m .

1We are considering continuous variables, so the chance that two or more have the exact same
value has measure zero.

111

A different way to interpret the result for the first order statistic in Equation

B.5 is to see it through a bayesian approach. Let us consider that the density p(1) is

the posterior distribution of a given sample Xi ∼ {X1, . . . , XM} conditioned on the

fact that this particular sample is the smallest element of the set, i.e. the first order

statistic. Then we write

p(Xi = x|i = 1st) =
p(i = 1st |Xi = x)p(Xi = x)

p(i = 1st)
. (B.9)

A priori, without any information, we know that Xi was sampled from the same

distribution as any other sample in the set, with the density p(x). This defines the

prior, p(Xi = x) = p(x).

The evidence, p(i = 1st), refers to the probability that the sample we picked, Xi,

for an unkown i, is the smallest in the set of M samples. As we don’t have any further

information about it, this can only be a uniform distribution, p(i = 1st), leaving us

with

p(Xi = x|i = 1st) = Mp(i = 1st |Xi = x)p(x) . (B.10)

We can notice this expression is remarkably similar to the density in Equation

B.5, with the left-hand side describing the same probability density. Equating them,

we obtain an expression for the likelihood,

p(i = 1st |Xi = x) = [1−F(x)]M−1 . (B.11)

This is used in Equation 2.48 to obtain an expression for the density of nearest

neighbour quantities, p(zNN,∥x⊥NN∥).

Appendix C

About Lambert W functions

Lambert W function Wk(z) is a multivalued function that satisfies the equation

wew = z . (C.1)

Here we explain the basic behaviour of this function and approximations that

can be made to its value in specific regimes, so that one can understand the results

presented in the main part of the thesis. For a more thorough presentation of the

function and other applications for its use please refer to e.g. Corless et al. (1996).

This function has 2 branches in the real domain: W0, the principal branch,

that has codomain from w =−1 to positive infinity; and W−1, with codomain from

w = −1 to minus infinity. We show the graphical representation of those two

branches in Figure C.1.

We start by differentiating the expression defining the Lambert W function,

d
dx

(
WeW)= dx

dx
(C.2a)

W ′eW +WeWW ′ =W ′(eW +W) = x (C.2b)

⇒ W ′ =
e−W

1+W
=

1
eW + x

. (C.2c)

From the above and from the fact that W (e) = 1 we conclude that the derivative

is positive for x > e. Trivially also we know that logW (x > e)> 0.

Now taking the logarithm on both sides of the definition, and using the result

113

Figure C.1: Left: Real branches of the Lambert W function. The split between W0 and
W−1 happens at (−1/e,−1). We only work with W0 in this work since we
are concerned with real-valued x Right: The asymptotics of the Lambert W
function as the argument goes to infinity, x→ ∞ gets sandwiched between
L2(x) = logx− log logx and L3(x) = logx− log logx− log

(
1− log logx

logx

)
.

above, we can bound the logarithm of the Lambert W function for arguments above

e,

logw+w = logx

⇒ w = logx− logw < logx, for x > e . (C.3)

We can improve this bound even further by successively taking logarithms and

using the results from before, such that one obtains, for large arguments, that

logx− log logx <W0(x)< logx− log logx− log
(

1− log logx
logx

)
. (C.4)

Appendix D

Asymptotics of the functions βk(M)

As explained in the main text (Section 2.3), we want to calculate the asymptotic

behaviour of the averages βk(M) =
〈
skζNN(s,M)

〉
s∼N (0,1) as the number of memories

goes to infinity. We want to show that

βk(M) = M
∫

∞

−∞

ds√
2π

e−
1
2 s2

sk [1−Φ(s)]M−1 (D.1a)

M→∞∼
(−1)ke

1
2 log logM+o(1)

[
W
(

M2

2π

)] k
2

[
1+W

(
M2

2π

)] 1
2

, (D.1b)

where Φ(s) =
∫ s
−∞

d1√
2π

e−
1
2 q2

is the cumulative distribution function for a standard

Gaussian.

We start with the definition of the integral we want to estimate,

βk(M) =
M√
2π

∫
∞

−∞

ds sk exp(f (s;M)) (D.2a)

f (s;M) =−1
2

s2 +(M−1) log [1−Φ(s)]≈−1
2

s2−MΦ(s) (D.2b)

and assume there is a global maximum of the integrand, such that the contributions

that matter for the integral are only those close to that maximum. By Taylor ex-

panding the exponent in the integrand up to second order, we obtain a Gaussian

distribution times another exponential term. The exponential term goes out of the

integral, and the integral can be done with the moments of the gaussian distribution.

115

This is called Laplace’s method 1. Differentiating f to obtain the extrema,

∂ f
∂ s

∣∣∣∣
s∗
=−s∗−M

1√
2π

e−
1
2 (s
∗)2

= 0 (D.3a)

⇒ s∗ =− M√
2π

e−
1
2 (s
∗)2

(D.3b)

⇒ (s∗)2e(s
∗)2

=
M2

2π
(D.3c)

⇒ (s∗)2 =W
(

M2

2π

)
(D.3d)

⇒ s∗ =−
√

W∗ , (D.3e)

where we selected the negative sign for s∗ due to the expression in Equation D.3b,

and renamed W∗ =W
(

M2

2π

)
to ease the reading. For a quick review on Lambert W

funtions, please refer to Appendix C.

Differentiating f once more to check the curvature of the function around the

extremum,

∂ 2 f
∂ s2 (s

∗) =−1+
M√
2π

s∗ e−
1
2 (s
∗)2

=−1− (s∗)2 =− [1+W∗]< 0 ,

(D.4)

which means our solution is the maximum of the function for large M.

We can then expand f around its maximum up to second order, and approximate

the integral as a Gaussian integral,

βk(M)≈ M√
2π

∫
∞

−∞

ds sk exp
[

f (s∗)− 1
2
| f ′′(s∗)|(s− s∗)2

]
= elogM+ f (s∗)

∫
∞

−∞

ds√
2π

sk exp
{
−1

2
[1+W∗] (s− s∗)2

}
.

(D.5)

1See e.g. https://en.wikipedia.org/wiki/Laplace%27s_method.

https://en.wikipedia.org/wiki/Laplace%27s_method

116

We do a change of variables ξ = s
√

1+W∗+ s∗ to perform the integral,

∫
∞

−∞

ds√
2π

sk exp
{
−1

2
[1+W∗] (s− s∗)2

}
=
∫

∞

−∞

dξ√
2π
√

1+W∗

(
ξ√

1+W∗
+ s∗

)k

e−
1
2 ξ 2

=
1

(1+W∗)
k+1

2

〈(
ξ + s∗

√
1+W∗

)k
〉

ξ

≈ (−1)kW k/2
∗

(1+W∗)1/2 ,

(D.6)

where, for the approximation in the end, we used that ξ was order 1 and the domi-

nating factor would be the constant aspect of the integral, s∗
√

1+W∗.

Returning to the other part of the original expression, we can simplify it as

follows:

logM+ f (s∗) = logM− 1
2
(s∗)2−MΦ(s∗)

≈ logM− 1
2

W∗−M
1√
2π

1
s∗

e−
1
2 (s
∗)2

D.3b
= logM− 1

2
W∗+1

≈ logM− 1
2

[
log
(

M2

2π

)
− log log

(
M2

2π

)]
+o(1)

≈ 1
2

loglogM+o(1) .

(D.7)

Putting everything together, we obtain the result as declared before,

βk(M)
M→∞∼

(−1)ke
1
2 log logM+o(1)

[
W
(

M2

2π

)] k
2

[
1+W

(
M2

2π

)] 1
2

. (D.8)

Appendix E

Approximating the integrals for

expectations over the nearest

neighbour quantities

We want to derive the results from Equation 2.49. Let us start with the prior distribu-

tion p(z,∥x⊥∥2) = p(z)p(∥x⊥∥2). We know that, before conditioning on the nearest

neighbour,

z = xm · x̂ ∼ N (0,1) (E.1)

The prior for ∥x⊥∥2 is a chi-squared distribution, which for large N we can

assume is well approximated by a Gaussian. Using the definition ∥x⊥∥2 = ∥xm∥2−z2

we can find the mean and variance, such that

∥x⊥∥2 ∼N (N−1, 2N−2) . (E.2)

We further assume that the (prior) cumulative distribution (cdf) for γ , C(γ), is

the cdf of a gaussian,

C(γ) = Φ

(
γ−µγ

σγ

)
(E.3)

where µγ ,σγ are the mean and standard deviation, given below.

Again, for large N this will be a reasonable approximation as the sum of

gaussians is a gaussian and only non-gaussian, non-constant term in the definition

118

for γ is the z2 term, which is negligible compared to the others:

γ = ∥xm−x∥2 = (z−∥x∥)2 +∥x⊥∥2 = ∥x∥2 + z2−2∥x∥z+∥x⊥∥2 . (E.4)

Taking the relevant expectations in the equation above, we find the mean and

variance for γ ,

µγ = ∥x∥2 +N (E.5a)

σ
2
γ = 4∥x∥2 +2N (E.5b)

The relevant equation is 2.48, repeated below for convenience,

〈
zp

NN∥x⊥NN∥2q
〉
≡
∫

dzd∥x⊥∥2 zp∥x⊥∥2q p(z,∥x⊥∥2|NN,x)

=
∫

dzd∥x⊥∥2 zp∥x⊥∥2q p(z,∥x⊥∥2)

×
∫

dγ δ

(
γ− (z−∥x∥)2−∥x⊥∥2

)
M [1−C(γ)]M−1 .

(E.6)

Doing the γ integral with the Delta function and substituting the results from

earlier, we obtain

〈
zp

NN|x⊥NN|2q
〉
=
∫

DzD∥x⊥∥2 zp∥x⊥∥2qM

1−Φ

z2−Ez2−2∥x∥z+∥x⊥∥2−E∥x⊥∥2√
4∥x∥2σ2

z +σ2
⊥+2

M−1

,

(E.7)

where the notation ∫
Dq =

∫
dq φ(q) =

∫ dq√
2π

e−
1
2 q2

(E.8)

denotes an average over the standard normal distribution.

We can ignore the terms z2−Ez2 in the numerator, and 2 in the denominator,

as negligible compared to the others they are summing, and perform a change of

variables to obtain

〈
zp

NN|x⊥NN|2q
〉
=
∫

DξzDξ⊥ (σzξz)
p (N +σ⊥ξ⊥)

q M [1−Φ(ρ⊥ξ⊥−ρzξz)]
M−1 ,

(E.9)

119

where ρ⊥ ∝ σ⊥ and ρz ∝ 2|x|σz with ρ2
⊥+ρ2

z = 1. We can also make a self-averaging

assumption, ∥x∥2 = ∑
N
i=1 x2

i ≈ N, to obtain ρ2
⊥ ≈ 1/3 and ρ2

z ≈ 2/3.

Another change of variables to rotate the space, together with some simple

algebra yields the result

〈
zp

NN|x⊥NN|2q
〉
= ⟨⟨[(ρ⊥t−ρzs)σz]

p [(ρzt +ρ⊥s)σ⊥+µ⊥]
q⟩t ζNN(s,M)⟩s , (E.10)

where t,s∼N (0,1) and ζNN(s,M) = M[1−Φ(s)]M−1.

Appendix F

Foraging and the Marginal Value

Theorem

When should an agent foraging in a particular area of the world determine that the

current area is depleted of resources, and that they should have easier access to food

elsewhere?

This question was initially formulated by Charnov (1976) as an optimisation

problem: an animal in the environment randomly encounters different varieties of

food patches (i = 1, . . . ,N) at fixed probabilities {pi}, and they decide how much

time to spend in each food patch type in order to maximise the reward rate intake

averaged over the whole environment. Mathematically,

Erate(T) =
∑i piRi(Ti)−E0

∑i piTi +T0
, (F.1)

where T0 is the travel time incurred by the animal when moving between food

patches, and E0 the cost in energy for travelling and foraging.

By optimising for the actions the animal can take, i.e. the times in each task, Ti,

we can find that the optimal strategy is to leave a food patch at time T ∗i such that the

121

instantaneous energy intake falls below the average across all food patches,

∂Erate

∂Ti
=

pi

∑i piTi +T0

(
∂Ri

∂Ti
−Erate(T)

)
(F.2a)

∂Erate

∂Ti

∣∣∣∣
T∗

= 0 ⇒ ∂Ri

∂Ti

∣∣∣∣
T ∗i

= Erate(T∗) . (F.2b)

Now, to check whether the solution is a maximum we can differentiate once

more to obtain the entries of the Hessian matrix; performing a small amount of

algebra, we find that

∂ 2Erate

∂T 2
i

∣∣∣∣
T∗

=
pi

∑i piTi +T0

∂ 2Ri

∂T 2
i

∣∣∣∣
T ∗i

, (F.3)

∂ 2Erate

∂Ti∂Tj

∣∣∣∣
T∗

= 0 . (F.4)

Therefore, if the Ris are concave functions of the Tis their second derivative will

be negative, and the Hessian matrix will be negative-definite, meaning the extremum

T∗ we found earlier is a maximum. This assumption is usually true in foraging

models, as it is commonly modelled that the amount of reward that can be obtained

in a food patch is a monotonically non-decreasing (often saturating) function of time,

as seen in Figure F.1.

Time, T

Resources, R

R(T) = 3.2tanh(T/2)−1

Figure F.1: Example of a monotonically increasing function that can be used in the mod-
elling proposed by Charnov (1976). It has the characteristic of being concave,
as necessary by the theory. Furthermore it saturates at R(T → ∞) = 2.2, so the
effect of diminishing returns is very marked.

Appendix G

Introduction to Reinforcement

Learning

A common, general, learning problem is that of Reinforcement Learning (RL). In RL,

an agent moves in the world trying to choose actions that maximise a quantity called

the return, which is the sum of all rewards from now into the future1. Mathematically,

Gt = Rt +Rt+1 + · · ·+RT =
T

∑
i=t

Rt , (G.1)

where {Ri} are the rewards obtained at each timestep, and T is the terminal time.

Since there is a clear end to the task the agent is optimising, this delimitation is

called an Episode, and this setting is called the Episodic setting2.

When the task does not have a clear terminal time, but continues (possibly)

indefinitely, the quantity Gt as described above is not well defined, and the most

common solution to this problem is to introduce a discount factor, γ ∈ [0,1], to the

expression of the return so that the contributions of rewards obtained in the far future

are vanishingly small:

Gt = Rt + γGt+1 + γ
2Gt+1 + · · ·=

∞

∑
i=0

γ
iRt+i. (G.2)

This is called the Discounted setting.

1Alternatively, one can think of minimising an opposite quantity, usually considered as a sum of
costs. This is a more common convention in the adjacent field of Control Theory.

2Not to be confused with the Episodic memory of Part I

123

Perhaps the most important aspect of the return3 in RL is the fact that it is, in

either of the forms discussed above, a recursive quantity:

Gt = Rt + γGt+1 , (G.3)

meaning that one can know the return at time t by knowing the return at time t +1

and iterating back with the reward at time t. This recursive aspect is a cornerstone of

the theory, and is used in several places in order to derive algorithms that learn to

behave optimally in RL.

It would be difficult for any agent to make sense of the world and maximise

their return if the world had no structure that could be learned and understood, so

the next relevant step for defining any RL problem is to describe the state and action

spaces. Taking actions is the agent’s way of interacting with the environment, and

the state represents the information that the agent has available (together with the

reward received at each time step) in order to help them learn the effects of their

actions in the world. See Figure G.1 below.

Agent

Environment

action
at

si+1

ri+1

state
st

reward
rt

Figure G.1: Diagram of the basic formulation of an MDP. The agent selects actions that
influence the state of the environment. The environment then “gives” the agent
information about its state and a reward conditioned on the previous state and
the action taken by the agent. Figure adapted from TeX StackExchange.

Those ideas can be formalised with the concept of a Markov Decision Process

(MDP). An MDP is characterised by 4 components: the state space, S; the action

space, A; the reward function, R; and the transition function, P . It is usually

3To simplify notation we call both quantities return and denote them by G. The meaning of which
is being referred to can be inferred from context.

https://tex.stackexchange.com/a/461318

124

represented as the 4-tuple (S,A,R,P), as given all of those a modeller can describe

what states are relevant to describe the problem, which actions are available, and

how the actions and states determine (perhaps stochastically) the rewards and the

next states.

Another important concept is that of a policy, usually represented by the greek

letter π . A policy is a description of which actions an agent would take given they

are in a certain state. It can be deterministic (usually a greedy policy) or stochastic.

The objective of RL is to optimise the policy π in order to maximise the return G,

while following that policy.

In order to increase the return – since the agent usually does not have access

to the future rewards before they obtain those –, the agent must use a proxy that

considers only the information available at that point in time. The relevant quantity

that represents this current state of knowledge of the agent is the value function,

Vπ(s) = Eπ [Gt |St = s] . (G.4)

In other words, the value of state s under a policy π is the expected return given

that on time t the agent is at the state St = s and they will follow policy π to select

their actions.

We can use the expression for the return in Equation G.3 to write

Vπ(s) = ∑
a

π(a|s)∑
r,s′

p(r,s′|s,a)[r+ γVπ(s′)] . (G.5)

In general it is not the value of a generic policy that is relevant, but that which

is associated with the optimal policy,

V ∗(s) = max
π

∑
a

π(a|s)∑
r,s′

p(r,s′|s,a)[r+ γV ∗(s′)]

= max
a ∑

r,s′
p(r,s′|s,a)[r+ γV ∗(s′)] . (G.6)

There are different algorithms that one can use to estimate the optimal value.

125

Most can be summarised as an iterative update of the value function at each state,

V̂ (St)← V̂ (St)+ηδ , (G.7)

where η is a learning rate and δ is the prediction error, that can take different

forms depending how one wishes to estimate the value. The most common ways

of estimating the value are: Monte-Carlo (MC) methods, such as REINFORCE; or

Bootstrapping methods, such as Temporal Difference (TD).

An MC-like method could be given by δMC = Gt , where the estimation of

the value is given by directly estimating the average of the return but empirically

averaging different realizations of the problem. A bootstrapping method on the other

hand, would use the current estimate of the value to “bootstrap” the updated estimate.

The Temporal Difference (TD) prediction error is then given by

δT D = Rt+1 + γV̂ (St+1)−V̂ (St) . (G.8)

In either of those methods, the policy is then derived from the value function. It

can be a greedy policy, which chooses the action the maximises the expected value

of future rewards,

πgreedy(s) = argmax
a

∑
s′,r

p(s′,r|s,a)
[
r+ γVπgreedy(s

′)
]
, (G.9)

or it can be an stochastic policy, which samples the argmax action with higher

probability, but allows other actions to be chosen with low probability as well,

usually to encourage exploration.

Instead of learning the optimal value function, and from there deriving the

optimal policy, an alternative approach is to optimise the policy directly. To do that,

one needs to define a parameterisation for the policy π = πw(a|s), and an objective

to be optimised.

The obvious choice of an objective to be optimised is the value function. Since

the purpose of policy methods was to circumvent the need for a value function, this

126

might seem counterintuitive. However, the Policy Gradient theorem proves that, for

a non-random initial state s0, the gradient of the value function is proportional to an

expectation of the gradient of the policy,

∇wVπw(s0) ∝ E [Gt∇w logπw(At |St)] . (G.10)

Therefore, by following in the direction of the right-hand side of Equation

G.10, one is following in the direction that optimises the value function, without

needing to keep track of the value. This approach is what leads to the definition of

the REINFORCE algorithm, a Monte Carlo method,

∆w = ηGt∇ logπ(At |St ,w) . (G.11)

There are numerous other methods that optimise the policy directly, usually

called Policy Gradient methods due to the result in Equation G.10. Some of them,

like the Actor-Critic method, use estimation of the value function on top of the

policy update to bootstrap the estimation and improve performance over learning.

An interested reader can find a thorough account of the diversity of RL methods in

Sutton and Barto (2018); Sugiyama (2015).

Appendix H

Deriving average reward and time for

the evidence accumulation task

Here we derive Equations 3.17, the average reward and average time for the constant

boundary policy in the evidence accumulation task from Chapter 3. Recalling the

task: there are 2 options that could be generating the data xi, and the goal is to

integrate the available evidence to determine which one is generating the data for

a given trial. Mathematically, the generative model is given by Equations 3.10 and

3.11, repeated below for convenience,

µ ∼ p(µ) =
1
2

δ (µ−µ0)+
1
2

δ (µ +µ0) (H.1a)

{xi}|µ ∼ p(x|µ) =N
(
µ,σ2) , (H.1b)

where i is the index for samples within a trial.

The policy chooses the option that generates data from the gaussian with mean

+µ0 (or,−µ0) as soon as the evidence accumulator et = ∑
t
i=1 xi reaches the boundary

+B (−B). Given this information, we want to calculate the values of 4 different

variables: the probabilities p+ = p(et = B|µ0) and p− = p(et =−B|−µ0), and the

average stopping times T+ and T−, as functions of the boundary value B and the

parameters of the gaussian.

The problem we want to solve is simple to enunciate: if the evidence accu-

mulator variable et accumulates the samples x, and we know the distribution that

128

generates these samples (conditioned on knowing the mean µ), then we can find the

probability of hitting each bound, and the average time it takes to hit the bound.

The strategy to obtain those quantities consists in applying a result called the

Optional Stopping Theorem1 to our setup, and following a bit of algebra. Let us

define the martingale

Yt(s) =
eset

[M(s)]t
, (H.2)

where et is the evidence acucmulator variable and M(s) is the moment generating

function of a gaussian variable, given by

M(s) =
∫

∞

−∞

dx esx p(s|µ,σ2) = esµ+ 1
2 s2σ2

. (H.3)

It is important to condition on knowing the identity of the distribution generating

the data, i.e. we know which of ±µ0 is being used to generate the data for that trial.

This is particularly important to make Yt a martingale, which is needed for the

optional stopping theorem. In fact, we can convince ourselves that Yt is a martingale

by noticing that

E|Yt |=
E|es∑i xi|
[M(s)]t

≤ |Ees∑i xi|
[M(s)]t

=
|Eesx|t

[M(s)]t
= 1 < ∞ , (H.4)

and proving that its value conditioned on past values Y1, . . . ,Yt−1 depends only on

the last one, as in

E [Yt |Y1, . . .Yt−1] = E

[
esxt

M(s)
eset−1

[M(s)]t−1

∣∣∣∣∣Y1, . . .Yt−1

]
= E

[
esxt

M(s)

]
Yt−1 = Yt−1 . (H.5)

Then, the optional stopping theorem tells us that, for the stopping time T ,

EYT = EY1 = E

[
esx1

M(s)

]
= 1 . (H.6)

1Explaining this result in depth is out of the scope for this thesis. Suffice to say it describes
conditions under which the expected value of a martingale at a stopping time is equal to its initial
expected value. We assume those conditions are valid for our problem (essentially, that we always
reach either of the boundaries, ±B) and use the result for a martingale defined below.

129

From the definition of the policy there are only 2 stopping possibilities, when

the evidence eT is either of ±B, therefore we can write the left-hand side as

EYT = E

[
eseT

[M(s)]T

]
=

1

[M(s)]T
[
p(eT =+B|µ)e+sB + p(eT =−B|µ)e−sB]= 1 .

(H.7)

Now, the result above should be valid for any value of s, in particular we can

choose s∗ =−2µ/σ2 so that M(s∗) = e0 = 1, and the equation simplifies to

p(eT =+B|µ)e−
2µB
σ2 + p(eT =−B|µ)e+

2µB
σ2 = 1 . (H.8)

Defining the probabilities of different outcomes

p+ = p(eT =+B|µ =+µ0) = 1− p(eT =−B|µ =+µ0) (H.9a)

p− = p(eT =−B|µ =−µ0) = 1− p(eT =+B|µ =−µ0) , (H.9b)

(H.9c)

we can select the possible options for µ =±µ0 and find that

p+ = p− =
1− eξ

e−xi− eξ
=

1
e−ξ +1

, (H.10)

where we defined the auxiliary variable

ξ =
2µ0B

σ2 . (H.11)

In order to obtain the average times T we can differentiate Equation H.7 with

respect to s and select the value s = 0,

0 = E

[
(−T)

[M(s)]T+1 M′(s)
[
p(+|k)e+sB + p(−|k)e−sB]+ B

[M(s)]T
[
p(+|k)e+sB− p(−|k)e−sB]]

= (−T)µ +B
[

p(+|k)− p(−|k)
]

(H.12a)

⇒ T =
B
µ

(
p(+|k)− p(−|k)

)
(H.12b)

130

Once again we then select the possible options for k, now to obtain the average

times

T+ =
B
µ0

(p+− (1− p+)) =
B
µ0

1− e−ξ

1+ e−ξ
, (H.13a)

T− =
B
µ0

((1− p−)− p−) =
B
µ0

e−ξ −1
e−ξ +1

. (H.13b)

Defining the reward for a correct (incorrect) choice to be R+ (R− < 0), the

probability of choosing correctly the +µ0 option to be p+ = p(et = B|µ0), and the

probability of choosing correctly when the true option was −µ0 to be p− = p(et =

B|−µ0), we have the expression for the average reward,

R(π) = ∑
µ=±µ0

p(µ) [R+p(correct|µ)+R−p(wrong|µ)]

=
[

p(+µ0)p(et = B|+µ0)+ p(−µ0)p(et =−B|−µ0)
]
R+

+
[

p(+µ0)p(et =−B|+µ0)+ p(−µ0)p(et = B|−µ0)
]
R−

=
1
2

R+(p++ p−)+
1
2

R−(2− p+− p−) ,

(H.14)

and for the average time,

T (π) = ∑
µ=±µ0

p(µ)T µ

= p(+µ0)T++ p(−µ0)T− =
1
2
[
T++T−

]
.

(H.15)

We can finally collect the results obtained so far to state the final equations used

in the main text,

R(B) =
R+

1+ e−
2µ0B

σ2

+
R−

1+ e+
2µ0B

σ2

(H.16a)

T (B) =
B
µ0

tanh
(

µ0B
σ2

)
(H.16b)

Appendix I

Neural Network for REINFORCE

Artificial Feedforward Neural Networks were used to compute the policies for

REINFORCE, in Sections 4.3 and 4.4. The networks were defined using the library

PyTorch (Paszke et al. (2019)) version 1.12.1 and a linux environment with CUDA

version 11.3, Python 3.10.11, GCC 11.3.0, packaged by conda-forge.

For each task in the environment, the agent had two feedforward neural net-

works, totalising 2N networks. Each of the networks had a hidden layer of width

W = 20, and an output layer with variable dimension: the time policy network had

output of dimension equal to 2, the parameters of the lognormal distribution; the task

policy network had output of dimension equal to N, the number of possible tasks the

agent could move to.

In order to properly learn the joint policy distribution π(T,a|s,θ ,w) =

π(T |s,θ ,w)π(a|T,s,θ ,w), we gave information about the leaving time chosen as

an input to the task policy network. Therefore the inputs were different for different

networks: θ , with dimensionality N, for the time policy; and (θ ,⟨T ⟩), with dimen-

sionality N +1, for the task policy, where ⟨T ⟩ is the average time according to the

lognormal distribution given by the parameters outputted by the time policy network.

Appendix J

Description of the environments for

Chapter 4

Chapter 4 presented simulation results using a number of different environments.

Here we present with more detail the parameters for those environments described

briefly in Table 4.1. For all tasks described below, the relevant equation for the

reward function is given by Equation 4.2, repeated below ommitting the index i and

the dependence on θ ,

R(T) = RM tanh(k T)−R0 . (J.1)

We also report the local optimal leaving time,

T ∗ = argmax
T

R(T)/T (J.2)

and the corresponding local optimal reward rate R(T ∗)/T ∗, and the depletion and

replenishment time constants, β in and β out , for the θ dynamics in Equation 4.1.

RM R0 k β in β out T ∗ R(T ∗)/T ∗

Task 1 15.0 −5.0 1.0 300.0 300.0 0.99 6.42
Task 2 36.0 −1.0 0.016 300.0 300.0 22.4 0.51

Table J.1: Environment 1. Short duration task with higher optimal reward rate , and long
duration task with lower optimal reward rate.

133

RM R0 k β in β out T ∗ R(T ∗)/T ∗

Task 1 15.0 −5.0 1.0 2000.0 2000.0 0.99 6.42
Task 2 67.5 −4.5 0.15 2000.0 2000.0 3.29 8.01

Table J.2: Environment 2.

RM R0 k β in β out T ∗ R(T ∗)/T ∗

Task 1 15.0 −5.0 1.0 2000.0 2000.0 0.99 6.42
Task 2 22.5 −1.5 0.15 2000.0 2000.0 3.29 2.67

Table J.3: Environment 3.

RM R0 k β in β out T ∗ R(T ∗)/T ∗

Task 1 15.0 −5.0 1.0 300.0 300.0 0.99 6.42
Task 2 15.0 −5.0 1.0 150.0 150.0 0.99 6.42
Task 3 15.0 −5.0 1.0 50.0 50.0 0.99 6.42

Table J.4: Environment 4.

RM R0 k β in β out T ∗ R(T ∗)/T ∗

Tasks 1-5 15.0 −5.0 1.0 300.0 300.0 0.99 6.42

Table J.5: Environment 5.

RM R0 k β in β out T ∗ R(T ∗)/T ∗

Task 1 15.0 −5.0 1.0 300.0 300.0 0.99 6.42
Tasks 2-11 5.0 −0.5 0.5 300.0 300.0 1.15 1.82

Table J.6: Environment 6.

	Contents
	General Introduction
	I Memory
	A mathematical study of single-event memories in learning
	Problem setup
	Calculating the performance for the different algorithms
	Expectations over Nearest Neighbour quantities
	Comparing the algorithms
	Model mismatch
	Extension to L closest neighbours
	Discussion

	II Decision-making
	Optimal reward-rate in foraging-like multi-task environments
	A framework for multi-task decision-making
	A local algorithm to optimise the reward rate
	Evidence accumulation tasks
	Explaining apparent suboptimal human behaviour
	Discussion

	Multi-task decision-making with time-dependent environments
	Problem setup
	Theoretical results
	Policy Gradient methods
	Numerical results
	Discussion

	Bibliography

	Appendices
	Introduction to Supervised Learning
	Introduction to Order Statistics
	About Lambert W functions
	Asymptotics of the functions k(M)
	Approximating the integrals for expectations over the nearest neighbour quantities
	Foraging and the Marginal Value Theorem
	Introduction to Reinforcement Learning
	Deriving average reward and time for the evidence accumulation task
	Neural Network for REINFORCE
	Description of the environments for Chapter 4

