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Hierarchical generative modelling for 
autonomous robots

Kai Yuan    1,5, Noor Sajid2,5, Karl Friston    2,3 & Zhibin Li    4 

Humans generate intricate whole-body motions by planning, executing and 
combining individual limb movements. We investigated this fundamental 
aspect of motor control and approached the problem of autonomous 
task completion by hierarchical generative modelling with multi-level 
planning, emulating the deep temporal architecture of human motor 
control. We explored the temporal depth of nested timescales, where 
successive levels of a forward or generative model unfold, for example, 
object delivery requires both global planning and local coordination 
of limb movements. This separation of temporal scales suggests the 
advantage of hierarchically organizing the global planning and local 
control of individual limbs. We validated our proposed formulation 
extensively through physics simulation. Using a hierarchical generative 
model, we showcase that an embodied artificial intelligence system, a 
humanoid robot, can autonomously complete a complex task requiring a 
holistic use of locomotion, manipulation and grasping: the robot adeptly 
retrieves and transports a box, opens and walks through a door, kicks a 
football and exhibits robust performance even in the presence of body 
damage and ground irregularities. Our findings demonstrated the efficacy 
and feasibility of human-inspired motor control for an embodied artificial 
intelligence robot, highlighting the viability of the formulized hierarchical 
architecture for achieving autonomous completion of challenging 
goal-directed tasks.

Humans can control their bodies to produce intricate motor behaviours 
that align with their objectives, for example, navigating in an envi-
ronment with a mixed sequential use of legs and hands in a coherent 
manner. These tasks require the coordination of multiple processes, 
including motor planning and execution1. To realize this coordination, 
human motor control unfolds at nested timescales at different levels 
of the neuronal hierarchy2,3, for example, a high-level plan to arrive at a 
particular place can entail multiple, individual, reflexive low-level limb 
movements for walking. In the areas of robotics, hierarchical elements 
have been applied to control systems to achieve diverse motor behav-
iours4. The core principles to achieve human-like motor control have 

been derived and summarized previously5, by relating these elements 
to the human nervous system.

In robotics, past research has been conducted to achieve similar 
capabilities as humans, such as assembly in aircraft manufacturing6, 
space missions7, as well as the computational model of active infer-
ence for robust robot behaviours8. These have been achieved by using 
mainly three approaches: human commands, planning and learning.

While human commands have been used for disaster response9 
or installation in construction works10—the high-level commands are 
provided by a human, either via tele-operation9 or by a predefined task 
sequence10. In this paradigm, the autonomous execution of a task builds 
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manipulators15 and hierarchical navigation tasks13. The remaining chal-
lenges16 lie inter alia in finding the right levels of abstraction, and how to 
find a proper hierarchical structure with meaningful sub-behaviours. 
This is especially challenging for robotics, where the state and action 
space is complex, and behaviours are abstract and often hard be quanti-
fied explicitly. Hence, hand-crafted sub-behaviours, such as the theory 
of options used in Sutton et al.17, prevent adequate exploration during 
reinforcement learning which is needed for autonomous operations.

This study investigates and presents five core principles of human 
motor control, based on which we formalize the design of a framework 
that generates autonomous behaviours. Our proposed hierarchical 
generative model adheres to the core principles of hierarchical motor 
control5, and the resulted capability can tackle several challenges that 
hierarchical reinforcement learning has not yet overcome. Compared 
to hierarchical reinforcement learning, our ensuing hierarchical con-
trol structure offers the possibilities to (1) create a transparent and 
flexible approach to interpret and implement robotic decision-making, 
(2) roll-out individual policies inside the hierarchical structure and 
improve their overall performance and (3) identify and mitigate the 
cause of performance deficits.

This work achieves human-level motor control by pursuing the 
notion that structural dependencies (cf., interregion communication 
as observed in human motor control5) are necessary for autonomous 
robotic systems to optimize and adapt future actions in uncertain 
environments. Human motor control is generated through nested 
hierarchies comprising distinct, but functionally interdependent, 

and relies on the use of planning explicit task sequences, which uses 
limited sensory feedback to replan online. Such an approach is thus 
not yet fully autonomous and is vulnerable to uncertainties when the 
environment is likely to change during the interaction.

For planning methods, such as trajectory optimization11 or task 
planning12, a model of the environment is needed to optimize a motion 
sequence. Such a planning framework passes commands in a top-down 
approach and has a separation between planned motions and the 
control of their executions. Consequently, the planning framework 
unilaterally connects with the control and lacks having feedback from 
the low-level layer9. Therefore, this approach is restricted to a limited 
range of scenarios, where the required execution is close to the ideal 
planning, for example, quasi-static, kinematic motions or well-defined 
environments. However, for situations where the environment model 
deviates from the real world, feedback is indispensable and is required 
for corrective actions to counterbalance changes that are not planned 
beforehand. Since the control is responsible for execution and interac-
tion with the environment, the lack of feedback from the lower control 
layers prevents a wider generalization to other environments; hence 
limiting the applicability with respect to autonomous behaviours and 
human-level motor control.

To overcome the aforementioned limitations, learning 
approaches—such as hierarchical reinforcement learning13—is an alter-
native approach to accomplish tasks that require solving a discrete 
sequence of sub-tasks in a close-loop fashion, such as path-following 
for quadruped locomotion14, interactive navigation with mobile 

Table 1 | Summary of the key principles of hierarchical motor control5, with exemplar realizations in human motor control 
and our robotic system

Principle Description Hierarchical generative 
models

Human motor control Our robotics system for autonomous 
operations

Information factorization Different information is 
processed by distinct 
sub-systems.

Factorized distribution of 
appropriate latent states 
within the generative model.

Different sensory signals are 
routed to different parts in the 
hierarchy, for example, what and 
where streams. These neuronal 
pathways can be characterized 
as factorized states responsible 
for sub-systems.

Only task-relevant sensory signals 
are used by individual levels, with 
irrelevant states hidden across levels. 
This speaks to an explicit factorization 
of sensory signals and which parts of 
the system have access to them.

Partial autonomy Lower hierarchical 
levels can 
semi-autonomously 
produce outputs with 
minimum input from 
levels above.

The result of factorizing state 
space into multiple levels can 
independently accomplish 
sub-goals at a (relatively) fast 
temporal scale.

Semi-autonomous coordination 
of joint movement at lower 
levels (that is, brainstem and 
spinal cord). These operate at 
a faster temporal scale and do 
not require continuous input for 
higher levels.

Full autonomy and stability guaranteed 
at individual levels. Explicitly, we 
introduce stable mid-level and 
low-level motions for random 
higher-level inputs. This ensures 
that lower levels can independently 
perform fast movements.

Amortized control Re-execute appropriate 
behaviours rapidly 
using learnt 
movements.

Learnt probability 
distributions that 
parameterize this generative 
model can be used for 
amortized control. That allows 
for habitual control based on 
previously learnt distributions.

The cerebellum is responsible 
for amortized control of 
deliberative and goal-directed 
behaviours, evoking fast habitual 
control for repeated actions.

The system learnt policies (that 
is, action-state mappings) that 
provide habitual control for rapidly 
re-executing appropriate actions.

Multi-joint coordination Degenerate 
coupling of different 
components operating 
as a whole for motor 
control.

Result of state factorizations 
that introduce flexible 
mapping across and within 
each level.

Different neuronal ensembles 
have distinct influences, for 
example, the red nucleus 
controls movements of the arms. 
Much like factorized states, 
these neuronal ensembles come 
together to produce intricate 
movements.

The system is equipped with multiple 
sub-structures (or policy mappings) 
that are responsible for specific 
actuator movement. Together these 
come across, and within levels, to 
produce particular motor movements.

Temporal abstraction Abstraction of time 
across hierarchical 
levels.

A feature of hierarchical 
generative models, where 
higher levels evolve slower 
than and constrain the  
level below.

Different levels evolve at 
different temporal and spatial 
scales, with the primary motor 
cortex responsible for planning 
(slow timescale) and spinal cord 
responsible for generation (fast 
timescale)

The three levels of the system evolve 
at different temporal scales, much like 
any hierarchical generative model. 
The high-level planning is at a slow 
timescale, mid-level stability control at 
medium timescale and low-level joint 
control at a fast timescale.

We omit the principle of modular objectives here (sub-systems trained to optimize specific objectives distinct from the global task objective) because a factorized generative model 
architecture leads to distinct factor specific objectives at each level in the hierarchy.
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processing structures, for example, from the motor cortex to the spinal 
cord down to neuromuscular junctions18. These nested hierarchies can 
be interpreted as a hierarchical generative model5,19.

Our model is a particular instantiation of such hierarchical motor 
control models, as contrasted by the prior studies8,16,20,21. To develop 
further, our extension has introduced and incorporated multi-level 
planning, asymmetric interregion communication and temporal 
abstraction analogous into the computational models of human motor 
control5,22.

In this work, we characterize motor control as an outcome of a 
learnt hierarchical generative model; in particular, generative models 
that include the consequences of action. This proposal inherits from 
hierarchical functional organization of human motor control and 
ensuing planning as inference21,23,24, active inference25–28 or control as 
inference29,30. Briefly, hierarchical generative models are a description 
of how sensory observations are generated, that is, encodings of sen-
sorimotor relationships relevant for motor control31,32. Importantly, 
this gives for free the five core principles of hierarchical motor control 
introduced in ref. 5. See Table 1 for further details.

This hierarchical formulation can facilitate multi-level planning 
that operates at different levels of temporal and spatial abstraction5,32 
(Fig. 1). This follows from the functional integration of separate plan-
ning (that is, choosing the next appropriate actions), motor generation 
(that is, executing the selected actions) and control (that is, realizing 
high-level plans as motor movements), as provided by the hierarchical 
generative model32. As a result, the requisite architecture can be con-
sidered as a series of distinct levels, where each provides appropriate 
motor control33 (Fig. 1). In our construction, the lowest level predicts 
the proprioceptive signals—generated using a forward model of the 
mechanics—and the kinetics that undergirds motor execution. This 
kinetics can be regarded as realizing an equilibrium position or desired 
set point, without the explicit modelling of task dynamics (cf., the 
equilibrium point hypothesis34). The level above generates the neces-
sary sequence of fixed points that are realized by the lower level. This 
sequence speaks to the stability control that a human has over limbs, 
to perambulate in an upright manner over, for example, the centre of 
gravity. The highest level then pertains to planning35, and different 
states represent endpoints of an agent’s plan, for example, move a box 
from a table to another.

To validate our proposition, we introduce a hierarchical generative 
model for autonomous robotics. It enables context-sensitive, robust 
task abilities by combining spatial-temporal levels and state-of-the-art 
tools (that is, reinforcement learning, model-predictive control and 
impedance control). Our model has three distinct levels for planning 
and motor generation, emulating a simplified functional architecture 
of human motor control. Importantly, each level comprises separate 
but functionally integrated modules, which have partial autonomy 
supported by asymmetric interregional communication36, that is, 
the lower levels can independently perform fast movements. Such a 
structure provides a flexible, scaled-up construction of a hierarchical 
generative model, using established robotic tools (Methods). The 
ensuing levels in the model hierarchy were optimized sequentially 
and evolved at different temporal scales. However, only the middle 
level planner had the access to state feedback, which allowed for a 
particular type of factorization (that is, functional specialization) in 
our generative model. We reserve further details in the later sections.

The Article is organized as follows. In the Results section, we 
demonstrate that our (implicit) hierarchical generative model for 
motor control, which entails a bidirectional propagation of informa-
tion between different levels of the generative model, can perform 
tasks remarkably similar to humans. Here, an implicit hierarchical 
generative model refers to a forward model whose explicit inversion 
corresponds to control as inference (without the need for an inverse 
model). In the Discussion section, we discuss the effectiveness of our 
hierarchical generative model, how it may benefit potential applica-
tions, and provide an outlook for future work. Lastly, in the Methods 
section, we provide details of our implementation.

Results
Our implicit hierarchical generative model enables a robot to learn 
how to complete a loco-manipulation task autonomously in simula-
tion. We validate this model in three distinct scenarios: (1) a sequen-
tial task with two-step decision-making that involves moving a box 
from one table to another and opening a door by pressing a button  
(Fig. 1); (2) transporting a box between conveyor belts and activat-
ing the second belt by pushing a button (Fig. 2a); and (3) execut-
ing a penalty kick by approaching and kicking a football into a goal  
(Fig. 2b). The learned policy demonstrates generality and robust-
ness to uncertainty (Fig. 3a–e), while evincing the core principles of 
hierarchical motor control.

Our implicit hierarchical generative model can successfully 
and autonomously achieve locomotion, manipulation and grasping 
movements like humans, and solve all these complex tasks coher-
ently with internal consistency. In contrast, we demonstrate how a flat 
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Fig. 1 | Pictorial representation of a hierarchical generative model for moving 
boxes. A generative model represents the conditional dependencies between 
states and how they cause outcomes. For simplicity, we express this as filled 
squares that denote actions, and circles that represent action sequences. The 
key aspect of this model is its hierarchical structure that represents sequences 
of action over time. Here, actions at higher levels generate the initial actions for 
lower levels that then unfold to generate a sequence of actions (cf., associative 
chaining). Crucially, lower levels cycle over a sequence for each transition of the 
level above. It is this scheduling that endows the model with a deep temporal 
structure. Particularly, planning (first row; highest level) to ‘deliver the box’ 
generates the actions for the information coordination level (second row; middle 
level) that is, ‘movement towards the table’. This in turn determines the initial 
actions for movement generation (third row; lowest level) of arms to ‘place the 
box’ on the table. Here, a single action is generated at each timestep by sampling 
from action sequences (that is, sequential policies) that are generated up to 
a specified time horizon. π1, mid-level action sequence; π2, high-level action 
sequence; B1, mid-level action; B2, high-level action; ƒ, joint torque actions; ν, joint 
torque action sequence.

http://www.nature.com/natmachintell


Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-023-00752-z

architecture fails (Supplementary Fig. 6) in this regard (Supplementary 
Information Section 5).

The high-level policy determines the action sequence necessary 
for task completion and sends commands to the lower levels respon-
sible for limb coordination and joint control. Here, independently, 
the locomotion policy can facilitate adaptation to perturbations, 
for example, recovering from pushes or locomotion over different 
types of terrains. Contrariwise, the low-level joint controller provides 
robustness to sudden and hard contacts with the ground absorbing 
high-frequent impacts.

To assess the robustness and generality of this hierarchical scheme, 
we introduced several perturbations that were not encountered during 
training (Fig. 3). First, we introduced external perturbation by placing 
obstacles (that is, 5 kg box, Fig. 3a) in front of the robot and pushing 
its pelvis (Fig. 3b). The mid-level locomotion policy withstood both 
perturbations, moved the obstacle out of the way and took a step 
to recover balance after the push. To test the performance further, 
we modified the environment with unseen conditions by adding a 5° 
inclined surface (Fig. 3c) and a low-friction glass plate (friction coef-
ficient of 0.3, Fig. 3d) in front of the door. The robot could complete 
the task after each perturbation. More interestingly, we lesioned the 
robot by amputating its right foot (Fig. 3e). Despite this handicap that 
was never encountered and with only a stump touching the ground in 
place of its right foot our hierarchical control was sufficiently robust 
to deal with this situation and the robot was able to keep balance and 
complete the task.

Next, we evaluate whether the ensuing control architecture sat-
isfies the key principles of hierarchical motor control (Table 1) that 
underwrite robust task performance.

Information factorization
In this system, factorization exists across model levels and policy con-
trols, each responsible for a particular sort of information processing. 
This factorization ensures that external perturbations have minimum 
impact on task performance.

Since the information factorization defines the role for each 
sub-system, thus, any failures in performance can be isolated and 
fine-tuned for future tasks. For example, if the robot falls over while 
walking to a goal, the locomotion policy can be identified as the root 
cause, and hence improving the locomotion policy will resolve the issue 
without needing to modify the high-level planner or the manipulation 
policy. Further examples include oscillation of the robot limbs, which 
can be attributed to the low-level joint control; or walking in the wrong 
direction, which was due to the command from the high-level policy.

From a theoretical perspective, factorization of this sort corre-
sponds to the structure of the generative model that can be decom-
posed into factors of a probability distribution (in physics and 
probabilistic inference, this is called a mean field approximation). 
Almost universally, this results in certain conditional independencies 
that minimize the complexity of model inversion; namely, planning 
as inference or control as inference21,23,26. This is important because it 
precludes overfitting and ensures generalization. From a biological 
perspective, this kind of factorization can be regarded as a functional 
segregation that is often associated with modular architectures and 
functional specialization in the brain36.

Partial autonomy
The system is designed with partial autonomy, that is, minimum inter-
ference or support from other levels. Specifically, we implement a 

A Pick up box B Deliver a box C Send o	 boxa

b B Kick C Scored goalA Approach

Fig. 2 | Manipulation and locomotion tasks to validate the hierarchical generative model. a, A manipulation task, where the robot picks up the box (A), delivers it 
(B) and finally sends it off by activating the button (C). b, A penalty kick, where the robot approaches (A) the ball and kicks it into the goal (B and C).
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clear separation between the highest and intermediate levels, though 
they are learned together. This is particularly relevant because the 
high-level planning level could send unrealizable action sequences to 
the mid-level stability controller. Without partial autonomy, the robot 
can become unstable and unable to learn to move appropriately, given 
such random or potentially unstable high-level commands.

Figure 4 illustrates a case when the robot is provided with random 
commands to both the arms and legs. This causes the robot to walk 
in random directions (Fig. 4a) and the arms move around randomly  
(Fig. 4b). Despite imperfect motion tracking, the robot does not fall 
over and can complete the tasks despite incoherent intentions.

Amortized control
After training, the robot engages in amortized control with the abil-
ity to re-execute appropriate behaviours rapidly using previously 
learnt movements. We observed this behaviour in the baseline and 

perturbed task settings (inset trajectories in Fig. 3f), where the amor-
tized locomotion policy was used to complete the task without the 
need of additional learning.

Multi-joint coordination
The robot has multiple sub-structures that are responsible for spe-
cific controls and work together in different ways to generate motor 
movements. Supplementary Fig. 5a demonstrates this multi-joint coor-
dination when pressing the button to open the door in the presence 
of an obstacle (Task 2). To achieve this, the right arm motions had to 
coordinate appropriately according to the initial hand position. Also, 
the shoulder roll (Supplementary Fig. 5b, orange line) and elbow (Sup-
plementary Fig. 5b, red line) had to adjust and adapt differently from 
the baseline. Explicitly, these do not yield a fixed motion, instead, the 
manipulation policy coordinates these joints based on the centre of 
mass (CoM). Therefore, during the baseline reaching motion, the arms 

Box
obstacles

Low-friction
surface

Reacting to external disturbance by
taking a recovery step

Inclined
surface

Amputated
right foot

Centre of mass movement during task completionf

a b c d e

g Hip pitch joint movement during task completion

0

–0.5

–1.0

–1.5

C
ar

te
si

an
 p

os
iti

on
 (m

)

–2.0

–2.5

0 10 20 30 40

Time (s)

Time (s)

Jo
in

t a
ng

le
 (°

)

Centre of mass movement in lateral direction

50 60 70 80

67.066.566.065.565.064.564.0

0

10

20

30

40

50

60

C
ar

te
si

an
 p

os
iti

on
 (m

)

0

1

2

3

4

5

6

7 Baseline Baseline: left hip pitch
Baseline: right hip pitch
Box obstacle: left hip pitch
Box obstacle: right hip pitch

Inclined surfaces: left hip pitch
Inclined surfaces: right hip pitch
Amputated foot: left hip pitch
Amputated foot: right hip pitch

External push: left hip pitch
External push: right hip pitch
Slippery surfaces: left hip pitch
Slippery surfaces: right hip pitch

Box obstacle
Inclined surfaces

Slippery surfaces

Amputated foot
External push

0 10 20 30 40

Time (s)

Centre of mass movement in sagittal direction

50 60 70 80

Fig. 3 | Robustness of the system in the presence of perturbations and 
environmental changes. a–e, Illustration of how the robot completes the task 
in perturbation test scenarios that it has not encountered during training and 
demonstrates the robustness of our proposed method. From left to right, we 
place 5 kg box-obstacles in front of the robot (a), push the robot from the front 
(b), alter the floor with an inclined (c) and slippery (d) surface and lesion the 

robot by removing the right foot (e). f, Sagittal and lateral CoM movement is 
shown under different perturbations demonstrating the amortized control.  
g, Hip pitch joint movement, which has the biggest effect on the motion during 
biped locomotion. The hip pitch joint motion is used to show how the policy 
adapts to the perturbation and rapidly re-executes a motion to counteract the 
perturbation.
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move differently than that in the case of an obstructed box, where the 
CoM is in a different position because boxes are obstructing the door.

Temporal abstraction and depth
By design (‘Implicit generative models’), the three system levels evolve 
at different temporal scales. Figure 4 illustrates these distinct scales as 
the robot perambulates. The highest policy level has a slow timescale of 
0.5 Hz (Fig. 4a). This allows the lower levels to carry out the command 
in a partially autonomous way, that is, uninterrupted. Conversely, the 
mid-level stability control of limbs has a faster timescale at 25 Hz (inset 
trajectories of Fig. 4c,d). This is needed to generate rapid predictions 
for the locomotion and manipulation policies. Finally, the low-level joint 
control executes these control commands at a frequency of 500 Hz on 
the actuator level.

Discussion
Hierarchical generative models of motor control
Our hierarchical generative model is an abstract computational rep-
resentation of the functional architecture of human motor control  
(Fig. 5). Here, we briefly discuss its computational neuronal homo-
logues, focusing on predictions of primary afferent signals from 
muscles, and consider the corresponding principles for human motor 
control. The inversion of forward models that underwrite human motor 
control generates continuous proprioceptive predictions at the lowest 
level and propagates information to the highest levels that are respon-
sible for planning. Accordingly, our formulation provides an implicit 
generative model that can be used by a model-based robotic agent, 
including reinforcement learning and active inference37, to infer its 
environment dynamics.
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Fig. 4 | State and temporal dynamics of the robot during task performance 
with random high-level commands. a,b, Sagittal motion of the CoM while 
following random leg (a) and arm (b) commands, respectively. From the robot 
snapshots corresponding to the time they’re shown, the partial autonomy of 
the mid-level stability controllers can be seen, that is, a good performance of the 
individual levels despite random and fast-changing command inputs. c,d, Leg 

(c) and arm (d) movements, respectively. Here, the separation of temporal scales 
during planning can be seen, where the high-level commands are provided at 
0.5 Hz and the mid-level commands are realized at 25 Hz. The joint commands are 
realized at 500 Hz on the joint actuators. In the inset plots of c,d the joint position 
trajectories evolve similarly as postulated in the equilibrium point hypothesis.
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The generative model’s lowest and fastest level includes the spinal 
cord and the brainstem. These areas are responsible for evaluating 
the discrepancy between the proprioceptive inputs (primary affer-
ents) and descending predictions of these signals. This discrepancy 
(namely, prediction error) drives the muscle contraction via classical 
motor reflexes and their accompanying musculoskeletal mechan-
ics38,39. On this view, classical reflexes are realised by equilibirium or 
setpoints from descending predictions of proprioceptive input40–42. 
This is instantiated in our model at the low-level joint control, which 
receives current joint position and sensor information to calculate 
the desired torque necessary for achieving a targeted and predicted 
position (supplied by the mid-level controller) via the motor control. 
Here, the joint controller has partial autonomy to compute the desired 
torque, similar to neuronal ensembles (that is, the red nucleus) control-
ling low-level arm movements.

At an intermediate level, one could consider the role of the cer-
ebellum. The cerebellum receives ascending inputs from the spinal 
cord, and other areas, and integrates these to fine-tune motor activity. 
In other words, it does not initiate movement, but contributes to its 
coordination, precision and speed, through a fast non-deliberative 
mode of operation. Therefore, it can be thought of as being respon-
sible for amortized (habitual) control of motor behaviour, which is 

characterized by subcortical and cortical interactions43–45. The cer-
ebellum receives information from the motor cortex, processes this 
information and sends motor impulses to skeletal muscles (via the 
spinal cord). The mid-level of our generative model is used for similar 
coordination and stability control of locomotion and manipulation 
policies that yield multi-joint coordination. It fine-tunes pelvis and 
hand targets, given descending policy from the higher level, to deter-
mine exact joint location (measured in radians). Like the cerebellum46, 
this level can coordinate multiple joint movements semi-autonomously 
over time.

Higher levels of the generative model include the cerebral cortex, 
among other neuronal systems. The cortex has access to factorized 
sensory streams of exteroceptive, interoceptive and proprioceptive 
signals (for example, visual, auditory, somatosensory, etc) and can 
coordinate, contextualize or override habitual control elaborated in 
lower levels. Specifically, the primary motor cortex is responsible for 
deliberative planning, control and execution of voluntary movements: 
for example, when learning a new motor skill before its habituation or 
amortization.

These are instantiated as ascending tracts that cross over to the 
opposite side of the system, for example, the spinocerebellar tract that 
is responsible for sending sensory signals regarding arms and limb 
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Fig. 5 | Algorithmic realizations of hierarchical control as inference.  
a, Schematic of a (high-level) generative model that underwrites human motor 
control. b, The implicit generative model for a robotics system. The green nodes 
in a and green boxes in b refer to the highest levels of human motor control 
and our implicit generative model, respectively. In the generative model, 
high-level decision-making is realized as a neural network learned through 
deep reinforcement learning. The blue nodes in a correspond to the middle 
level of human motor control and the blue boxes in b are intermediate level 
realizations, implemented as a deep neural network policy learned through deep 
reinforcement learning for locomotion and an inverse kinematics and dynamics 
policy for manipulation. On the lowest level, depicted in grey nodes and boxes, 
a joint impedance controller calculates the torques required for the actuation 
of the robot. Yellow and light red denote sensor information and motor control, 

respectively. For clarity, we limit our exposition to key regions in a, based on 
prior literature, where these are drawn using the solid lines. The dotted lines 
represent the processing of a separate outcome modality for human motor 
control, that is, the visual input. Lastly, the prefrontal cortex is connected via the 
dashed lines to denote its supporting role during human motor control. Dotted 
lines in b indicate the realizations of the corresponding principles, while dashed 
lines indicated message parsing. Please refer to ‘Implicit hierarchical generative 
model for a robotics system’ for the algorithmic implementation of b. SE, state 
estimation; PDF, probability density function; IMU, inertial measurement unit; 
τ, torque of individual joints; dL and dM, damping parameters; jL and jM, inertia 
parameters; k, stiffness parameter; F/T, force/torque; τL and τM, torques on L  
and M, respectively.
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movements. Conversely, descending tracts carry appropriate motor 
information to the lower levels, for example, the pyramidal tracts 
responsible for sending conscious muscle movements. The role of the 
cortex is instantiated at the highest level of our model, with access to 
processed sensor information to aid decision-making. Specifically, we 
introduce asymmetric interregion connections with connections from 
the low-level sensor information to this high level, and from this high 
level to the mid-level stability control. Anatomically, these correspond 
to extrinsic white-matter connections in the brain which, in predictive 
coding and variational message passing schemes, are responsible for 
belief updating and planning as inference32.

Future directions
By providing robots with a new level of task autonomy for both 
locomotion and manipulation skills—with appropriate triage pro-
cedures—humans can be relieved from the necessity of sending 
low-level commands for control and decisions to robots, for exam-
ple, foot and hand contacts, as commonly seen in a shared autonomy 
and semi-autonomous paradigms. Consequently, we can overcome 
potential limitations coming from human errors and the reliance on 
the communication bandwidth. One example is the large number of 
robots that fell during the DARPA Robotics Challenge Finals in 2015 (ref. 
47), where robots had very little autonomy and relied on close supervi-
sion by humans, such that the whole scheme became error-prone and 
vulnerable, which suffered from erroneous human decision-making, 
lack of local robot autonomy against environmental uncertainties and 
disturbances and so on.

With this goal in mind, we will explore the future implementa-
tion of our hierarchical generative model on physical robots. Given 
the extensive validation of our current work in physics simulations, 
deploying the existing model and its components on real-world robots 
would be possible by using additional simulation to reality (sim-to-real) 
techniques to bridge the sim-to-real gap. To tackle this challenge, we 
plan to use techniques that show potential for a seamless sim-to-real 
transfer, minimizing the necessity for extensive adaptations. Particu-
larly, established methods such as domain randomization and action 
filtering can be used, which are proven to be effective in enabling a 
successful sim-to-real transfer48,49.

Future work will evaluate the use of hierarchical generative models 
under more nuanced planning objectives, and different autonomous 
robotics systems. Because of the modular factorization of the implicit 
hierarchical generative model, policies at various levels can be replaced 
and further upgraded with an alternative controller or a learned policy. 
For example, replacing our Q-learning planner with more sophisticated 
schemes which are designed to handle aleatoric and epistemic uncer-
tainties (that is, expected free energy50–52). This type of future work can 
improve the performance in volatile conditions51.

Furthermore, robustness can be evaluated through robotic neu-
ropsychology53 that is, introducing in-silico lesions by perturbing 
various approximations and policies and investigating their effect on 
the ensuing inference and behaviour. These computational lesions can 
be introduced in both simulated and physical robots, where lesions of 
this sort can change functional outcomes. For example, perturbations 
on the minimum-jerk optimization solution (that is, computational 
lesion) at the mid-level stability control would lead to cerebellar trem-
ors for the arms.

Methods
Here we present the hardware implementation for inverting the implicit 
hierarchical generative model for autonomous robot control. The 
specification of the robot platform can be found in Supplementary 
Table 1. First, we detail the task that is completed autonomously by 
inverting the generative model, that is, using the model to predict sen-
sor inputs and using actuators to resolve the ensuing (proprioceptive) 
prediction errors. Next, we elaborate on the details of generative model 

including high-level decision-making, mid-level stability control and 
low-level joint control.

Please refer to Supplementary Information Section 6 for additional 
notes on the implementation.

Tasks of interest
To demonstrate how inversion of a hierarchical generative model 
solves complex tasks that require a particular sequence and coor-
dination of locomotion and manipulation skills, we designed a task 
that demanded both coordination of limbs and reasoning about the 
sequence of actions. This task comprised four sub-tasks (Supplemen-
tary Fig. 1): picking up a box from the first table, delivering the box to 
the second table, opening the door and walking to the destination or 
goal position. To complete the task, all the sub-tasks had to be carried 
out in an exact sequence.

Our proposed framework allowed the robot to learn successful 
task completion through interactions with the environment in simula-
tion. This was achieved by designing a reward (or utility) function for 
the high-level policy, such that cumulative maximization of reward 
leads to task completion (‘High-level decision-making’). For the mid- 
and low-level policies, a combination of control policies and imitation 
learning was used.

Implicit hierarchical generative model for a robotics system
Following the key principles of hierarchical motor control in Table 1 and 
the generative model in Fig. 1, we constructed a generative model for a 
humanoid robot comprising three levels: high-level decision-making, 
mid-level stability control and low-level joint control. The structure of 
the hierarchical generative model is shown in Fig. 5b. This hierarchical 
architecture rests on conditional independencies that result in factor-
ized message passing between hierarchical levels.

Here, the temporal depth and structure of motor planning rests 
on specifying a hierarchical generative model, where level-specific 
policies are evaluated at different timescales. In this setting, each level 
assimilates54 evidence from the level below, in a way that is contextual-
ized or selected by (slow) constraints, afforded by the level above. A 
summary of the implicit hierarchical generative model for a robotics 
system can be seen in Supplementary Table 4 and Fig. 4.

The (implicit) hierarchical generative model is instantiated as:
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where outcome ot ∈ O, state stn ∈ S, action atn ∈ A and p denotes a prob-
ability distribution. The superscript n ∈ {1,2,3} indicates the level of the 
state sn or action an, with N = 3 being the highest level and n = 1 being 
the lowest level. The subscript tn ∈ {1,… ,Tn} indicates the time at each 
level n evolving at different temporal scales: the highest level (n = 3) 
evolves at 0.5 Hz, the mid-level (n = 2) at 25 Hz and the lowest level (n = 1) 
at 500 Hz.

This temporal ordering denotes how different levels contextual-
ize the level below: the high-level policy contextualizes the roll-out for 
the mid-level; mid-level policy contextualizes the low-level; and each 
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level has access to previous outcomes. Briefly, the transition function 
is defined as an identity (using the previous outcome) for levels 2 and 3  
until the next update (that is, 50 level 1 steps for level 2, and 1,000 
level 1 steps for level 3). The pseudocode for optimizing each level can 
be found in Supplementary Fig. 4, along with a detailed overview of 
dependencies across levels.

The highest planning level, evolving at the slowest rate, selects 
an appropriate sequence of limb movements, which are needed to 
complete a particular sub-task. It decides where the hands should be 
and what direction to go. Practically, deep reinforcement learning is 
used to learn a high-level decision-making policy that generates tar-
gets (in a Cartesian space) for the mid-level stability control (cf., the 
equilibrium point hypothesis for human motor control40 and active 
inference formulations of oculomotor control32).

These planning targets are realized at the level below that reg-
ulates the balance and stability of the robot during manipulation 
and locomotion. Manipulation is instantiated as a minimum-jerk 
model-predictive controller that moves the arms to the target posi-
tions provided by the high-level policy. Locomotion is implemented 
as a learnt mid-level policy, via deep reinforcement learning, that 
coordinates legs to reach the destination predicted by the higher 
level. Both policies are designed to ensure that infeasible setpoints 
from the high level are corrected for the mid-level stability control so 
that only stable joint target commands are supplied to the low-level 
joint controller.

Despite receiving inputs from other levels, each level has partial 
autonomy over its final predictions and goal. Furthermore, multi-joint 
coordination is realized by learning a policy that coordinates all joints 
of legs appropriately for the current state, while the arms coordinate 
their joints through inverse kinematics (IK).

The low-level joint controller is instantiated as joint impedance 
control and tracks the joint position commands afforded by the 
mid-level stability controller. Based on tuned stiffness and damping, 
the joint impedance control calculates the desired torque to attain 
target positions closely and smoothly. Lastly, the torque commands are 
tracked by the actuators, using embedded current control of onboard 
motor drivers.

Training process
The generative model was realized by implementing three levels of 
control in a hierarchical manner (Fig. 5): high-level decision-making, 
mid-level stability control and low-level joint control. All compo-
nents were designed and trained separately, starting from the low-
est level.

First, accurate and robust motor control needed to be guaran-
teed, such that the low-level joint position control could be realized. 
Stiffness and damping parameters were tuned to track the references 
accurately and compliantly, which provided the mid-level stability 
control. The mid-level stability control consisted of a manipulation and 
a locomotion policy, which were individually designed. The locomotion 
policy was trained to walk towards a commanded goal position, while 
the manipulation policy was designed to place the hands on a target 
position. Finally, the high-level decision-making policy was trained 
via deep reinforcement learning, which learnt to provide appropriate 
commands to these mid- and low-level policies.

Gradient-free optimization55,56 was used to find (1) the best 
hyper-parameters sets for the mid-level manipulation policy and 
low-level joint controller and (2) network architecture for the high-level 
decision-making policy and mid-level locomotion policy.

High-level decision-making
We achieved high-level decision-making, the correct sequence and 
choices of robot actions, through training a deep neural network that 
approximated the action-value function Q(s,a) over the environment 
and chose the action a that yielded the highest value in state s.

We used double Q-learning57 to train a Q-network Q (s,a;ϕ), para-
metrized by weights ϕ, to approximate the true action-value function 
Q(s,a). At run-time, the action a was obtained as the argument of the 
maximum Q-value a = argmaxaQ (s,a;ϕ)  in state s. Two separate 
Q-networks Q1 and Q2 were used for action selection and value estima-
tion, respectively. Having two separate Q-networks has previously 
shown to improve training stability57.

The network parameter ϕi was obtained by minϕi L (ϕi):

min
ϕi

E [(r + γQj (s′,a∗;ϕj) −Qi (s,a;ϕi))
2] ,

with reward r, discount factor γ, network parameters ϕi  and ϕj , 
Q-networks Qi  and Qj, current state s, next state s’ and best action 
a∗ = argmaxQi (s,a;ϕi) . During training, either network parameter ϕ1 
or ϕ2 was randomly selected, trained and used for action selection, 
while the other network parameter was used to estimate the 
action-value. The tuple (s,a, r, s′) ≈ U (D) was obtained from the experi-
ence replay by uniformly sampling from buffer D, which was updated 
by online action roll-out. The time horizon of the high-level 
decision-making system is implicitly specified with the discount factor 
γ that is used to calculate the return as Gi = ∑iγri. A way to interpret 
the discount factor with respect to planning horizon is the concept of 
half-life of the future reward, that is, when the current reward ri is 
entering the return calculation as 1

2
ri. With the standard discount fac-

tor γ = 0.95 used in this work, the policy looks ahead ~13.5 steps: 
γsteps = 0.5 = 0.95steps ⇒ steps = log(0.5)

log(0.95)
≈ 13.5. At a control frequency of 

0.5 Hz, the prediction horizon is roughly 27 seconds.

Box delivery and opening door task. The high-level policy sent and 
updated the actions a3 ∈ 𝒜𝒜3 ⊆ ℛ9 at 0.5 Hz frequency, which were the 
positions in Cartesian space for the pelvis a3pelvis ∈ ℛ3, and left and right 
hands a3lh,a

3
rh ∈ ℛ3. These actions a3 were executed by the mid-level 

stability controller.
The states s3 ∈ 𝒮𝒮3 ⊆ ℛ12 were the vector spelvis = ptable − ppelvis ∈ ℛ3 

from the table (origin of the coordinate system) to the current pelvis 
position ppelvis, and the vectors slh = pbox − plh ∈ ℛ3, srh = pbox − prh ∈ ℛ3 
from current hand positions plh,rh to the box’s position. Lastly, three 
Boolean variables o3 ∈ O3 ⊆ [0, 1]3  were provided as the observation 
state when the door was open, the box was on the table or the box was 
being carried.

The reward terms ri were determined based on the task comple-
tion, such as whether the robot had passed the delivery table, the arm 
joints were in the nominal position, the box was between the robot 
hands, the box was at the delivery table, the door was open and whether 
the robot was at the goal. The weights wi, i = 1,…,6 can be found in Sup-
plementary Table 2 (top).

At each timestep, the reward r was the sum of sparse, Boolean 
states:

r = w1rpt +w2rjn +w3rbih +w4rbot +w5rdo +w6rag,

with passed table reward rpt, joints nominal reward rjn, box in hand 
reward rbih, box on table reward rbot, door open reward rdo and at goal 
reward rag.

We terminated the episode early if the robot fell, or collided 
with itself, tables or the door. By terminating an episode early—when 
a sub-optimal state (for example, falling) is reached—the return 
is lower, and the policy is thus discouraged from entering similar 
sub-optimal states.

We initialized the robot in different positions in the environment, 
such as close to the final goal, in front of the door, or at the second 
table, to allow the robot to encounter such states that were hard to 
discover merely by exploration, as a particular sequence of actions 
were required to reach those states.
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Penalty kick task. To perform a penalty kick, that is, approaching and 
shooting a ball, the high-level policy is trained similarly to Task 1. Car-
tesian space commands of the pelvis a3pelvis ∈ ℛ3 are generated by the 
high-level policy (actions a3 ∈ 𝒜𝒜3 ⊆ ℛ3) and executed by the mid-level 
stability controller.

The states s3 ∈ 𝒮𝒮3 ⊆ ℛ4 are the horizontal positions of the ball and 
pelvis. A reward r = 1 is given, whenever the ball surpasses the goal line, 
that is, a goal was scored. An episode is terminated early if the robot 
fell or collided with itself.

Transporting box and activating conveyor belt task. The box trans-
portation task consists of two separate sub-tasks that need to be per-
formed in a specific sequence: grasping a box from the first conveyor 
belt, transporting the box to a second conveyor belt by rotating the 
torso around the yaw axis, dropping the box off and sending it away 
on the conveyor belt by activating the button.

The action space (a3 ∈ 𝒜𝒜3 ⊆ ℛ7) of the high-level policy includes 
Cartesian space commands of the left and right hands a3lh,a

3
rh ∈ ℛ3 and 

torso yaw joint position commands a3ty ∈ ℛ1. These actions a3 were 
executed by the mid-level stability controller.

The states s3 ∈ 𝒮𝒮3 ⊆ ℛ14 consists of the joint positions of the arms 
(sjoints3 ∈ ℛ8) , Cartesian positions of the box (sbox3 ∈ ℛ3)  and three 
Boolean values indicating whether the box is in contact with the hands, 
table and whether the button is pushed.

A reward is given for three cases: (1) box in hands (rbih), (2) box on 
conveyor belt (rboc) and (3) button pushed (rpb) while the box is on the 
second conveyor belt. The resulting reward function with weights wi 
(Supplementary Table 2 bottom) are:

r = w1rbih +w2rboc +w3rbp.

Mid-level stability control
The mid-level stability control level consisted of two components: the 
manipulation policy was realized as a model-predictive control (MPC) 
scheme for the arms, and a locomotion policy was learned through 
deep reinforcement learning for the legs.

Manipulation policy. As input into the policy, the manipulation  
policy received Cartesian target positions for the hands a3 = [alh,arh] 
from the high-level policy, current Cartesian position of the hands 
s2 = [plh,prh] ∈ 𝒮𝒮2 ⊆ ℛ6, and current, measured joint angles of the arms 
o ⊆ ℛ8. The output a2 = qdarms ∈ 𝒜𝒜2 ⊆ ℛ8  of the manipulation policy  
was target joint positions qdarms  of the arms to the low-level joint 
controller.

The manipulation policy consists of two parts (flow diagram in 
Supplementary Fig. 2): MPC that generated a stable, optimal trajectory 
in Cartesian space and IK58 that transformed desired actions from the 
Cartesian space to the joint space.

To provide the smoothest possible motions for the hands, we 
formulated the optimal control problem as the minimum-jerk opti-
mization, while satisfying dynamics constraints on the hands. The 
optimal trajectory was then implemented in an MPC fashion. The MPC 
control applied the first control input of the optimal input trajectory 
and then re-optimized based on the new state at the next control loop59. 
In this way, MPC successively solved an optimal control problem over 
a prediction horizon N and achieved feedback control, while ensuring 
optimality.

For the hand position p, an objective function J was designed to 
minimize jerk p⃛ (the input u of the system) with final time tf:

J = 1
2∫

tf

0
(d

3p (t)
dt3

)
2

dt = 1
2∫

tf

0
u(t)2dt.

The minimum-jerk MPC (MJMPC) solved the following constrained 
optimization problem at every timestep at a frequency of 25 Hz:

min
u(t)

1
2∫

tf

0
u(t)2dt

subject to d3p (t)
dt3

= u

[p (0) , ̇p (0) , p̈ (0)] = [p0, ̇p0, p̈0]

[p (tf) , ̇p (tf) , p̈ (tf)] = [pf, ̇pf, p̈f]

[pmin, ̇pmin, p̈min] ≤ [p, ̇p, p̈] ≤ [pmax, ̇pmax, p̈max] ,

with initial condition [p0, ̇p0, p̈0] and terminal condition [pf, ̇pf, p̈f].
The resultant Cartesian trajectory pd, that is, the trajectory that 

leads from the initial hand position p0 to the final hand position ptf , 
from MJMPC was transformed into joint position commands qdarms 
through IK. More formally, IK described a transformation T∶𝒞𝒞𝒞𝒞𝒞   
from Cartesian space 𝒞𝒞 to joint space 𝒞𝒞. The joint position commands 
qd  were then tracked by the low-level joint position controller as 
described in ‘Low-level joint control’. The IK ensures feasible joint 
configuration on the robot even if the high-level decision policy or the 
MPC trajectory yield infeasible setpoints.

Locomotion policy. The locomotion policy π (s;θ) coordinated the 12 
degrees of freedom (DoF) leg joints and was instantiated as a deep 
neural network (network parameters θ) that received robot states s as 
inputs and outputs 12 target joint positions qdlegs  for the legs.  
It was trained through Soft Actor-Critic (SAC)60, an off-policy deep 
reinforcement-learning algorithm.

SAC optimized a maximum entropy objective JSAC(π):

JSAC (π) =
T
∑
t=0

𝔼𝔼 [r (st,at) + αℋ (π (at|st))] ,

with reward r, state st and action at at time t, temperature parameter α 
and policy entropy ℋ (π). The parameters θ for policy πθ were obtained 
by minimizing Jπ (θ):

Jπ (θ) = 𝔼𝔼 [logπθ (at|st) −Qϕ (st,at)] .

The action-value function Qϕ (st,at) was obtained by minimizing 
the Bellman residual JQ (ϕ):

JQ (ϕ) =𝔼𝔼 [1/2(Qϕ (st,at) − Q̂ (st,at))
2
] ,

with Bellman equation Q̂ (st,at) = r (st,at) + γ𝔼𝔼 [Vψ (st+1)]  and discount 
factor γ. The estimation of the value function Vψ was obtained by mini-
mizing JV (ψ):

JV (ψ) = 𝔼𝔼 [1/2(Vψ (st) − 𝔼𝔼 [Qθ (st,at) − logπϕ (at|st)])
2] .

The training procedures, including the design of reward, action 
space and state space, are as in ref. 61. The actions a2 ∈ 𝒜𝒜2 ⊆ ℛ12 were 
the joint positions qlegs of the 12 DoF of the legs (for each leg: three DoF 
for hip, one DoF for knee and two for DoF ankle). The target joint posi-
tions qdlegs  were tracked by the low-level joint controller (low-level  
joint control).

The state s2 ∈ 𝒮𝒮2 ⊆ ℛ27 consisted of the target pelvis position a3pelvis 
(the walking destination), the proprioceptive information of the robot 
including pelvis orientation, linear and angular velocity of the pelvis, 
the force of both feet, joint positions of the legs and the gait phase. The 
gait phase indicates the phase of the periodic gait at any point in time, 
which is implemented as a two-dimensional vector on the unit-circle 
to describe the phase of periodic trotting. For more details regarding 
the gait phase state, please refer to ref. 61, where the gait phase is used 
to enable the imitation learning of periodic locomotion.
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The reward comprised of an imitation term and a task term:

r = wirimitation +wtrtask,

with weights wi and wt  and reward terms rimitation and rtask for the imita-
tion and task, respectively. The imitation term encourages human-like 
motions by rewarding motions that are close to a reference motion 
capture trajectory. The task reward term rewards motions that con-
tribute towards achieving the task, that is, walking towards a goal while 
maintaining balance. We found that combining imitation learning with 
task-guided reward shaping led to improved sample-efficiency61 with 
policy convergence after 1.6 × 106  steps, equating to 18 hours of 
real-time.

To encourage a state x to be close to a desired target value ̂x, the 
corresponding reward component was designed as the radial basis 
function (RBF) kernel K( ̂x, x,α):

K ( ̂x, x,α) = e−α( ̂x−x)2 ,

with hyperparameter α controls the width of the kernel.
The aim of rimitation was to imitate the joint position, feet pose and 

contact pattern of a reference motion capture trajectory as close as 
possible. This is achieved by the reward function rimitation:

rimitation = wjoint_positionrjoint_position +wposerpose +wcontactrcontact.

The reward components rjoint_position and rpose use the RBF kernel to 
encourage the policy learning motions that are close to the reference 
joint positions and feet poses, respectively. The contact reward rcontact 
is a binary reward that is equal to one if the foot in the reference motion 
was in contact with the ground and zero otherwise. The weights used 
for the reward components can be found in Supplementary Table 3. 
The target references for joint position, feet pose and feet contact come 
from the motion capture study in ref. 62.

The reward term rtask  rewarded upright posture and short dis-
tances to the goal position, and regularized the joint velocity and 
torque:

rtask = wposerpose +wgoalrgoal +wvelrvel +wtorquertorque,

with the values of the weights wpose, wgoal, wvel and wtorque as in Sup-
plementary Table 3, and reward components rpose, rgoal, rjoint_vel and rtorque 
that respectively reward the torso pose to be upright, the distance 
vector between pelvis and goal to be as small as possible and the joint 
velocity and joint torque to be as small as possible. The RBF kernel is 
used for all reward components in rtask.

Low-level joint control
The low-level joint control tracked the target joint positions 
qd = [qdarms,qdlegs]  provided by the mid-level stability controller (flow 
diagram in Supplementary Fig. 3). It receives joint positions q ∈ ℛ20, 
joint velocities ̇q ∈ ℛ20 and target joint position targets qd = a2 ∈ ℛ20 
as input and outputs motor current a1 = I ∈ 𝒜𝒜1 ⊆ ℛ20.

It was implemented as a joint impedance controller that regulated 
around the set point to achieve accurate tracking of the desired joint 
motions qd.

The joint impedance control calculated the desired joint torque 
τd using position q and its derivative ̇q, with the stiffness KPi and damp-
ing KDi gains:

τd = KP1 (qd − q) − KD1 ̇q.

At the actuator level, the motor driver implemented an internal 
current control to track the desired joint torque τd using a 

proportional-derivative law, where the desired motor current I was 
computed as:

I = KP2 (τd − τ) − KD2 ̇τ.

Data availability
The data analysed in this work were generated using the code provided 
in our open-source repository, where source data is also provided. 
Further information can be found in our repository (Code availability) 
and in the repository https://doi.org/10.5281/zenodo.8374262.

Code availability
The code used in this work is available on https://github.com/Yunaik/
hgm4robots.git.
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