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ABSTRACT
Recommender Systems are severely hampered by the well-known
Cold Start problem, identified by the lack of information on new
items and users. This has led to research efforts focused on data
imputation and augmentation models as predominantly data pre-
processing strategies, yet their improvement of cold-user perfor-
mance is largely indirect and often comes at the price of a reduction
in accuracy for warmer users. To address these limitations, we
propose Bootstrapped Personalized Popularity (B2P), a novel frame-
work that improves performance for cold users (directly) and cold
items (implicitly) via popularity models personalized with item
metadata. B2P is scalable to very large datasets and directly ad-
dresses the Cold Start problem, so it can complement existing Cold
Start strategies. Experiments on a real-world dataset from the BBC
iPlayer and a public dataset demonstrate that B2P (1) significantly
improves cold-user performance, (2) boosts warm-user performance
for bootstrapped models by lowering their training sparsity, and (3)
improves total recommendation accuracy at a competitive diversity
level relative to existing high-performing Collaborative Filtering
models. We demonstrate that B2P is a powerful and scalable frame-
work for strongly cold datasets.

CCS CONCEPTS
• Information systems→ Recommender systems; Collabora-
tive search; Personalization.
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1 INTRODUCTION
The information overload on consumers in our digitized society
[21, 39] is alleviated by recommender systems that learn and curate
user preferences [25]. Particularly, the top-𝑘 task of recommend-
ing the 𝑘 most relevant items to consumers finds widespread use
across e-commerce, movie-streaming and news platforms to name
a few, and provides billions of dollars in value to companies [16],
while enhancing user experience. Within top-𝑘 recommendation,
longstanding and highly successful models are Collaborative Filter-
ing (CF) and hybridisations with user and item content metadata
[22, 40]. Such techniques range frommethods based on Deep Neural
Networks (DNN) [37] to lower-complexity solutions mainly classed
as Neighborhood, Graph-based, Matrix Factorization and Full-Rank,
which perform competitively in public datasets [11, 13, 14, 37]. How-
ever, while these CF recommenders inherently deal with highly
sparse user-interaction data [17], their accuracy severely deterio-
rates in the case of extreme data sparsity known as Cold Start.

The Cold Start problem describes the accuracy drop of recom-
mender systems when faced with a large proportion of users with
very few or even zero training interactions (cold users), or items
with very low exposure among users (cold items). Because of the
dynamic nature of real platforms, with new items released and a
considerable inflow of new and infrequent users, this Cold Start
problem is highly pertinent to production recommender systems.
Recent recommenders designed to improve Cold Start performance
center on data imputation [31, 32, 44, 46], by inferring the missing
interactions, and model training augmentation, by creating extra
synthetic users and items [5] or varying training regularization
[6, 42]. However, these approaches have a number of limitations.
First, most Cold Start recommenders are applied over an existing
‘CF Backbone’ model to increase its accuracy in Cold Start settings,
instead of holistically approaching a top-𝑘 task consisting of mixed
cold and non-cold users. For instance, imputation methods essen-
tially address sparsity instead of directly tackling the Cold Start
problem. Moreover, the accuracy gain for cold users often entails
the sacrifice of accuracy for non-cold users [8, 19, 42]. Lastly, there
is a widespread lack of evaluation on diversity metrics for Cold
Start models, despite diverse recommendations being significant in
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retaining cold users and promoting cold items; diversity is key for
user satisfaction in real systems [7, 15, 27] and for the prevention
of filter bubbles [41, 43].

The limitations of current Cold Start recommenders lead us
to propose a novel and principled framework called Bootstrapped
Personalized Popularity (B2P). It directly and holistically addresses
the Cold Start problem, so it can be treated as a comprehensive
CF Backbone to complement existing Cold Start methods. B2P
addresses cold users with popularity modelling that is personalized
via our novel diversity-boosting method Metadata Infusion. Finally,
B2P also applies Metadata Infusion to existing CF models, and
bootstraps them with the personalized popularity model. Therefore,
our proposal of B2P herein is driven by the following Research
Questions (RQs):

• RQ1: How does popularity modelling perform for cold and
warm users relative to established CF methods in terms of
rank-accuracy and diversity?

• RQ2: To what extent does Metadata Infusion impact model
rank-accuracy and diversity?

• RQ3: Does B2P outperform established CF methods in rank-
accuracy on cold datasets with competitive diversity?

In presenting B2P, we begin by demonstrating the statistical
optimality of popularity modelling for new users and then extend
it to non-new cold users. Next, we introduce Metadata Infusion to
increase the popularity model’s diversity across item coverage and
popularity. Finally, we rigorously bootstrap personalized popularity
for cold users with a Metadata-Infused CF model for warm users,
which implicitly reduces sparsity for the bootstrapped CF model.
Therefore, we simultaneously leverage metadata and implicit spar-
sity reduction – as in content-based and imputation-based Cold
Start approaches – while offering a new and principled outlook on
the treatment of cold users and cold items.

2 RELATEDWORKS
We begin by reviewing current research on popularity analysis
and high-order similarity in CF and content-based hybrids. We
thus highlight both the inspirations for B2P and its contribution in
overcoming previous efforts’ limitations.

2.1 Popularity Modelling of User Behaviour
Beyond their use as an extreme-case baseline that recommends
to all users the most popular items [13], popularity methods have
been studied to explore the impact of active users and popular items
on cold users [20, 45]. However, they have known limitations of
non-personalization, exacerbation of popularity biases via unfair
exposure of a fraction of available items [26], and unstable accu-
racy in dynamic platforms. Hence, the popularity bias has also
been widely studied by proposing post-processing re-ranking ap-
proaches [1] or models that optimize novel metrics [29, 34] for the
fairer representation of low-popularity cold items. Also, Inverse
PropensityWeighting and other de-biasing strategies focus onmore
robust metrics against biases in the policy with which the data was
collected [7]. For instance, popularity is biased by past exposure
of items, leading to biased models. Overall, these efforts avoid the
issue of cold users.

Inspired by the impact of popularity on user preference [46] and
item exposure [26, 34], we propose a novel popularity-driven model
conditioned – and hence weakly personalized – on the level of user
interaction, which we demonstrate as optimal for the pure Cold
Start case of new users. We then further personalize it for all users
with the novel Metadata Infusion technique (introduced in Section
2.2) that directly addresses cold users and cold items.

2.2 High-Order Similarity
Top-𝑘 recommenders typically model the similarity between users
and items – whether via user- or item-content metadata in common
or via collaborative models on the observed user-item interactions
– to make predictions.

Firstly, content-based approaches can be useful in a cold dataset
with little available interaction information to exploit collabora-
tively. However, they can promote a ‘filter bubble’ [22], which is
particularly detrimental for cold users in real platforms. They are
also limited in cases of scarce metadata [4, 37]. Secondly, in the
pure CF case, the high-order directional similarity of an item inter-
action conditional on an entire set of past interactions would yield
optimal-accuracy recommendations. Yet because of the computa-
tional intractability and risk of overfitting to the observed user-item
interactions, the major CF families typically model only the first-
order similarity of an item separately conditioned on each prior
item interaction of a user. This has been modelled by Neighborhood
correlation heuristics [40], user-item Graph traversal [10, 30], or
Full-Rank constrained optimization [28, 35]. However, these first-
order similarity models unrealistically assume that a user’s past
interactions are independent [2, 3]. Moreover, estimates of true
similarity have high uncertainty for cold data, decreasing model
accuracy. For instance, the Neighborhood models and Full-Rank
EASER estimate learnt similarities in the form of Gram matrices
[35], where estimation uncertainty increases in cold datasets.

Motivated by methods that learn second-order similarity condi-
tioned on pairs of past item interactions and increase model accu-
racy [9, 38], we design Metadata Infusion as a novel technique that
merges second-order modelling with principled hybridization via
content metadata. First, it requires minimal metadata to perform
powerfully. Second, Metadata Infusion utilizes known metadata
so it scales to all possible item pairs or even higher permutations,
unlike learnt second-order modelling [9, 38]. Third, Metadata In-
fusion applied to an existing CF model mixes accuracy-centered
first-order similarity with second-order content similarity, which
increases personalization and item coverage.

3 BACKGROUND THEORY
3.1 Notation
The typical CF problem is the determination of the probability for
users in setU to interact with items in set I in the testing phase,
given the users’ interactions with items in model training. The set
of new users in testing isUnew ⊆ U. The training interactions of
each user 𝑢 ∈ U are 𝑋 ∈ R |U |× |I | , where each row x𝑢 ∈ R1×|I |

has elements 0 for non-interactions or the rating given to an item
by 𝑢 (1 in implicit feedback). Similarly, the true testing interactions
of each user 𝑢 are y𝑢 ∈ R1×|I | . While random data-splitting is
prevalent [11, 13, 24, 35, 38], it unrealistically inflates evaluation
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metrics [47], so we use temporal splitting. Thus, for testing timestep
𝑇 , x𝑢 ∀𝑢 ∈ U occur at 𝑡 < 𝑇 and y𝑢 ∀𝑢 ∈ U occur at 𝑡 = 𝑇 ,
where both are drawn from a temporally-variant data-generating
distribution D𝑇 : x𝑢 , y𝑢 ∼ D𝑇 (U).

3.2 Markov Random Fields and Auto-Normality
The spatial stochastic interaction sampling of items in I by users in
U can be modelled as a Markov Random Field (MRF) [2, 3], wherein
items 𝑖 ∈ I are co-dependent Random Variable nodes and users’
observed training interactions are samples from the MRF. Then, a
CF recommender is an autoregressor that uses the sample drawn
by some 𝑢 ∈ U during 𝑡 < 𝑇 to predict the most likely items to be
sampled at𝑇 by 𝑢. Assuming the MRF is Gaussian [2, 23], the Auto-
Normal parametrization estimates the expectation of sampling some
item 𝑖 at 𝑡 = 𝑇 , given x𝑢 = {𝑥 𝑗 } | I |

𝑗=1 observed over 𝑡 < 𝑇 , as

E[𝑋𝑖 |𝑥 𝑗 , 𝑗 ≠ 𝑖] = `𝑖 +
∑ | I |

𝑗=1 𝛽𝑖, 𝑗 (𝑥 𝑗 − ` 𝑗 ), where 𝛽𝑖, 𝑗 = 𝑝 (𝑖 | 𝑗) is the
first-order similarity. The Auto-Normal parametrization simplifies
high-order similarity by assuming the items in the MRF are sampled
independently by each 𝑢, and it directly leads to EASER [35] by
assuming `𝑖 = 0∀ 𝑖 ∈ I and uniform MRF variance across items
[3, 36].

4 BOOTSTRAPPED PERSONALIZED
POPULARITY

We now present B2P, with our contributions structured as (1) rig-
orous popularity modelling for cold users, (2) Metadata Infusion
inspired from work on high-order similarity [9, 28, 35, 36, 38], and
(3) principled total bootstrapping.

4.1 Popularity Methods for Cold Users
4.1.1 Optimal Recommendations for New Users. In pure Cold Start
for new users 𝑢new ∈ Unew, we have x𝑢𝑛, y𝑢𝑛 ∼ D𝑇 (Unew) where
x𝑢𝑛 = ®0. Then, in the absence of content metadata, D𝑇 (Unew)
can be equivalently described by the test-time distribution of nor-
malized popularity P𝑇 (𝑖) ∀ 𝑖 ∈ I among Unew at 𝑡 = 𝑇 , where∑
𝑖∈I P𝑇 (𝑖) = 1.
We prove that inferring expected behaviour ofUnew from P𝑇 is

optimal by framing purely-cold CF as multi-label Supervised Classi-
fication. Here, a recommender model 𝑓 ∈ F produces 𝑗-wide recom-
mendation lists 𝑓 (x𝑢𝑛):𝑗 = [𝑓 (x𝑢𝑛)1, . . . , 𝑓 (x𝑢𝑛) 𝑗 ] for 𝑢new, while
the observed interactions of 𝑢new in testing 𝑡 = 𝑇 are contained in
the item set 𝑟𝑒𝑙 (𝑢new) = {𝑖 | [y𝑢𝑛]𝑖 ≠ 0} | I |

𝑖=1 . Among 𝑢new ∈ Unew,
the Bayes Optimal Classifier, when reworded from loss minimiza-
tion to maximization of Mean Average Precision (MAP)1 at cutoff
𝑘 [12], is 𝑓 ∗ = argmax

𝑓 ∈F
ED𝑇 (Unew ) [MAP(𝑓 (x𝑢𝑛))@𝑘]. Expanding

MAP [48] and taking the expectation over all 𝑢new ∈ Unew,

𝑓 ∗ = argmax
𝑓 ∈F

𝑘∑︁
𝑗=1

|𝑟𝑒𝑙 (𝑢new) ∩ 𝑓 (x𝑢𝑛):𝑗 |
𝑗

𝑝 (𝑓 (x𝑢𝑛) 𝑗 |x𝑢𝑛)

= argmax
𝑓 ∈F

𝑘∑︁
𝑗=1

|𝑟𝑒𝑙 (𝑢new) ∩ 𝑓 (x𝑢𝑛):𝑗 |
𝑗

P𝑇 (𝑓 (x𝑢𝑛) 𝑗 ) . (1)

1MAP is our primary optimization target in this work as it is a widespread and reliable
rank-accuracy metric both in BBC and the broader research space.

Therefore, recommendations 𝑓 (x𝑢𝑛):𝑘 with maximum total empir-
ical popularity at 𝑡 = 𝑇 optimize recommendation accuracy for
new users, on average. However, the test-time P𝑇 among Unew is
unknown in training, so it must be estimated via observed prox-
ies P𝑡<𝑇 , with incurred bias. Via simple and scalable zero-order
Euler approximants, this is achieved by forming P𝑡<𝑇 from the
interactions of some user subset Ũ with modelling D𝑇 (Unew) ≈
D𝑡<𝑇 (Ũ). With hypothesis testing and offline experiments in Sec-
tion 5.2, we find that the most empirically-effective zero-order Euler
estimator for the test-time P𝑇 among users on a biased dataset is to
form P𝑡<𝑇 from the interactions of users in subset Ũ = U𝑇−1,new.
This subset contains users at 𝑡 = 𝑇 −1with no previous interactions,
who are thus new at this timestep.

4.1.2 Extending Popularity to Cold Users. Cold users are both purely-
new users and non-new but infrequent users. For new usersUnew at
test-time 𝑡 = 𝑇 , our popularity method that approximates optimal-
MAP recommendations predicts item scores as 𝑃 = pop(𝑋𝑡−1,𝑛=0),
where 𝑋𝑡−1,𝑛=0 ∼ D𝑇−1 (U|𝑛 = 0) is the interactions matrix for
new training users at 𝑇 − 1 with 𝑛 = 0 past interactions before
𝑇 − 1, and pop(·) ranks items by their popularity P in matrix (·).
We now generalize this as our Popularity Model 𝑃 = pop(𝑋𝑡−1,𝑛)
for the interactions 𝑋𝑡−1,𝑛 of cold test-time users with 𝑛 ≤ \ past
interactions up to an empirical or learnt cut-off \ ≥ 0. Here, for
each stratum of users in testing with 𝑛 past interactions in 𝑡 < 𝑇 ,
the Popularity Model would recommend the 𝑘 most popular items
at𝑇 −1 among users in training with 𝑛 past interactions in 𝑡 < 𝑇 −1.
Indeed, popularity and preference are entangled in 𝑝 (𝑖 |x𝑢 ) [46],
particularly for cold users [20]. Therefore, the Popularity Model is a
rigorous and principled approximation of high-order similarity for
highly-cold users. However, it is starkly non-diverse and becomes
inaccurate for warm users with 𝑛 > \ .

4.2 Metadata Infusion
In the framing of CF as sampling from an MRF, generalising Auto-
Normality to significantly higher orders better approximates true
high-order similarity but increases computational complexity at
marginal performance gains [38]. Thus, we model second-order
similarity using the triplet extension to Auto-Normality scaled by
hyperparameter ^𝐶 ,

𝑃𝑢,𝑖 = 𝑝 (𝑋𝑖 |𝑋𝑢,:) =
∑︁
𝑗≠𝑖

𝑋𝑢,𝑗𝐵 𝑗,𝑖+^𝐶
∑︁
𝑗<𝑘
𝑗,𝑘≠𝑖

𝑋𝑢,𝑗𝑋𝑢,𝑘

(
𝑀∑︁

𝑚=1
®𝑣 (𝑖 )𝑚 ®𝛾 ( 𝑗 )𝑚 ®𝛾 (𝑘 )𝑚

)
(2)

which predicts the similarity score of each 𝑖 ∈ I at 𝑡 = 𝑇 given
all pairs 𝑗, 𝑘 ∈ I−𝑖 sampled at 𝑡 < 𝑇 for each 𝑢 ∈ U, as 𝑃 =

𝑋�̂� + ^𝐶 ⟨𝑋𝐶⟩. Matrix ⟨𝑋𝐶⟩ ∈ R |U |× |I | contains the summed ele-
mentwise products of latent factors ®𝑣 (𝑖 ) , ®𝛾 ( 𝑗 ) , ®𝛾 (𝑘 ) for all 𝑖, 𝑗, 𝑘 ∈ I
and all 𝑢 ∈ U. Here, element ⟨𝑋𝐶⟩𝑢,𝑖 indicates the second-order
similarity of item 𝑖 to the pairwise 𝑗, 𝑘 interaction history of user 𝑢,
over a learnt or pre-defined latent space. Indeed, ⟨𝑋𝐶⟩ is learnable,
as pursued in [9, 33, 38]. However, learning every second-order
triplet is unscalable, so recent works threshold the learnt triplets
to those formed with the most popular 40000 𝑗, 𝑘 pairs among all
users [38].
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Instead, we propose a novel treatment of latent factors as explicit
𝑀-wide metadata that characterize 𝑖, 𝑗, 𝑘 ∈ I, such that Metadata
Infusion occurs in predictions 𝑃 . Since ®𝑣 (𝑖 ) , ®𝛾 ( 𝑗 ) , ®𝛾 (𝑘 ) are known in-
stead of learnt, this approach easily scales to modelling all possible
pairs 𝑗, 𝑘 . Further, while a learnt ⟨𝑋𝐶⟩ requires an iterative algo-
rithmic solution [9, 38], Metadata Infusion maintains an efficient
closed-form solution like EASER, of the form:

L(Ψ) = | |𝑋 − 𝑋𝐵 − ^𝐶 ⟨𝑋𝐶⟩| |2𝐹 + _𝐵 | |𝐵 | |2𝐹 + 2𝛾𝑇 diag(𝐵)

=⇒ 𝜕L
𝜕𝐵

= 0 =⇒ −2𝑋𝑇 (𝑋 − 𝑋�̂� − ^𝐶 ⟨𝑋𝐶⟩) + 2_𝐵 �̂� + 2𝛾𝑇 ⊙ I = 0

=⇒ �̂� = I − 𝑃 (^𝐶𝑋𝑇 ⟨𝑋𝐶⟩ + diagMat(𝛾))

where 𝑃 ≜ (𝑋𝑇𝑋 +_𝐵I)−1 for sufficiently large _𝐵 , 𝛾 ≜ _𝐵®1+𝛾 and
diagMat(·) defines a zero square matrix with vector (·) in the main
diagonal. Importantly, 𝑋𝑇𝑋 + _𝐵I is always full-rank for _𝐵 ≠ 0,
such that∃𝑃 and the solution for �̂� always holds. Then, constraining
the Lagrangian multipliers with diag(𝐵) = 0 yields the closed form
of �̂�:

�̂� = I−𝑃
(
^𝐶𝑋

𝑇 ⟨𝑋𝐶⟩ + diagMat
(
®1 ⊘ diag(𝑃) − ^𝐶diag(𝑋𝑇 ⟨𝑋𝐶⟩)

))
.

(3)

4.3 Personalized Popularity (2P)
We extend the Popularity Model to Personalized Popularity (2P) via
Metadata Infusion: 𝑃 = pop(𝑋𝑡−1,𝑛) + ^𝐶 ⟨𝑋𝑡−1,𝑛𝐶⟩. In computing
⟨𝑋𝑡−1,𝑛𝐶⟩, pairs 𝑗, 𝑘 are drawn from the interactions at 𝑡 = 𝑇 − 1
among only users with 𝑛 interactions in 𝑡 < 𝑇 −1. This personalizes
the Popularity Model because ⟨𝑋𝐶⟩𝑢,𝑖 are scores of item similarity
for each 𝑢 based on the metadata in common between each test
item 𝑖 and all past interaction pairs of 𝑢. For sparse binary 𝑋 , which
is a characteristic of implicit-feedback systems, the Gram matrix
𝐺 = 𝑋𝑇𝑋 in Eq. 3 and in EASER [35] is a co-occurence matrix,
which should have sufficiently large elements 𝐺𝑖 𝑗 to estimate �̂�
with low error. However, increasing the proportion of cold users in
𝑋 means lower 𝐺𝑖 𝑗 and higher error. Then, there must be a cutoff
\ = \∗, below which the empirical MRF sampling popularities
extended from their optimality for new users outperform EASER
and Eq. 3.

4.4 Overall Model: Bootstrapped Personalized
Popularity

Personalized Popularity (2P) models the empirical popularity of
sampling from D𝑇 by assuming users of the same interaction level
behave similarly on average. This probabilistic similarity is shown
to be optimal for new users and outperforms 𝑃 = 𝑋�̂� + ^𝐶 ⟨𝑋𝐶⟩ for
cold users with up to 𝑛 ≤ \∗, where \∗ depends on the dataset and
evaluation metrics. However, second-order statistical similarity in
Metadata-Infused EASER 𝑃 = 𝑋�̂�+^𝐶 ⟨𝑋𝐶⟩ becomes more accurate
for 𝑛 > \∗. Broadly, Metadata Infusion is highly flexible and appli-
cable to CF models that predict a scores matrix 𝑃 to compute the
top-𝑘 recommendations, including our Popularity Model in Section
4.1.2 and EASER.

Thus, we form our general B2P framework for treating cold
datasets by bootstrapping 2P with a Metadata-Infused CF model
as a weighted sum at each user stratum U𝑛 ∈ U with 𝑛 train-time

interactions over 𝑡 < 𝑇 . Therefore, B2P joins exploitation with pop-
ularity exploration at each U𝑛 , catering to stratum-average user
preferences for recommendation diversity [27]. In this paper, we
implement the bootstrap between 2P and Metadata-Infused EASER
via a binary switch given by Heaviside 𝐻 (\∗). This particular con-
figuration of the general B2P is B2P Binary EASER (B2P-BE):

argmin
𝐵

∑︁
𝑛

(
| |𝐻 (\∗) (𝑋 − 𝑋𝐵) + (1 − 𝐻 (\∗))pop(𝑋𝑡−1,𝑛)

− ^𝐶 ⟨𝑋𝐶⟩| |2𝐹 + _𝐵 | |𝐵 | |2𝐹
)
. (4)

We selected EASER due to its closed-form scalability and higher
rank-accuracy than other considered baselines on the BBC iPlayer
data; however, B2P is flexible and implementable with various other
CF models. Figure 1 visualizes B2P-BE.

𝐶

𝜅𝐶⟨𝑋𝑤𝐶⟩

𝑃𝑤 = 𝐵𝑋𝑤 + 𝜅𝐶⟨𝑋𝑤𝐶⟩𝐵

cold

warm

2P
𝜅𝐶⟨𝑋𝑐𝐶⟩

𝑋𝑛>𝜃∗ = 𝑋𝑤

𝑋𝑛≤𝜃∗ = 𝑋𝑐

𝑋𝑡−1,𝑐 𝑃𝑐 = pop(𝑋𝑡−1,𝑐) + 𝜅𝐶⟨𝑋𝑡−1,𝑐𝐶⟩

𝟎

𝟎

⋮

𝟎

𝟎

𝜃∗

𝑃 = 𝑃𝑐 , 𝑃𝑤

Figure 1: B2P-BE architecture with binary-switch bootstrap
between 2P for cold users, and Metadata-Infused EASER for
warm users. EASER is represented in the grey sub-diagram
with self-similarity of items from input 𝑋𝑤 to output 𝑃𝑤
constrained to zero.

5 EVALUATION
5.1 Experimental Set-up
Two datasets were used in the experiments for the RQs, with char-
acteristics after pre-processing given as follows:

• BBC iPlayer (iPlayer; Private): 896,311 users and 2,766 items
with 3,450,175 interactions.

• MovieLens 20 Million (ML-20M; Public): 136,677 users and
20,720 items with 9,991,282 interactions (binarized 2).

Both datasets are split temporally between training and testing [47];
this split exhibitsWeak Generalization as the split data is disjoint in
terms of user-item interactions but not in terms of users. The iPlayer
dataset consists of interactions in a real programme-streaming plat-
form for 31 consecutive days in April-March 2022. It is recent and
dynamic, with a non-static item catalog, and it is highly cold: 35.8%
of test-set users are new on the test day (|Unew | = 321,118) and
over 70% of the 575,193 non-new U −Unew users interact with at
most 5 items in training, which is the minimum interaction level
in ML-20M [18]. Thus, we use the iPlayer dataset to demonstrate

2ML-20M is an explicit-feedback dataset; binarization treats ratings 1-3 as non-
interactions and ratings 4-5 as interactions, leading to a reduction from 20M explicit
interactions to 10M implicit interactions.
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the significant gains of B2P on a Cold setting, and show that Meta-
data Infusion in B2P also generalizes well to warmer datasets like
ML-20M. We measure rank-accuracy with MAP, NDCG, MRR and
HR, and diversity across catalog span and popularity with Item
Coverage (Cov) and Gini Index (Gini). The top-𝑘 cutoff is 20, which
is applicable to recommendation batches shown in real stream-
ing platforms. Finally, we benchmark B2P against leading high-
performance models [13, 14] across the CF families: CF and hybrid
ItemKNN, graph-based P3𝛼 and RP3

𝛽
[10, 30], Full-Rank EASER [35]

and Neural Mult-VAE [24].

5.2 Popularity Modelling (RQ1)
In analysing zero-order Euler proxies for popularity distribution
P𝑇 among Unew, we evaluate the Popularity Model with multi-
ple subsets Ũ on the iPlayer dataset, as shown in Table 1. Subset
U𝑡𝑖 :𝑡𝑓 considers interactions of users on timestep range [𝑡𝑖 , 𝑡𝑓 ],
andU𝑡𝑖 :𝑡𝑓 ,new considers new users at each timestep. Indeed, via the
Kolmogorov-Smirnov (KS) Test, we find a significant difference in
the popularity distribution of new users in the last training timestep
U𝑇−1,new to other subsets Ũ, 𝐾𝑆 (1746, 1532) = 0.0983, 𝑝 < 0.001.
Other subsets are not significantly different at 𝛼 = 0.05. This sug-
gests the effectiveness ofU𝑇−1,new in modelling P𝑇 ∼ D𝑇 (Unew),
which is experimentally validated in Table 1.

Thus,U𝑇−1,new is the most accurate from the considered zero-
order Euler approximants for new and existing users, but it has
near-zero diversity, as do the other samples in the Popularity Model.
This is shown in the Diversity comparison with EASER in Figure 2.
Moreover, Figure 2 shows the empirical cutoff as \∗ = 2 interactions
in the iPlayer dataset: the Popularity Model outperforms EASER
in terms of MAP@20 for users with 𝑛 ∈ {0, 1, 2}, which covers
over 59.8% of all usersU in the iPlayer dataset. Hence, the Popu-
larity Model is strongly performant in extreme Cold Start settings.
Moreover, its issue of non-personalization and near-zero diversity
is moderated by Metadata Infusion in RQ2.

5.3 Metadata Infusion (RQ2)
While learning the item latent factors in Eq. 2 directly improves
model accuracy in [9, 38], we observe in the iPlayer and ML-20M
datasets that using explicit metadata as the latent factors improves
model diversity for a non-significant trade-off in accuracy. We use
metadata of𝑀 classes – genres in our specific datasets – that catego-
rize items 𝑖 ∈ I with Boolean latent factor ®𝛾 (𝑖 )𝑚 = 1, 𝑚 ∈ {N+ |𝑚 ≤
𝑀}, if 𝑖 is described by the𝑚th class. In the iPlayer dataset,𝑀 = 127
and only 36 of 2766 available items have no associated metadata
(®𝛾 = ®0), while in ML-20M𝑀 = 20 and zero items have ®𝛾 = ®0. Hence,
minimal item-based metadata can represent most items here, which
avoids the content-based over-reliance criticized in [4, 5]. This
renders Metadata Infusion viable for academic and industrial appli-
cations.

On the iPlayer dataset, Figure 2 plots the Accuracy-Diversity
trade-off that results from Metadata Infusion on the Popularity
Model (yielding 2P) and on EASER (yielding 𝑃 = 𝑋�̂� + ^𝐶 ⟨𝑋𝐶⟩).
Increasing ^𝐶 weighs class exploration more heavily over learnt
similarity or empirical popularity, such that accuracy is traded for di-
versity. This metadata-driven exploration is valuable in production

systems, where users have varying levels of preference of recom-
mendation diversity [27]. Moreover, Figure 2 shows that Metadata
Infusion most affects cold users, both in the highly-significant diver-
sity improvement and the comparatively non-significant accuracy
decrease.

Table 2 gives the performance of the Metadata-Infused EASER
at the optimal trade-off of maximum diversity gain for minimum
accuracy loss. Metadata Infusion is very valuable in the warm ML-
20M, but its Accuracy-Diversity trade-off is less favorable than
in the colder iPlayer dataset. This further supports that Metadata
Infusion is most effective in Cold Start. Indeed, in 2P with cold
users, Cov@20 increased by 1340% for only 17% drop in MAP@20
(Figure 2, ^𝐶 = 5).

5.4 Overall Results for B2P (RQ3)
The benchmarking of B2P-BE on testing users U − Unew in the
iPlayer dataset is presented in Table 3. While we also use ML-20M
to demonstrate the wide applicability of Metadata Infusion and
favorable generalization between cold and warm datasets, we only
benchmark B2P on the iPlayer dataset, since it reflects a realistic
and dynamic Cold Start setting. Unew are omitted in view of a fair
benchmarking, since B2P is capable of approximating optimal new-
user recommendations whereas baseline models are architecturally
unable to make recommendations for new users. Overall, B2P-BE
outperforms all high-performing baselines in accuracy metrics at
competitive diversity, which satisfies RQ3.

B2P is highly tractable, being limited only by the scalability of
the bootstrapped baseline model if ⟨𝑋𝐶⟩ fits in memory. Indeed, the
Metadata Infusion of ⟨𝑋𝐶⟩ into the computation of score matrix 𝑃 is
batch-vectorizable addition. Also, caching latent factor elementwise
products and batch-computing each row ⟨𝑋𝐶⟩𝑢,: leads to complexity
O(𝑛2avg𝑀 |U|) in computing ⟨𝑋𝐶⟩ with𝑀-wide metadata and 𝑛avg
average interactions per user.

Further, while existing Cold Start models are applied to a CF
backbone trained on all users’ interactions, B2P handles cold-user
recommendations with 2P so it reduces the data sparsity of the boot-
strapped baseline by only training it on warm users 𝑛 > \∗. This
implicitly boosts performance by avoiding the Cold Start problem
for the bootstrapped model. Finally, B2P can act as the CF Backbone
to complement other Cold Start methods.

6 CONCLUSION
In this work we proposed the novel, efficient, scalable and princi-
pled framework B2P for directly addressing the Cold Start problem.
We support B2P by deriving the optimality of popularity-based
recommendations for new users, their valid extension to cold users,
and their personalization via the novel diversity-boosting method
of Metadata Infusion. B2P outperforms current high-performing CF
and hybrid recommenders in accuracy across both cold and warm
users, and maintains highly competitive diversity on a real, dy-
namic and large-scale Cold Start iPlayer dataset. Future work could
explore higher-order popularity proxies and learnt bootstrapping
configurations to extend B2P.
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Table 1: Performance of different training user subsets Ũ for new-user recommendations on iPlayer dataset. Cutoff 𝑘 = 20.
Results are shown when evaluating against the testing interactions of new testing usersUnew, and of non-new testing users
U𝑛𝑛 = U −Unew.

Train Subset Evaluation on Unew Evaluation onU𝑛𝑛

MAP NDCG MRR HR Cov Gini MAP Cov

U 0.0304 0.0567 0.0334 0.1627 0.0072 0.0076 0.0334 0.0163
U1:𝑇−1,new 0.0301 0.0560 0.0330 0.1603 0.0094 0.0077 0.0301 0.0098

U𝑇−1 0.0617 0.1171 0.0678 0.3279 0.0072 0.0076 0.0620 0.0090
U𝑇−1,new 0.1056 0.1509 0.1150 0.3195 0.0072 0.0076 0.1051 0.0083

Figure 2: Left and Middle plots show, respectively, the MAP@20 and Cov@20 per stratumU𝑛 for 2P with varying ^𝐶 , relative to
EASER. Right plot shows MAP@20 and Cov@20 for Metadata-Infused EASER with varying ^𝐶 , relative to EASER and other
baselines (iKNN denotes ItemKNN ). All model instances in all plots are evaluated on the iPlayer dataset.

Table 2: Evaluation of EASER with Metadata Infusion on iPlayer dataset (^𝐶 = 0.5) and ML-20M (^𝐶 = 1) datasets. Cutoff 𝑘 = 20.
New test users Unew are omitted from evaluation. Percentages show increase or decrease in metrics due to Metadata Infusion.

Dataset Model MAP NDCG MRR HR Cov Gini

iPlayer EASER 0.0775 0.1195 0.0857 0.2843 0.5181 0.0382
EASER + ^𝐶 ⟨𝑋𝐶⟩ 0.0769−0.8% 0.1181 0.0850 0.2800 0.6670+28.7% 0.0456+19.4%

ML-20M EASER 0.0524 0.1093 0.1420 0.4761 0.1557 0.0185
EASER + ^𝐶 ⟨𝑋𝐶⟩ 0.0514−1.9% 0.1077 0.1392 0.4722 0.1780+14.3% 0.0199+7.6%

Table 3: Evaluation of B2P-BE against baseline models on iPlayer dataset omitting new test users. Cutoff 𝑘 = 20.

Model MAP NDCG MRR HR Cov Gini

ItemKNN-CF 0.0725 0.1106 0.0803 0.2591 0.7325 0.0344
ItemKNN-Hybrid 0.0735 0.1119 0.0815 0.2615 0.9208 0.0387
P3𝛼 0.0654 0.1025 0.0724 0.2461 0.5083 0.0555
RP3𝛽 0.0739 0.1123 0.0818 0.2622 0.7339 0.0419
EASER 0.0775 0.1197 0.0858 0.2842 0.5181 0.0382
Mult-VAE 0.0567 0.0947 0.0630 0.2449 0.4953 0.0573

B2P-BE 0.0869 0.1310 0.0922 0.3014 0.5803 0.0348
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