Serre functors of residual categories via hybrid models

Federico Barbacovi | Ed Segal

Abstract
In this short note, we observe that the Serre functor on the residual category of a complete intersection can be easily described in the framework of hybrid models. Using this description, we recover some recent results of Kuznetsov and Perry.

MSC 2020
14F08 (primary)

Contents
1. INTRODUCTION 2505
2. BACKGROUND 2507
3. SERRE DIMENSIONS 2510
4. THE RECURSIVE APPROACH 2512
ACKNOWLEDGEMENTS 2513
REFERENCES .. 2513

1 | INTRODUCTION

Let \(X \subset \mathbb{P}^n \) be a smooth Fano complete intersection of multi-degree \((d_1, \ldots, d_k) \), and write \(d = \sum d_i \). The ambient \(\mathbb{P}^n \) has a very simple derived category since we have Beilinson’s full exceptional collection consisting of the line bundles \(\mathcal{O}, \ldots, \mathcal{O}(n) \). Kuznetsov [8] observed that we can use this fact to simplify the derived category of \(X \) itself: if we take the subset \(\mathcal{O}, \ldots, \mathcal{O}(n - d) \) and restrict them to \(X \), then they still form an exceptional collection, but no longer a full one. So, they have some orthogonal \(\mathbb{R}_X \) and we get a semi-orthogonal decomposition:

\[
D^b(X) = \langle \mathbb{R}_X, \mathcal{O}, \ldots, \mathcal{O}(n - d) \rangle. \tag{1}
\]
This is only a non-trivial decomposition because \(X \) is Fano, that is, \(d \leq n \); in the Calabi–Yau or general-type case, we have \(\mathcal{R}_X = \mathbb{D}^b(X) \).

The subcategory \(\mathcal{R}_X \) is called the residual component (or Kuznetsov component) of \(\mathbb{D}^b(X) \). It controls much of the interesting behaviour of \(\mathbb{D}^b(X) \): the deformation theory, moduli spaces of objects, stability conditions, and so on [3, 7, 15]. It also has a Serre functor \(S \), and one can ask about the behaviour of \(S \). For example, in the hypersurface case, Kuznetsov showed that \(\mathcal{R}_X \) is fractional Calabi–Yau, meaning that some power of \(S \) is a shift functor [9].

More recently, Kuznetsov and Perry [10] studied \(S \) for higher-codimension \(X \) by a recursive procedure. They think of \(X \) as the endpoint of a sequence
\[
P^n \supset X_{d_1} \supset X_{d_1,d_2} \supset \cdots \supset X_{d_1\ldots d_k} = X
\]
given by repeatedly intersecting with hypersurfaces, and relate the Serre functors on residual categories at each step. Using this result, they were able to compute some quantities called the upper and lower Serre dimensions of \(\mathcal{R}_X \) (see Section 3). This result corrects a conjecture of Kontsevich and Katzarkov. They also have some very nice applications, such as a proof of the non-existence of a Serre invariant stability condition on \(\mathcal{R}_X \) in most cases.

The purpose of this note is to give an alternative (and rather shorter) derivation of Kuznetsov and Perry’s results, using an idea from the string theory literature called a ‘hybrid model’.

In the case when \(X \) is a hypersurface, there is a celebrated theorem of Orlov [13] which can be interpreted as relating \(\mathcal{R}_X \) to a category of matrix factorisations on an affine orbifold:
\[
\mathcal{R}_X = \text{MF} \left([\mathbb{A}^{n+1}/\mathbb{Z}_d], f \right).
\] (3)

Here \(f \) is the degree \(d \) polynomial defining \(X \), re-interpreted as a \(\mathbb{Z}_d \)-invariant function on \(\mathbb{A}^{n+1} \). This construction was generalised to complete intersections in [17] (following [20]) using the following two steps:

1. Let \(Y_+ \) be the total space of the vector bundle \(\bigoplus_{i=0}^k \mathcal{O}(-d_i) \) over \(\mathbb{P}^n \). On this, we have a function:
\[
W = \sum_{i=1}^k f_i p_i.
\]

Here \(f_1, \ldots, f_k \) are the defining polynomials of \(X \), pulled-up to \(Y_+ \), and each \(p_i \) is the tautological section of \(\mathcal{O}(-d_i) \) on \(Y_+ \). Using Knörrer periodicity (e.g. [12, 18]), we equate \(\mathbb{D}^b(X) \) with the category of matrix factorisations:
\[
\mathbb{D}^b(X) \cong \text{MF} \left(Y_+, W \right).
\]

2. Let \(\mathbb{P}(d) \) denote the weighted projective space \(\mathbb{P}(d_1, \ldots, d_k) \), and let \(Y_- \) be the total space of the vector bundle \(\mathcal{O}(-1)^{n+1} \) over \(\mathbb{P}(d) \). The spaces \(Y_- \) and \(Y_+ \) are related by an ‘orbifold flip’, and there is a fully-faithful functor:
\[
\text{MF}(Y_-, W) \hookrightarrow \text{MF}(Y_+, W).
\] (4)

Note that on \(Y_- \) the \(p_i \) are the homogeneous co-ordinates of weighted projective space, and the \(f_i \) are polynomials in the fibre co-ordinates. Under Knörrer periodicity, the image of this embedding is identified with \(\mathcal{R}_X \).
The pair \((Y_-, W)\) can be viewed as a family, indexed over \(\mathbb{P}(d)\), of the kind of affine-orbifolds-plus-a-function that appeared in the hypersurface case \((3)\). The latter are called Landau–Ginzburg models in the physics literature,\(^\dagger\) and this ‘family of Landau–Ginzburg models’ is called a hybrid model.

For us, the advantage of identifying \(\mathcal{R}_X\) with \(\text{MF}(Y_-, W)\) is that it makes the Serre functor very transparent; it is simply given (up to a shift) by tensoring with the canonical bundle \(\omega_{Y_-}\). This follows from a general fact about Serre duality for matrix factorisations, which was proven in the generality we need by Favero and Kelly \([6]\). We recall it as Proposition 2.1.2 below.

When \(X\) is a hypersurface, the fact that \(\mathcal{R}_X\) is fractional Calabi–Yau follows easily from this fact and Orlov’s theorem \((3)\). Indeed, on the orbifold \([\mathbb{A}^n/\mathbb{Z}_d]\), the \(d\)th power of any line bundle is trivial, so some power of \(\mathbb{S}\) is a shift.

When \(X\) has higher codimension the properties of \(\mathbb{S}\) are more complicated, but our point-of-view makes them fairly easy to prove.

1.1 Plan of the paper

- In Section 2, we set up some general terminology for matrix factorisations, in particular we recall the notion of \(R\)-charge which is essential for getting the correct shifts.

 We then produce an explicit generator for the category \(\text{MF}(Y_-, W)\), by pushing forward the usual exceptional collection of line bundles from \(\mathbb{P}(d)\). The reason this works is that the critical locus of \(W\) is some thickening of \(\mathbb{P}(d)\), and it is enough to generate \(D^b(\text{Crit}(W))\) since the category of matrix factorisations is supported there.

- In Section 3, we discuss Serre dimensions. Roughly, these are given by taking a generator for your category, applying the Serre functor repeatedly, and seeing how the maximal and minimal degrees of Ext groups grow.

 Since we have an explicit generator and a simple description of \(\mathbb{S}\), we can find the Serre dimensions by a straight-forward calculation.

- In Section 4, we explain how one more result of Kuznetsov–Perry can be understood in our framework. As explained above, they take a recursive approach where they repeatedly slice by hyperplanes and see how the Serre functor changes. In fact, they identify some power of the Serre functor (up to a shift) with some power of a spherical twist induced by the previous slice \([10, \text{Cor. 1.4}]\).

 In our approach to Serre dimension, we do not need this result, but it is still interesting to translate it into the hybrid model description. It turns out that their spherical twist is just a line bundle on \(Y_-\), and then, the observation is that some power of this bundle equals some power of \(\omega_{Y_-}\).

2 BACKGROUND

2.1 General theory

Let \(Y\) be a smooth variety or stack equipped with:

(i) a \(\mathbb{C}^*\) action such that \(-1 \in \mathbb{C}^*\) acts trivially,

(ii) a regular function \(W \in \Gamma(\mathcal{O}_Y)\) of weight 2.
We call (i) the \textit{R-charge} and (ii) the \textit{superpotential}. Given this data, a \textit{matrix factorisation} is an equivariant sheaf \(\mathcal{E} \) on \(Y \) equipped with a map \(d : \mathcal{E} \to \mathcal{E} \) of R-charge 1, satisfying \(d^2 = W \cdot \text{id}_\mathcal{E} \). Matrix factorisations form the objects of a dg-category \(\text{MF}(Y, W) \) \cite{2, 14, 17}, etc.

There is an equivariant line bundle on \(Y \) associated to the generating character of \(\mathbb{C}^* \), which we denote \(\omega_Y \). Tensoring by this line bundle is the shift operator on \(\text{MF}(Y, W) \). Note that in this formulation, the category is \(\mathbb{Z} \)-graded, not \(\mathbb{Z}_2 \)-periodic or \(\mathbb{Z}_2 \)-graded.

Remark 2.1.1. In the category of matrix factorisations, there is a derived local Hom’s functor which sends matrix factorisations \(\mathcal{E}, \mathcal{F} \) to an object \(\mathbb{R} \text{Hom}(\mathcal{E}, \mathcal{F}) \in \text{MF}(Y, 0) \). To compute it, we must either replace \(\mathcal{E} \) by a ‘locally free resolution’, that is, an equivalent matrix factorisation whose underlying sheaf is a vector bundle, or \(\mathcal{F} \) by an ‘injective resolution’. The derived global sections of \(\mathbb{R} \text{Hom}(\mathcal{E}, \mathcal{F}) \) give the morphisms from \(\mathcal{E} \) to \(\mathcal{F} \).

More generally, if \(\mathcal{E} \in \text{MF}(Y, W) \) but \(\mathcal{F} \in \text{MF}(Y, W') \) for some other superpotential \(W' \), then \(\mathbb{R} \text{Hom}(\mathcal{E}, \mathcal{F}) \) is an object in \(\text{MF}(Y, W' - W) \).

Proposition 2.1.2 \cite[Theorem 2.18]{6}. Assume that the critical locus \(\text{Crit}(W) \subset Y \) is proper. Then the category \(\text{MF}(Y, W) \) is smooth and proper, and it has a Serre functor given by \(- \otimes \omega_Y [\dim Y]\) where \(\omega_Y \) is the equivariant canonical bundle.

In fact, Favero–Kelly work on a more general class of Artin quotient stacks. For earlier related results, see \cite[Sect. 8]{16}, \cite[Lem. 6.8]{4}, and so on.

Lemma 2.1.3. Let \(i : \text{Crit}(W)_{rd} \hookrightarrow Y \) denote the reduced scheme underlying the critical locus of \(W \). Let \(\mathcal{G} \) be a \(\mathbb{C}^* \)-equivariant sheaf on \(\text{Crit}(W)_{rd} \) which, up to twisting by all characters of \(\mathbb{C}^* \), generates the equivariant derived category \(D^b_{\mathbb{C}^*}(\text{Crit}(W)_{rd}) \). Then \(i_* \mathcal{G} \) is a generator of \(\text{MF}(Y, W) \).

Proof. This follows from, for example, Proposition 3.64 and Corollary 4.14 of \cite{2}.

Remark 2.1.4. The condition that \(\mathcal{G} \) is a sheaf (rather than a complex) is not essential but it means that we can ignore the subtle distinction between \(D^b_{\mathbb{C}^*}(\text{Crit}(W)_{rd}) \) and \(\text{MF}(\text{Crit}(W)_{rd}, 0) \).

2.2 Our setup

Now we specialise the general theory above to the example we are interested in.

We fix positive integers \(n, d_1, \ldots, d_k \) and let \(d = \sum_{i=1}^k d_i \). Let \(\mathbb{C}^* \) act on \(\mathbb{C}^{n+k+1} \) with weights \((d_1, \ldots, d_k, -1, \ldots, -1) \), and write \(p_1, \ldots, p_k, x_0, \ldots, x_n \) for the corresponding co-ordinates. We define an orbifolds \(Y_\pm \) by taking the stack-theoretic quotients of two different open subsets:

\[
Y_+ = \left\{ (x_0, \ldots, x_n) \neq 0 \right\} / \mathbb{C}^*, \\
Y_- = \left\{ (p_1, \ldots, p_k) \neq 0 \right\} / \mathbb{C}^*.
\]

\(Y_+ \) is the total space of a vector bundle over \(\mathbb{P}^n \), and \(Y_- \) is the total space of a vector bundle over the weighted projective space \(\mathbb{P}(d) \).

Now we introduce an R-charge on both these spaces by adding a second \(\mathbb{C}^* \) action, which acts with weight 2 on each \(p_i \) and weight 0 on each \(x_i \). On \(Y_+ \), this action just rotates the fibres. On
Y_-, the action preserves the zero section $\mathbb{P}(d) \subset Y_-$ but does not act trivially on it, unless all the d_i’s are equal.

Finally, we define the superpotential by choosing polynomials $f_1, \ldots, f_k \in \mathbb{C}[x_0, \ldots, x_n]$ with f_i of degree d_i, then setting:

$$W = \sum_{i=1}^{k} p_i f_i.$$

With this data, we have categories of matrix factorisations $\text{MF}(Y_+,W)$ and $\text{MF}(Y_-,W)$. As discussed in the introduction, Knörrer periodicity [18] gives an equivalence

$$\text{MF}(Y_+,W) \cong \text{D}^b(X),$$

where $X \subset \mathbb{P}^n$ is the complete intersection cut out by the f_i. Moreover, if $d < n$, then we have an embedding $\text{MF}(Y_-,W) \hookrightarrow \text{MF}(Y_+,W)$ whose image is the residual category \mathcal{R}_X (this follows from [17]).

We remark that neither of the two results above require that X is smooth. However, we will make this assumption from now on. Given this, the following is an elementary calculation.

Lemma 2.2.1. The critical locus of W on Y_+ is exactly X. On Y_-, the critical locus is a thickening of the zero section $\mathbb{P}(d)$.

It now follows from Proposition 2.1.2 that $\text{MF}(Y_-,W)$ has a Serre functor given by a shift of the canonical bundle. There is some potential confusion here due to R-charge, so we spell this out explicitly.

Any equivariant line bundle on Y_- is specified by its weights under the two \mathbb{C}^* actions, so is of the form $\mathcal{O}(k)[m]$. Recall here that we use square brackets for the R-charge.† In this notation, the equivariant canonical bundle of Y_- is

$$\omega_{Y_-} = \mathcal{O}(n + 1 - d)[-2k],$$

and hence, the Serre functor is:

$$\omega_{Y_-}[\text{dim } Y_-] = \mathcal{O}(n + 1 - d)[n - k].$$

(5)

On Y_+, we get the same answer apart from a sign change, so there the Serre functor is $\mathcal{O}(d - n - 1)[n - k]$. Note that this agrees with the Serre functor on X, as required by Knörrer periodicity.

We can also use Lemmas 2.1.3 and 2.2.1 to deduce the following.

Lemma 2.2.2. Let T be the (R-charge equivariant) vector bundle

$$T = \bigoplus_{i=0}^{d-1} \mathcal{O}(i)$$

on $\mathbb{P}(d)$. Then the push-forward of T generates $\text{MF}(Y_-,W)$.

†The R-charge is the shift in the category of matrix factorisations, there is not a separate homological shift.↑
3 | SERRE DIMENSIONS

Let \mathcal{D} be a triangulated category with a Serre functor \mathbb{S}. For objects $E, F \in \mathcal{D}$, we write $\text{Hom}_D^*(E, F)$ for the graded space of morphisms between E and all shifts of F. For simplicity, assume that the Homs are bounded in degree.

The Serre dimensions of D, defined by Elagin and Lunts, are some kind of measure of the complexity of \mathbb{S}.

Definition 3.0.1 [5].

1. For two objects $E, F \in \mathcal{D}$, we define

 $e_-(E, F) = \min\{k : \text{Hom}_D^k(E, F) \neq 0\}$ and $e_+(E, F) = \max\{k : \text{Hom}_D^k(E, F) \neq 0\}$.

2. Choose a generator $G \in D$. The **upper** and **lower Serre dimensions** of D are

 $\overline{\text{Sdim}}(D) = \limsup_{m \to \infty} \frac{-e_-(G, \mathbb{S}^mG)}{m}$ and $\underline{\text{Sdim}}(D) = \liminf_{m \to \infty} \frac{-e_+(G, \mathbb{S}^mG)}{m}$.

As the notation suggests, these Serre dimensions do not depend on the choice of generator G.

We want to compute the Serre dimensions of the category $\mathcal{D}_X \cong \text{MF}(Y_{-}, W)$. We have a simple description of the Serre functor (S) and we have an explicit generator (Lemma 2.2.2), so now we just need to carry out the computation.

For simplicity, we assume that each $d_i \geq 2$, of course, this can always be achieved by reducing the number of variables.

Lemma 3.0.2. Let d_{\max} and d_{\min} denote the maximum and minimum of the d_i's. Then for $l \gg 0$, we have

$$e_-(\mathcal{O}_{\mathbb{P}(d)}, \mathcal{O}_{\mathbb{P}(d)}(l)) \geq \frac{2l}{d_{\max}}$$

and the bound is attained whenever l is a multiple of d_{\max}. We also have

$$e_+(\mathcal{O}_{\mathbb{P}(d)}, \mathcal{O}_{\mathbb{P}(d)}(l)) \leq \frac{2(l - n - 1)}{d_{\min}} + n + 1$$

and the bound is attained whenever $l - n - 1$ is a multiple of d_{\min}.

Proof. We need to compute the morphisms between $\mathcal{O}_{\mathbb{P}(d)}$ and $\mathcal{O}_{\mathbb{P}(d)}(l)$, and we do this by first computing the local morphisms via a resolution of $\mathcal{O}_{\mathbb{P}(d)}$ (see Remark 2.1.1).

To get the resolution, we observe that $\mathbb{P}(d) \subset X$ is the zero locus of a regular section of $\mathcal{O}_{Y_{-}}(-1)^{\oplus n+1}$. We can write our superpotential in the form $W = \sum_i x_i g_i$ for some g_i's, and then, $\mathcal{O}_{\mathbb{P}(d)}$ is equivalent to the ‘Koszul-type’ matrix factorisation built from the x_i's and the g_i's; see for example, [17, Sect. 3.2]. Our assumption on degrees ensures that each g_i vanishes along $\mathbb{P}(d)$, so it follows that

$$R \text{Hom}(\mathcal{O}_{\mathbb{P}(d)}, \mathcal{O}_{\mathbb{P}(d)}(l)) = \bigoplus_{i = 0}^{n+1} \mathcal{O}_{\mathbb{P}(d)}(l - i)^{\oplus \binom{n+1}{i}}[-i]$$

(6)
with no differential. If $l \gg 0$, then these line bundles have only zeroth cohomology, and the morphisms from $\mathcal{O}_{\mathbb{P}(d)}$ to $\mathcal{O}_{\mathbb{P}(d)}(l)$ are simply the global sections of the RHS of (6).

We know that $H^0(\mathcal{O}_{\mathbb{P}(d)}(j))$ is the degree j part of $\mathbb{C}[p_1, \ldots, p_k]$. The question we must answer is: what are the minimum and maximum possible R-charges of a polynomial with degree j? Notice that if $p_1^{a_1} \cdots p_k^{a_k}$ has degree j, then $\sum a_i d_i = j$, and its R-charge is $2 \sum a_i$. But then:

$$\frac{2j}{d_{\text{max}}} = 2 \sum a_i \frac{d_i}{d_{\text{max}}} \leq 2 \sum a_i.$$

Hence the minimum R-charge attainable is at least $2j/d_{\text{max}}$. Taking into account the shift in (6), we see that

$$e_-(\mathcal{O}_{\mathbb{P}(d)}, \mathcal{O}_{\mathbb{P}(d)}(l)) \geq \min_{i \in [0, n+1]} \left(\frac{2(l-i)}{d_{\text{max}}} + i \right) = \frac{2l}{d_{\text{max}}},$$

where we used $d_{\text{max}} > 1$. Moreover, this minimum degree is actually attained whenever l is a multiple of d_{max}, by a polynomial $p_{l/d_{\text{max}}}$ where p_l has degree d_{max}.

Similarly,

$$e_+(\mathcal{O}_{\mathbb{P}(d)}, \mathcal{O}_{\mathbb{P}(d)}(l)) \leq \max_{i \in [0, n+1]} \left(\frac{2(l-i)}{d_{\text{min}}} + i \right) = \frac{2(l-n-1)}{d_{\text{min}}} + n + 1,$$

and the bound is attained whenever d_{min} divides $l - n - 1$. \hfill \Box

Recall that the index of the Fano X is $\text{ind} X = n + 1 - d$.

Theorem 3.0.3 [10, Thm. 1.7]. We have

$$\overline{\text{Sdim}}(\mathcal{R}_X) = \dim X - \frac{\text{ind} X}{d_{\text{max}}} \quad \text{and} \quad \underline{\text{Sdim}}(\mathcal{R}_X) = \dim X - \frac{\text{ind} X}{d_{\text{min}}}.$$

Proof. We prove the first statement, the second being identical. By (5), the Serre functor for $\text{MF}(Y_-, W)$ is given by $- \otimes \mathcal{O}_{Y_-}(\text{ind} X)[\dim X]$. Using the generator of Lemma 2.2.2, we have to compute:

$$\limsup_{m \to \infty} -\frac{1}{m} e_-(\bigoplus_{i=0}^{d-1} \mathcal{O}_{\mathbb{P}(d)}(i), \bigoplus_{j=0}^{d-1} \mathcal{O}_{\mathbb{P}(d)}(j + m \text{ind} X)[m \dim X])$$

$$= \dim X - \liminf_{m \to \infty} \min_{j \in [1-d, d-1]} \frac{1}{m} e_-(\mathcal{O}_{\mathbb{P}(d)}, \mathcal{O}_{\mathbb{P}(d)}(j + m \text{ind} X)).$$

But Lemma 3.0.2 implies that

$$\frac{2(d-1 + m \text{ind} X)}{md_{\text{max}}} \geq \min_{j \in [1-d, d-1]} \frac{1}{m} e_-(\mathcal{O}_{\mathbb{P}(d)}, \mathcal{O}_{\mathbb{P}(d)}(j + m \text{ind} X)) \geq \frac{2(1-d + m \text{ind} X)}{md_{\text{max}}},$$

where for the upper bound, we observe that there some j in this range such that d_{max} divides $j + m \text{ind} X$. The result follows. \hfill \Box
4 | THE RECURSIVE APPROACH

As discussed in the introduction, Kuznetsov and Perry take a recursive approach, viewing X as the end point of a sequence of complete intersections of increasing codimension. In this section, we explain what hybrid models can contribute to this point-of-view.

Let $M \subset \mathbb{P}^n$ be the penultimate variety in this sequence, that is, the variety denoted by $X_{d_1, \ldots, d_{k-1}}$ in (2). So, X is a divisor in M, obtained by intersecting M with a hypersurface of degree d_k. By construction, the restriction functor $D^b(M) \to D^b(X)$ induces a functor

$$R_M \to R_X.$$ \hspace{1cm} (7)

Kuznetsov and Perry observe that this functor is spherical, and that the twist and cotwist around it are closely related to the Serre functors on R_M and R_X. More precisely, a certain power of the twist (resp. cotwist) is equal, up to a shift, to a certain power of the Serre functor on R_X (resp. R_M). They deduce this as an instance of a more general result involving spherical functors and semi-orthogonal decompositions.

As before, we view R_X as a category of matrix factorisations on the orbifold Y_-. In the same way, R_M is a category of matrix factorisations on the orbifold

$$Z_- = \text{Tot} \left\{ \mathcal{O}(-1)^{n+1} \to \mathbb{P}(d_1, \ldots, d_{k-1}) \right\}.$$

Notice the reversal of inclusions here: X is a divisor in M, but Z_- is a divisor in Y_-. Moreover, the appropriate superpotential on Z_- is just the restriction of W from Y_-. This implies, writing

$$j : Z_- \hookrightarrow Y_-$$

for the inclusion, that we have a push-forward functor

$$j_* : \text{MF}(Z_-, W) \to \text{MF}(Y_-, W).$$ \hspace{1cm} (8)

It is not hard to verify that this agrees with the functor (7), but we would not do it here since we have not discussed the details of the equivalence $\text{MF}(Y_-, W) \cong R_X$.

For ordinary derived categories, it is a well-known and easy-to-prove fact that the push-forward along the inclusion of a divisor $j : Z \hookrightarrow Y$ induces a spherical functor $j_* : D^b(Z) \to D^b(Y)$ (e.g. [1, Sect. 1.2]). The twist around j_* is given by tensoring with $\mathcal{O}_Y(Z)$, and the cotwist by tensoring with $\mathcal{O}_Z(Z)[-2]$.

The proofs of these facts extend to categories of matrix factorisations immediately, the only modification being that we replace homological shifts by R-charge equivariance. Since $Z_- \subset Y_-$ is the set $\{p_{d_k} = 0\}$, and p_{d_k} is a section of the equivariant line bundle $\mathcal{O}_{Y_-}(d_k)[2]$, we can conclude immediately that the functor (8) is spherical with twist and cotwist:

$$T_{j_*} = \otimes \mathcal{O}_{Y_-}(d_k)[2], \quad C_{j_*} = \otimes \mathcal{O}_{Z_-}(d_k).$$ \hspace{1cm} (9)

Since the Serre functors on $\text{MF}(Y_-, W)$ and $\text{MF}(Z_-, W)$ are also line bundles, and both these varieties have Picard rank 1, we have proven the following.
Proposition 4.0.1 ([10, Cor. 1.4]). Some power of T_{j_*} agrees, up to a shift, with some power of the Serre functor on $\text{MF}(Y_{-}, W)$. Similarly, some power of C_{j_*} agrees, up to a shift, with some power of the Serre functor on $\text{MF}(Z_{-}, W)$.

In fact comparing (9) with (5), we can compute that

$$S_{d_k/c}^{\text{MF}(Z_{-}, W)} \cong C_{j_*}^{\text{ind}(M)/c} \left[\frac{d_k \dim(M)}{c} \right]$$

and

$$S_{d_k/c}^{\text{MF}(Y_{-}, W)} \cong T_{j_*}^{\text{ind}(X)/c} \left[\frac{d_k \dim(X) - 2 \text{ind}(X)}{c} \right],$$

where $c = \gcd(d_k, \text{ind}(M)) = \gcd(d_k, \text{ind}(X))$. This is exactly Kuznetsov and Perry’s result.

ACKNOWLEDGEMENTS

This project has received funding from the European Research Council (ERC) under the European Union Horizon 2020 research and innovation programme (grant agreement No.725010).

We thank the referee for pointing us to the reference [6].

JOURNAL INFORMATION

The Bulletin of the London Mathematical Society is wholly owned and managed by the London Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission. All surplus income from its publishing programme is used to support mathematicians and mathematics research in the form of research grants, conference grants, prizes, initiatives for early career researchers and the promotion of mathematics.

REFERENCES

