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Abstract

In recent times, the control, governance, and management of the Web have become

increasingly centralised, which has led to several challenges such as a lack of se-

curity and privacy protection, as well as increased censorship. To overcome these

issues, a number of initiatives have emerged that offer decentralised counterparts of

various components of the Web, aiming to create a fully decentralised Web, also

known as DWeb or Web3. Novel technologies like blockchains and decentralised

storage networks (DSN) offer ways of establishing trust and storing content with-

out centralised trust assumptions, while established technologies like peer-to-peer

(P2P) overlay networks are used as their base.

This thesis explores the feasibility of decentralising the Web from a content

retrieval perspective. In order to understand the emerging paradigm of the DWeb,

a framework is proposed for studying novel works in the area, and an extensive

analysis is provided on current initiatives. The area of content search has been most

unexplored, and therefore this thesis presents a truly decentralised search engine

based on similarity search, which can be extended to implement keyword search.

This mechanism achieves up to 57% recall of results compared to baseline, and

achieves sub millisecond delays in keyword search for a network size up to 5000.

Furthermore, in order to facilitate a DWeb, resource sharing over P2P networks

requires fair exchange of work for resources. To realise this, a decentralised alloca-

tion mechanism is proposed on the blockchain based on the stable matching prob-

lem. This system achieves low smart contract costs, reducing cost by at least 52%

compared to prior work. Furthermore, allocation throughput and delays improve

over know auction mechanisms, staying under 0.5 seconds for 9000 clients. To fur-
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ther facilitate this system, trust and reputation systems are required, and therefore a

personalised reputation system framework is proposed, using a model learning from

previous blockchain transactions and user preferences.

Finally, novel DWeb technologies generally leverage P2P networking as their

base, and a number of known challenges remain in this area such as security and pri-

vacy concerns. One main challenge is presented by networking infrastructures such

as network address translators (NAT), which limit individuals ability to participate

in P2P networks. To tackle this issue, a decentralised NAT traversal mechanism

is proposed using blockchain smart contracts for resource sharing, and reputation-

based peer discovery. Evaluation of the system shows that using a reputation system

of combined metrics and a two round peer discovery is able to achieve well under

5% malicious nodes chosen as NAT providers, even with the number of malicious

nodes in the network reaching 30%, and the system is able to stabilise in 5-10 ser-

vice cycles.



Impact Statement

In the period during which the work for this thesis was completed, the demand

and interest in DWeb technologies grew exponentially. More commonly known

as Web3, and linked to the underlying blockchain and associated cryptocurrencies,

this technology has become well known throughout society. While many individ-

uals became interested due to the seemingly astronomical returns on investment in

cryptocurrency markets, many businesses have explored transforming key processes

using blockchain services [1, 2]. From the networking perspective, this movement

has proven that traditional concepts such as peer-to-peer networks remain relevant

today, and have scaled to serve millions of users [3]. Because the general area

moves at a rapid pace, a lot of misinformation has been circulated regarding the

underlying technology.

My work provides a comprehensive overview of the field with a focus on con-

tent retrieval, both in terms of academia and industry, from a research perspective,

and analyses if the claims hold up in practise. To achieve this, I present a clear

framework to study the area, and provide extensive background on key concepts

and works from the extensive research literature. Furthermore, through my works

on search engines, allocation mechanisms, reputation systems, and network infras-

tructure sharing, I have carefully assessed the feasibility and pitfalls of decentrali-

sation on the Web. As discussed throughout this thesis, while there are challenges

in realising a DWeb, there are many potential benefits to society, as it may lead to

a more transparent, secure, open, and democratised Web. As the Web has become

a central component in daily life, this may have an enormous impact on the way

people interact with information and each other.
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The work in this thesis is relevant both to academics and industry practition-

ers, and was published at four conferences, while several submissions and collab-

orations with researchers at various institutions are still ongoing. My work is rel-

evant to new, experienced, and cross-disciplinary researchers beyond the field of

networking, as well as industry communities in Web3, general networking, as well

as outsiders who wish to learn more and adapt their business by integrating these

technologies. I have interacted with these communities by presenting my work at

academic meetings, secondary education schools, as well as industry events. Fi-

nally, I have had the opportunity to involve a number of students to work in this

area as part of UCL undergraduate projects, which has produced interesting and

informative reports on decentralised advertisement markets and non-fungible token

(NFT) [4] creation.
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Chapter 1

Introduction

1.1 The Centralisation of Network Services

The inception of the Internet has produced the largest distributed system in the

world, consisting of countless interconnected nodes. On top of this network, various

services have been created such as the World Wide Web, Cloud, and Email, which

have become essential and integral to everyday life [5].

Freedom and autonomy have always played an important role in the Internet.

In fact, the original design of philosophy of the DARPA Internet, an early predeces-

sor to the current network, clearly defines the distributed management of resources

as a key principle [6]. While the Internet infrastructure has remained distributed

on lower layers, the applications built on top of them have become increasingly

centralised, taking away from this design philosophy and user freedom.

In the past decade society has grown to be highly dependent on these cen-

tralised services, increasing the importance of them staying operational at all times,

as well as being secure and private. This becomes especially apparent when looking

at content retrieval on the Web, which accounts for the majority of Internet traffic

(video streaming alone was predicted to reach 82% in 2022 [7]).

Content retrieval is comprised of a number of procedures to deliver relevant

content to a user, which all have increased in the level of centralisation. For exam-

ple, the entry point for accessing content for most users are search engines such as

Google. They are able to optimise performance, but suffer from centralised control
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and a lack of privacy, leading to a power imbalance with users. Furthermore, since

their business model is profit-centric, they keep their service free by monetising user

data through advertisements [8].

Another prime example of the centralisation of services is the Cloud [9, 10],

which allows for easy and cheap storage and computation. This not only includes

personal storage, but also hosting Web pages and applications, bringing a high de-

gree of centralisation to the Web.

The Cloud allows for cheap storage at distant servers, which incentivises both

business and individuals to use this service to store and fetch large amounts of data.

However, this approach is not feasible for all use-cases, especially in low-latency

applications like video streaming, where the delay and throughput constraints are

much more stringent compared to regular files. For this purpose, content delivery

networks (CDN) [11, 12] were established, allowing for data caching much closer

to the user, providing a higher Quality-of-Service (QoS) and Quality-of-Experience

(QoE) [13, 14].

CDN’s allowed for much more decentralisation of content storage, and there-

fore solved many of the problems associated with centralised infrastructures. How-

ever, they achieved a degree of infrastructure decentralisation while keeping man-

agement centralised (i.e. companies still have complete control over the infrastruc-

ture, at the expense of users).

Looking to the future, it is important to look beyond traditional CDN’s to keep

providing satisfactory QoS/QoE with many new users, as well as keep their personal

data secure and private. Decentralised services have the potential to solve some of

the challenges of current infrastructure.

1.2 The Need for Decentralised Services

While the current host-centric content retrieval ecosystem on the Web has several

advantages, mainly in terms of performance and cost, it is exposed to serious flaws

and vulnerabilities, due to the centralisation in control and ownership of the entities

involved (e.g. search engines, DNS, content storage). Users are expected by default
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to trust these centralised entities unconditionally, forming a centralised trust model.

When a single platform controls the majority of the market, a power imbalance

is created between the platform and their users [15]. This may impact society as a

whole as these tech giants are increasingly gaining civic power [16], which includes

the power to influence votes, enable collective action, communicate news, command

attention, give people a voice, and hold power to account.

This power imbalance enables tech giants to abuse their power, fueled by their

desire to keep their leading market share and their profit-oriented approach. For ex-

ample, it is made difficult for users to migrate to new platforms, and therefore this

prevents new initiatives from entering the market, limiting innovation and competi-

tion [17, 18]. Incentivising users to continually use big tech services such as social

media may also promote addiction and have a negative effect on mental and physi-

cal health, depending on users [19, 20]. Another example of this is online gaming,

where the intention of platforms to make money could promote health disorders and

leave users in financial distress [21].

Furthermore, these centralised giants are able to gather enormous amounts of

user data without any control, in order to monetise their services through e.g. per-

sonal advertisements. Their lack of transparency may also lead to a number of other

issues. In the case of search engines, the lack of ranking transparency may lead to

filter bubbles [22], influencing popular and individual opinion, which in turn may

lead to radicalisation [23]. The lack of control may also lead to censorship and bias

(e.g. by governments [24, 25]), and ultimately control over what users think [26].

On a more technical level, by trusting one party (and sometimes even one ma-

chine or server) a single-point-of-failure is created. This not only introduces risks in

terms of potential malicious attacks, such as an eclipse or Denial-of-Service (DoS),

but also may cause a global network outage due to a single human error or natural

disaster, rendering a service completely useless [27, 28].

Finally, another reason why centralised systems are not future proof has to do

with the rapid increase in the amount of users who are connecting to the Internet,

consisting of people who did not have access before, as well as many Internet-
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of-Things (IoT) devices. Current infrastructure is not compatible with upcoming

economies of scale [29, 30, 13].

Recently, numerous projects have begun to adapt and create solutions to the

problems introduced by centralisation. These projects have higher degrees of de-

centralisation and leverage a distributed trust model. Rather than being reliant on a

single root of trust, these projects use other tools like cryptographic proofs and con-

sensus algorithms to establish trust in an environment where users have equal priv-

ileges. Collectively, this movement of decentralising important Web components

is denoted by the terms decentralised Web, DWeb, or more common in industry:

Web3.

Specifically, the DWeb can be defined as a collective of projects and protocols

which aim to make the Web more decentralised, open, and transparent, and thereby

aim to decrease the power imbalance between users and service providers.

1.3 First Steps Towards Decentralised Services

1.3.1 Distribution in P2P and the Edge

In the early 2000’s, researchers increasingly saw the flaws of the centralised client-

server model, leading to the creation of peer-to-peer (P2P) networks, such as Bit-

Torrent [31], a decentralised file sharing system. These networks marked the first

step towards decentralised services in the application layer. In these systems, par-

ticipants acted as a full node in the network, acting simultaneously as a client and

server (this is described in more detail in Section 2.2). Figure 1.1 gives a broad

overview of the timeline of progress in decentralised services.

There were a number of issues with their approach however. To start with,

Internet infrastructure was set up for the client-server model. This meant there was

a presence of many firewalls, virtual private networks (VPN), and network address

translators (NAT), which made it impossible to participate in P2P networks for

regular nodes, due to the lack of connection to the public Internet. On top of this,

incentives were often misaligned, causing free-riding [32, 33, 34]. This made fair

exchange of work for reward impossible, and over time made many of the protocols
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Figure 1.1: Timeline of progress in decentralised services.

unusable. Other issues in these systems include instability due to network churn,

low security due to openness, and difficulty in system maintenance.

Soon it became apparent that pure decentralisation in the form of a truly dis-

tributed P2P network was not attainable due to these performance and security is-

sues. Rather than completely decentralising both the management and infrastruc-

ture, projects next focused mainly on the latter (i.e. infrastructure). From this CDN’s

emerged, where data was cached closer to end users compared to the distant Cloud,

while at the same time being controlled by a single entity to make maintenance and

updates easier. This then moved beyond storage with the emergence of edge com-

puting [29, 30, 35, 36], where computation was moved closer to the network edge to

accommodate for low latency environments such as real-time remote surgery or nat-

ural disaster use-cases, where resource-scarce end-user devices like phones lacked

performance.

This type of infrastructure can be argued to only be partially decentralised, as

equipment is generally managed by single entities. Even if they are open to par-

ticipation from the public, it is not a truly open network due to the high equipment

investments needed. Although these approaches greatly improved in terms of per-

formance, they still lacked openness and might be prone to censorship and security

issues. This can be seen as a less general version of the concepts of the P2P systems,

as now there is a barrier to entry, either in the form of hardware or membership of
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the managing entity. Ideally, a system should be as open as P2P networks so anyone

may fairly participate, while keeping the performance guarantees of the edge-based

approaches, and having better security than both.

1.3.2 Blockchain Networks

The introduction of blockchains marked a renewal of interest in P2P technolo-

gies both from academia and industry. As described originally by Bitcoin [37],

a blockchain is an open immutable shared ledger, which is replicated across all

members of a P2P network who collectively update the ledger using a consensus

mechanism (this is further described in Section 2.3). The original use-case for the

blockchain was a digital currency due to their security benefits, as it prevents double

spending attacks.

Blockchains have since adapted to more complex use-cases, especially with

the introduction of smart contracts [38]. These contracts allow more complex

logic compared to simple transactions to be added to the blockchain, forming ’pro-

grammable transactions’, which could for example include conditions of payment.

With the new interest in blockchain, new initiatives have tackled the problems

which P2P systems aimed to solve, but with new tools. The main difference that

blockchain has made is that crypto-economic incentives can be added in P2P pro-

tocols in the form of rewards for useful work, which prevents free-riding. It also

adds an extra layer of security to the networks, as participants are seen to have ’skin

in the game’, and therefore are less likely to attack the system. Although Internet

money has been around before blockchains [39, 40, 41], the way blockchain inte-

grates research concepts like cryptography and P2P networks makes it an excellent

candidate to power truly decentralised services.

Besides user incentives, blockchain based network services have another ad-

vantage over traditional distributed systems: they allow for anyone to offer a service,

without making it mandatory to participate for all nodes. An example of this is that

users can be simple clients and connect to a full node in the network to participate

in transactions, but do not need to keep up the entire ledger themselves, as only full

nodes have this task. This structure allows for much more flexibility and openness
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to participation.

It has been argued however, that many of the same problems that P2P networks

faced still remain a problem in blockchain networks [32], especially with permis-

sionless and open blockchains. It is argued that a permissioned (private or consor-

tium) version of blockchain [42], which reintroduces some centralisation in terms

of network management is a better suited candidate for decentralising the Internet.

Although this might be the case when looking at first generation blockchains, new

developments tackle a lot of the challenges such as system maintenance and secu-

rity. It can be argued that user incentives and the associated elimination of network

churn have been key design principles from the start.

1.3.3 Decentralisation of Web Services

The usage of a technology beyond its original use-case is a characteristic of the

fourth industrial revolution [43], and the blockchain applications beyond simple

payment are no exception. Smart contracts and micro-payments using blockchain

started being leveraged to create a shared network economy, where users could share

spare network resources, in return for which they would receive rewards in the form

of cryptocurrency tokens. Conversely, if they want to use a service they will pay

for it in tokens. Examples of these network-resource sharing (NRS) services are

storage [44], computation [45], and bandwidth [46, 47, 48].

Simultaneously, a renewed interest arose in P2P storage networks, producing

a number of novel decentralised storage networks (DSN) [49, 50] which leverage

a mix of concepts like distributed hash tables (DHT) and content-addressing from

P2P and information centric networking (ICN) [51].

These two concepts (i.e. NRS services powered by blockchain and DSN’s)

together form a solid foundation to create alternatives for Web services. In the

current Web, most users access and discover Web content using a keyword-search

based workflow. A user generally opens a search engine and submits a number of

keywords, specifying the content they are looking for. The search engine returns

the relevant results of the domain name pointing to the location of the server which

can provide the content.



1.4. Open Issues and Challenges 27

In a decentralised Web, each step of content discovery and interaction is envi-

sioned to be decentralised and performed collaboratively by peers in the network

(i.e. decentralised search mechanisms, name-registry, storage and more), incen-

tivised using a reward layer using smart contracts.

1.4 Open Issues and Challenges

While the objective of the DWeb is to achieve decentralisation, it is an open ques-

tion whether this can be achieved in practice or not. Current Web centralisation is

driven by economic concentration, and it is unclear if the same would not happen

to the DWeb. Furthermore, interacting with untrusted, anonymous peers requires

additional security mechanisms that are difficult to design and can lower the overall

performance of the system.

There are a number of challenges to address in order to realise decentralised,

blockchain-based services. Such a system needs to be carefully designed, with user

incentives aligned, in order to leverage the benefits of decentralisation while not

compromising on performance, scalability, and security. First there is the issue of

infrastructure barriers to entry, mainly in the form of NAT’s, VPN’s and firewalls.

These restrict participation in the network as a full node. Beyond connection, quick

service discovery and fair exchange of work for reward are prominent issues.

Moreover, there is the challenge of finding a reputable service provider. As

anyone in the network may provide a service, there is extra care which needs to be

taken in order to avoid malicious peers. For this, metrics like trust and reputation

may be used to distinguish potential malicious nodes. Trust and reputation systems

have been implemented in centralised systems like e-commerce, as well as in dis-

tributed P2P networks, but they are yet to be optimised for blockchain networks.

Finding content on the DWeb is also challengeing as current models leverage one

or more trusted parties in the process. Throughout the rest of this thesis, open issues

are discussed in each section.
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1.5 Research Question and Hypotheses
In order to thoroughly study decentralised content retrieval on the decentralised

Web, this work aims to answer the following research question:

Research Question: How can novel P2P solutions and blockchain be lever-

aged to create decentralised counterparts to centralised Web services (espe-

cially in content search and retrieval), without compromising on key features

such as security and performance?

In order to answer this research question I have formulated the following core

hypotheses:

Hypothesis H1: Decentralised network resource sharing services can be de-

signed using blockchain-based incentives, in order to overcome limitations of

both traditional P2P systems, as well as centralised services.

Hypothesis H2: A decentralised Web can be realised with the aid of net-

work resource sharing services, blockchains, and decentralised storage net-

works, decentralising the major components of content retrieval on the Web

(search, name resolution, storage).

Hypothesis H3: While a decentralised Web can be realised, it is not triv-

ial to ensure satisfactory QoS/QoE for users, especially in terms of security,

privacy, and performance.

The research question and hypotheses can be used to identify a number of

sub-goals, which will be referred to throughout this thesis to highlight and frame

the contributions. These sub-goals will need to be realised in order to answer the

research question and test the hypotheses.

Goal G1: Develop a framework for studying and integrating decentralised

Web services and protocols, and use this to gain insights on the components

of content retrieval in a DWeb environment.
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Goal G2: Create a decentralised content search mechanism which allows

users to interact with DWeb content, accommodating for both human-

readable and self-certifying names, as well as a variety of content and un-

derlying protocols.

Goal G3: Create methods for peers to find others who are able to provide a

service, in a manner that is similar in performance to centralised solutions,

while ensuring that there is a mitigation of malicious nodes.

Goal G4: Create protocols which allow for fair exchange of useful work for

rewards in cryptocurrencies. The amount rewarded should be based on the

performance of a node in terms of QoS. This may be done for example using

micro-payments.

Goal G5: Develop network resource sharing services with a careful consid-

eration of crypto-economic incentives. This needs to keep nodes honest, deter

malicious attacks, and make the overall network useful.

Goal G6: Allow for peers in a network to identify malicious and honest

nodes by keeping metrics of each other, thereby forming a trust and repu-

tation system.

Goal G7: Study and develop solutions to connectivity problems in P2P sys-

tems, in order to ensure openness and security of decentralised NRS services.

1.6 Methodology
To answer the research question, test the hypotheses, and achieve the sub-goals

mentioned above, a number of research methods are used. First of all, a rele-

vant body of work in decentralised Web was surveyed. This includes works from

academia starting from the distributed systems, P2P era, and content retrieval, up

until recent works on blockchain, DWeb, Web3, and DSN’s. Furthermore, a number

of techniques from cryptography, reputation, mathematics, and game-theory were

examined to be used in system design.
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Besides academic literature, industry work was surveyed as the field is rapidly

changing and a lot of developments happen outside academia. Particular attention

was paid to works which were cited in academic sources in order to curate a high

quality body of work, and they were manually inspected to verify correctness and

objectivity.

Second of all, complete system solutions were designed to tackle one or more

of the sub-goals highlighted above, and these systems were analytically studied and

evaluated, partially through simulations. For example, smart contracts need to be

tested to make sure they work properly and determine their scalability and cost. On

the other hand, large P2P simulations can be performed to ensure a system reaches

an equilibrium, or to assess whether effective cooperation between peers is possible.

Besides these practical simulations, more theoretical approaches, as well as

comparative evaluations were used, directly comparing the proposed systems to

results found in other works to draw conclusions. Finally, real world network mea-

surements allowed for testing viability of an idea, or to more clearly understand the

problem that needs to be addressed.

1.7 Contributions
This thesis includes work ranging from creating a framework for the DWeb and

creating alternative systems for Web retrieval systems, to tackling networking and

resource allocation problems. Specifically, I make the following contributions:

Contribution 1: Introduce a framework for studying DWeb initiatives, in

order to define a global view and vision for interoperability. This is used to

comparatively analyse current projects and systems, and define open issues

and challenges [52]. This satisfies sub-goal G1.

Contribution 2: Analyse current decentralised search mechanisms, and de-

sign and implement a decentralised crawler-indexer style search engine for

a DSN [53]. Furthermore, based on the lessons learned, design, implement,

and evaluate a truly decentralised search system based an alternative search-

workflow using similarity search [54]. This satisfies sub-goal G2.
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Contribution 3: Design and evaluate an allocation mechanism for NRS ser-

vices, which is highly scalable, fast, and lightweight. This uses stable match-

ing algorithms and improves on auction-based approaches on smart contracts

[55]. This satisfies sub-goals G3, G4, and G5.

Contribution 4: Analyse methods of establishing trust and reputation in de-

centralised environments and NRS services, resulting in the design of an AI-

based personalised reputation system using blockchain data [56]. This satis-

fies sub-goal G6.

Contribution 5: Analyse networking problems in novel P2P systems such

as DSN’s, and expose security vulnerabilities such as content-eclipsing at-

tacks. Develop a decentralised NAT traversal system, which uses smart con-

tracts for rewards and reputation to select reliable relays [57]. This satisfies

sub-goals G4, G5, G6, and G7.

1.8 Thesis Outline
The rest of this thesis is organised as follows:

Chapter 2 introduces preliminary concepts and classifies the literature used in this

thesis. This consists of P2P networks, blockchains, network resource sharing

services, and reputation systems.

Chapter 3 gives a thorough overview of content retrieval on the DWeb by

analysing current works from industry and academia using a defined frame-

work for DWeb initiatives. Using this, a number of open issues are defined

in the key DWeb components of search engines, name-registries, and file

systems.

Chapter 4 explores decentralised search mechanisms for DWeb content. A search

engine based on similarity search is proposed which captures a range of use-

cases including keyword-search, and is agnostic to underlying blockchain or

storage network assumptions.
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Chapter 5 presents an allocation system which is highly scalable, fast, and

lightweight, targeted at NRS services. The system leverages stable matching

algorithms, as well as smart contracts and trusted execution environments.

Chapter 6 focuses on connection issues, and particularly NAT traversal, in P2P

networking which affect DWeb services. A decentralised NAT traversal

mechanism is introduced which relies on network peers functioning as relays,

who are incentivised to contribute using blockchain rewards.

Chapter 7 summarises this thesis and describes a number of directions for future

work.



Chapter 2

Preliminary Concepts

This chapter introduces a description and classification of the literature used in this

thesis, after which preliminary concepts are discussed. Particularly, an overview

is given on peer-to-peer networks, blockchain, network resource sharing services,

and trust and reputation systems. Figure 2.1 provides a broad overview of the key

preliminary concepts discussed in this chapter.

2.1 Classification of Literature
The background literature can be classified in a number of ways. First, there are

related technologies which power DWeb solutions, which include blockchain, repu-

tation systems, and more. These are broadly discussed in this chapter, as they form

the base for many of the DWeb services, and are referred to later throughout the

text. On the other hand, concepts, theory, and implementations of the decentralised

services are further discussed in Chapter 3.

Another way that literature can be subdivided in decentralised services is based

on time-periods. First, there is the P2P era, where there are mainly fully distributed

collaborative services based on an altruistic model, and without much attention to

monetary rewards. While these systems have many shortcomings, they should be

closely studied in designing current systems in order to overcome well known chal-

lenges. Second, there is the blockchain era, which is characterised by a distributed

shared ledger which is used to store transactions and other data. Among these are

also NRS services such as storage, as their design principles and assumptions of-
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Figure 2.1: Overview of key preliminary concepts.

ten align, as well as their underlying technologies. Here, the area of economic

incentives is much more prominent, as incentives can be modified to protect against

malicious behaviour, leading to unusable systems.

2.2 Peer-to-Peer Networks
Peer-to-peer (P2P) networks emerged as alternatives to the client-server model,

where a network of many nodes pools their resources together as equal peers with-

out central control or orchestration, in order to provide a distributed application

architecture (originally for content storage and delivery) [58, 5]. In P2P networks,

network tasks and workloads are partitioned between peers, who are equally priv-

ileged participants in the application and can simultaneously listen for request and

send queries. These peers share resources such as storage, bandwidth, or compu-

tation with the rest of the network, alleviating the need for centrally managed Web

servers and services, based on altruism [59].

P2P networks are realised by forming a virtual overlay network on top of the

physical network topology. Nodes in the overlay form a subset of the nodes in

the physical network, and geographically close nodes are not necessarily close in

the overlay routing. Peers form connections with other nodes in the network, who

become their neighbours in the topology. When routing requests, a peer relies on
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their neighbours who forward the request to their neighbours (who are relevant in

finding the result), which continues for multiple hops until the request is satisfied.

Exchange of data still relies on the underlying network (i.e. TCP/IP), but peers

can communicate with each other directly using the overlay links in the application

layer. These overlays are also used for tasks like indexing and peer discovery, mak-

ing them distinct from other network topologies. Most DWeb initiatives leverage

P2P networks, as they provide a solid base for sharing resources and providing ap-

plication infrastructures in a decentralised environment without a trusted centralised

entity.

There are two main types of P2P networks based on the overlay implementa-

tion: (i) unstructured and (ii) structured.

2.2.1 Unstructured P2P Networks

In unstructured P2P networks, the overlay is not designed to form a particular struc-

ture of connections between peers. Instead, peers form random connections with

other nodes in the network in order to form their view of the network [60, 61, 62].

Generally, unstructured P2P networks are easy to implement and are robust to churn,

as peers do not require a global view and constantly update their neighbours.

Querying for content is more challenging in unstructured networks. In early

works, flooding was the most prominent way of sending queries [60], which in-

volved sending the query to all neighbours, who would do the same. While this

maximises the chance of finding a peer who has the content, it is also highly ineffi-

cient and unscalable, as its overhead on the network grows linearly with the number

of search queries. Furthermore, in terms of performance, popular content may be

found fairly quickly if many peers have it cached, but if the content is less popular

high average latencies are to be expected to fetch these items. More recent unstruc-

tured P2P systems use slightly more scalable search mechanisms such as random

walks [63] and scoped flooding [64] (some of these works are discussed in Chapter

3), but they still do not match the performance of structured networks in ensuring

unpopular content is found quickly.
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2.2.2 Structured P2P Networks

Structured P2P networks differ from unstructured network as their overlay is or-

ganised into a specified topology. Because of this, any node can efficiently search

the network for content, even if the resource is extremely rare. Most commonly,

structured P2P networks are implemented using a distributed hash table (DHT)

[65, 66, 67, 68, 69].

A consistent hashing algorithm is used to assign all content to a particular

peer among the network, based on a distance parameter. For example, in Kademlia

[65], the most popular DHT implementation, nodes are assigned ID’s on a 160-bit

keyspace envisioned as a binary tree, by creating a random public/private key pair.

To assign responsibility for a {key:value} pair to the closest node the XOR distance

metric is used, which uses longest prefix matching between peer and key. The

peer closest in the keyspace to the content becomes responsible for maintaining the

record. Now, peers can easily search the network using a hash table, allowing for

efficient retrieval of content (usually in O(log(n)), where n is the number of peers in

the network).

Maintaining the overlay of organised peers makes structured networks less ro-

bust in networks with a high rate of churn. Maintaining a structure also exposes

the network to vast range of attacks that can be more difficult to perform in an un-

structured P2P network [70]. On the other hand, while this approach adds more

overhead, it improves performance, especially the recall of rare content.

2.3 Blockchain

2.3.1 Overview

Blockchain and its use as a distributed ledger technology was originally proposed

in the Bitcoin whitepaper [37]. Its original use was as a digital currency, which

was resilient to double spending attacks, due to the immutability and security of

the digital ledger. Since then however, blockchains have been extended and used in

various use-cases.

A blockchain is built on top of a P2P network and consists of a large number of
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nodes which all have a full view of the shared history (the chain of blocks of trans-

actions). This chain is append-only, which avoids double spending. Each full node

in the network keeps a copy of the entire ledger, leading to redundancy and security,

as now 51 % of the network would need to be malicious in order to propagate an

incorrect view of the ledger.

Nodes in the network send transaction messages to all other peers using a flood-

ing protocol, and these nodes aggregate all incoming messages in order to produce

blocks. A consensus algorithm determines how these blocks are produced [71].

Proof-of-Work (PoW) [72, 73] for example does this by letting all nodes compete

to mine the next block using a cryptographic puzzle. Nodes hash all transactions

together in a Merkle root, and combine it with the hash of the previous block on the

chain. They then add a nonce (random integer) to this and hash the values together

in order to produce a new hash. If this hash contains a preset number of preceding

zeros, it is considered the next block. Miners keep repeating the calculation with

different nonces until they find this block, after which they broadcast it to the net-

work, which then validates its correctness. Mining and consensus protocols vary

with different implementations of blockchains.

Besides PoW there are number of other consensus algorithms [71] which may

be used to maintain the chain. Proof-of-Stake (PoS) [74, 75, 76] is the most pop-

ular, and it assigns a higher probability of producing the next block to users who

have a higher stake in the system (in terms of cryptocurrency collateral). Its main

improvement over PoW is that it does not waste as many resources by performing

useless work to calculate the cryptographic puzzle, and does not consume as much

energy. It also lowers participation barriers as any user can participate in consen-

sus and earn rewards, without expensive computational setups. PoW has become

increasingly centralised due to a small number of nodes controlling a large amount

of computational power, lowering network security. Other consensus algorithms

include Proof-of-Storage [77, 78], Proof-of-Authority [79], and Nominated-Proof-

of-Stake [80, 81].

Beyond simple payments, smart contracts were introduced by the Ethereum
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[82] blockchain. These allow for complex logic (i.e. scripts of code) to be added

on-chain [38]. In Ethereum, these contracts can be defined by users with various

conditions in the Turing-complete Solidity programming language, after which it

can be deployed by compiling it to the Ethereum Virtual Machine, which results

to the code to be added to the chain under its own address which is callable by

nodes. Executing functions defined in the smart contract has an associated gas

cost, which is proportional to the added load on the network, as well as a time-

constraint set by the user. This monetary gas cost needs to be paid by the user for

the computation, regardless of success of the transaction. Gas is paid in Ether, the

cryptocurrency used in Ethereum, and the amount depends on the time constraints

of the transaction. In order to write scalable and user friendly smart contracts,

the interaction with the smart contract needs to be kept to a minimum, as every

function call results in gas costs. Furthermore, storing data on-chain in a smart

contract becomes extremely expensive. Therefore, using a blockchain as a data

storage source is not feasible. Smart contracts also have difficulty interacting with

data off-chain, although this can be solved using data oracles [83, 84, 85].

Smart contracts can be used to implement conditional payments, thereby creat-

ing decentralised applications (DApps) [86, 87]. Blockchains are especially useful

in DWeb architectures due to their ability to incentivise users to participate and

contribute to the network or DApp by paying them rewards in cryptocurrencies or

tokens. However, blockchains are only able to ensure a fair exchange of reward

for work, if the resource contributors can produce verifiable proofs of resource con-

sumption for useful work. For example, a node can prove that bandwidth [88],

computation [89, 72], or storage [90] resources were actually provided or used for

system up-keeping, and a subset of the participants in the system can collectively

verify these proofs, which can then trigger automatic rewarding of contributors for

their valid proofs. Section 2.4 will discuss how NRS services are implemented

further.

Proving useful work is not always straightforward, for instance, for continuous

services that take place for a period of time. When such proofs are unavailable,
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beneficiaries may issue periodic payments to contributors (at the end of fixed or

increasing time intervals) as long as the provided service is satisfactory. However,

if the counter-party is malicious, it could lead to a loss of revenue for at least one

interval, and the absence of penalties for malicious behaviour may encourage more

nodes to behave undesirably. In this case, trust and reputation systems are useful,

as described in Section 2.5.

2.3.2 Permissionless and Permissioned Blockchains

Blockchains were proposed as open systems, where anyone can join without com-

promising on privacy. Although it has been shown that Bitcoin is only pseudony-

mous [91] and personal data can be inferred from on-chain data, it remains open

and permissionless. This means that anyone can join at any time without any bar-

rier to entry. It has been argued that permissionless blockchains have some inherent

issues [32], similar to P2P based solutions, which could make them unsuitable for

creating a decentralised Web. It remains to be seen whether this will be the case

when blockchains evolve and adopt scaling solutions (Section 2.3.4).

As an alternative to these open systems, permissioned blockchains [92, 93]

emerged, allowing entities to control the blockchain and exercise more control over

who entered the network. While this takes away from true decentralisation, it is

more attractive to corporations and governments as they retain control over access

management and identities [94, 95]. Most notably Hyperledger Fabric [96] offers

a modular architecture for implementing these types of blockchains. As permis-

sioned blockchains take away from openness, privacy, and decentralisation, and add

a component of control, the rest of this work is mainly focused on permissionless

blockchains.

2.3.3 Blockchain Challenges

Current blockchains have a number of inherent challenges, which need to be over-

come in order for them to reach their true potential. As characterised by Vitalik

Buterin, blockchains suffer from the scalability trilemma [97, 98]. This means that

out of the following three properties, they can achieve at most two at a time. These
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properties are: scalability, security, and decentralisation.

The scalability problem has proven to be a performance bottleneck for many

projects. However, decoupling the blockchain layer (layer 1) and scalabillity solu-

tions (layer 2), as described in Section 2.3.4, seems a promising development which

may solve this issue. Another remaining challenge is that of security and privacy

[99, 100]. As mentioned before, blockchain transactions can expose a significant

amount of user data. To tackle this a number of projects such as Zcash [101] use

zero-knowledge proofs [102], leading to better privacy guarantees. Furthermore,

there are a number of attack vectors such as sybil, eclipsing, and phishing attacks

which may severely impact the blockchain security. Centralisation of mining power

is another known issue possibly undermining the security of the chain, and key

management issues may lead to loss of funds or ownership.

Finally, there are a number of lower layer challenges related to blockchain.

First of all, there is the connectivity issue, which causes participation difficulty for

users due to current Internet infrastructure. Specifically, nodes who are behind a

NAT or firewall are not able to participate as a full node in the P2P network, and

therefore a large portion of the network is only able to function as a (light) client

node. Second, transaction and block propagation in networks like Bitcoin are quite

inefficient, as they generally use a flooding approach. Recent work aims to make the

underlying communication layer more efficient by using alternative message prop-

agation techniques [103, 104]. Other known issues in P2P networking also apply,

which includes churn, free-riding, and system maintenance and upgradability.

2.3.4 Next Generation Blockchain

While it could be argued that first generation blockchains are not suitable for a

decentralised Web as they suffer from instabilities and scalability limitations, next

generation blockchains are expected to overcome these issues.

As the field of blockchain is relatively young, it is still under very active devel-

opment. As such, many projects are working on solving the challenges of Bitcoin

and Ethereum. For example, in Ethereum 2.0 [105] this is achieved in two steps.

First, like many systems it’s moving away from the expensive PoW mechanism to-
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wards PoS-based consensus. On top of this, sharded chains [106] are leveraged to

achieve scalability at the blockchain layer. Furthermore, layer 2 solutions [107] are

used, which are solutions allowing for scalability off the main chain. These include

optimistic and zero-knowledge rollups [108] and payment channel networks (see

Section 2.3.5).

Other big projects follow a similar trajectory of achieving scalability. Polka-

dot 1 uses a parachain approach, where a number of individual chains are linked

together using a relay chain, which is governed using Nominated Proof of Stake

(NPoS), allowing for a higher transaction throughput [80, 109, 110]. Cardano 2

uses Ourobouros [74], a modified version of Proof of Stake.

2.3.5 State Channels

Payment channels are one of the scalability solutions which has been implemented.

As cost of transactions need to be low for any blockchain system to be usable,

especially when lots of smaller micro-transactions are sent as is the case with con-

tinuous, time-bounded services, payment channels present a solution to keep fees

low.

Instead of on-chain payments, which form a performance bottleneck, payment

channels only require a fee for an initial deposit and withdraw, allowing any inter-

mediate transactions to be sent free of charge. This is achieved by sending payment

receipts, which allow the recipient to cash them in at any point on-chain. These

receipts keep track of the balance between both parties, and any party can send as

many as their initial deposit allows. Payment receipts can be hash locked, condi-

tional, or optimistic, allowing more security on the client side. The interval (i.e.

time window) upon which receipts are sent, for example for a service, can also be

adjusted based on the trust or reputability of the counter party.

A more general extension to payment channels are state channels [111]. They

allow for the execution of any arbitrary application on the channels, bringing the

functionality of smart contracts off-chain and extending channels beyond simple

1https://polkadot.network
2https://cardano.org

https://polkadot.network
https://cardano.org
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payment transactions.

A further extension comes in the form of payment channel networks [112, 113,

114, 115, 116]. An example of an implemented payment channel network is the

Raiden Network 3 for Ethereum. These rely on payment channels, but extend them

with cross-channel payments, allowing for transactions between nodes who do not

have a direct channel. These are also called virtual channels. A locked transaction

is routed through a path of nodes who have payment channels with enough capacity

to support the payment amount. The receiver requests the secret to unlock the pay-

ment, which it sends to the closest node (last hop) to receive a balance proof of the

payment. This happens between all other nodes on route to finalise the payment.

When nodes become unresponsive, the payment can be settled on-chain, using the

blockchain as an arbitrator.

As payment channel networks are realised using a type of unstructured overlay

network where all channels have a capacity, a number of works [117, 118, 119,

120, 121, 122, 123] have worked on optimising the routing process in terms of

privacy, security, and routing efficiency. This can be achieved using a global view

of the network to calculate optimal paths and using algorithms like Breadth-First

Search (BFS). However, gathering a global view is difficult without the use of one

or more privileged peers. The other option relies on routing through random paths.

In Flash [124] larger payments are sent over optimal paths and smaller transactions

use random static paths.

2.4 Network Resource Sharing Services
An important aspect of a decentralised Web is the ability to outsource tasks to spare

resources, creating network resource sharing (NRS) services. Sharing network re-

sources in a decentralised network isn’t a new concept, but what makes DWeb ini-

tiatives unique is their integration with blockchains to create an incentive layer, as

well as their focus on decentralisation of control and security (rather than scalabil-

ity and performance of earlier P2P works). These services are essential as central

3https://raiden.network

https://raiden.network
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servers (e.g. the Cloud) need not be blindly trusted.

As discussed above, classical peer-to-peer (P2P) systems suffered from a num-

ber of problems in the long term, including, free-riding, instability due to churn,

and security vulnerabilities. Furthermore, these systems either lacked incentives to

do so, or these incentives were not strong enough to keep users honest. By pro-

viding a fair exchange for performed work in the form of cryptocurrency rewards,

blockchain-based NRS services add incentives, security, and robustness.

NRS services can broadly be classified as storage, computation, or bandwidth

sharing services. A service may also target all of these, as is the case for decentral-

ized content delivery networks.

In terms of storage, there are many P2P based systems that focused on pro-

ducing DHT based storage networks. Most notable of these was BitTorrent [31].

Tit-for-tat was used to deter users from free-riding, and the protocol became widely

adopted. However, BitTorrent faced a number of issues such as instability due to

churn, security, and system complexity. Furthermore, its main use became the dis-

tribution of unlicensed products, leading to copyright and legal issues.

Recently, a number of projects aim to tackle the flaws of previous attempts,

and create usable decentralised storage networks (DSN). For example, IPFS [50]

is a storage network which is based on a DHT, but differs from previous attempts

by using content addressing. This means that content is hashed when added to the

network, and anyone in the network can fetch it from anyone who serves the file,

regardless of their location. It also ensures persistence of content, which is not

the case currently, for example when a file is moved to a different location. Novel

DSN’s are further covered in Section 3.6.

IPFS does not have built in incentives mechanisms to encourage nodes to store

files. To achieve this, Filecoin [44, 125] was built as an incentive layer, forming

a decentralised storage market. Filecoin is a prime example of a NRS service. It

uses a blockchain, and allows for value transfer in FIL cryptocurrency on-chain,

without the need for external trusted parties. On top of this, Filecoin requires stor-

age nodes to send proofs of storage on predetermined intervals, which earn them
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rewards. Storage deals are also made on-chain using an orderbook approach. On

top of this, there is a secondary retrieval market, which allows nodes looking for

content to use an intermediary retrieval miner to find and serve the content, earning

micropayments. These deals are completely off-chain. However, due to the large

system requirements, Filecoin mining has become increasingly centralised.

When it comes to bandwidth sharing, a number of initiatives, both from re-

search and industry, have aimed to incentivise users to sell spare bandwidth in return

for cryptocurrency rewards. Ghosh et al. [88] use TorCoins to reward users who

share their bandwidth as relays in the Tor network. In order to verify that claimed

rewards are proportional to users’ work, a proof of bandwidth is used. Contributors

in a circuit are able to claim rewards based on the end-to-end QoS measured over

the whole path.

A number of recent initiatives aim to create decentralised Virtual Private Net-

works (VPN), by allowing users who have spare bandwidth available to sell it in

return for cryptocurrency rewards. These include Mystereum [46], Orchid [47],

and Sentinel [48].

Finally, decentralised computation outsourcing can be enabled by blockchain.

Similar to edge computing, a node with a heavy computation task may offload to

the network in return for payment. In contrast to edge computing, any node with

spare capacity is able to perform and assist on the task. Golem [45] uses Ethereum

and an ERC20 token to store computation off-loading deals and pay for services.

Examples of computation which can easily be outsourced include machine learning

tasks, video transcoding, and simulations.

In decentralised systems, any participant can create and control an identity

without the involvement of a trusted third party. This makes it possible for mali-

cious nodes to simultaneously use multiple identities as part of a Sybil attack. By

generating multiple Sybil identities (who pretend to be genuine users), malicious

parties can trick a fair exchange mechanism into issuing undeserved rewards, for

instance by inflating the amount of actual resources consumed by the node. To

prevent such attacks, proofs of resource consumption must be Sybil resistant.
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2.5 Trust and Reputation Systems

While the blockchain can be used to establish trust for transactions on-chain, the

actual NRS service is provided off-chain and occurs directly between two parties.

This means that one cannot rely solely on an honest majority of the network for

security. A simple illustration is a provider node which promises a service, but is

not able to complete the service. While it does not gain extra rewards, the client

may experience additional negative consequences. As any node in the network is

potentially malicious there is a risk with every deal.

To discern between honest and malicious parties a trust and reputation sys-

tem can be used. Generally, a reputation system is a mechanism which produces a

score for nodes in a network, indicating the trust in a likely positive experience with

them. Trust and reputation metrics play an important role when making transactions

on the Internet. Initially, these were mainly used for e-commerce purposes, where

customer ratings played an important part in identifying a trustworthy party to buy

from, as well as a trustworthy product [126]. These reputation systems were cen-

tralised, and often controlled by the same entity who controlled the sale platform,

who sometimes were the seller themselves. This created security vulnerabilities,

which is why decentralised reputation systems have risen in popularity.

Distributed reputation systems emerged in parallel with P2P systems, and

many of them were built on top of P2P overlay networks. There was a wide range in

their implementation and score calculation functions. Some used simple additions

of positive scores, while others used more complex logic. Metrics used in the cal-

culation could be either public (available to the whole network) or private (metrics

only based on a node’s own experiences), or a combination of the two. Metrics and

scores could also be (partially) shared to others in the network [127, 128, 129, 130].

However, these ultimately did not reach mass adoption due to their complexity and

security vulnerabilities.

While decentralised reputation systems can be susceptible to the Sybil attack

described above, researchers have proposed reputation systems that can identify

Sybil nodes through specific mechanisms, which include voting [131] and social
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network analysis [132]. These mechanisms are able to identify outlier nodes as

Sybils in the presence of an honest majority. For example, when a node lacks con-

nections to other honest nodes in a social network, it can be seen as a sign of poten-

tial Sybil activity.

An interesting use-case for reputation systems are blockchain services [133,

134, 135], as two parties transact and need a measure of trust. Dennis and Owenson

[136] present an interesting opportunity, to use blockchain transactions on-chain as

public metrics in a distributed reputation system. Decentralised trust and reputation

systems and their integration with blockchains is further discussed in Section 5.4.



Chapter 3

The Decentralised Web: Overview

and Framework

This chapter gives a thorough overview of content retrieval on the DWeb, and ex-

plores if the decentralisation objective of novel initiatives is realised by investigat-

ing properties such as incentive structures, performance, security and privacy. To

analyse DWeb content retrieval, this chapter identifies a framework which is analo-

gous to content retrieval on the current Web. This starts with decentralised search

engines, decentralised name-registries, and finally decentralised file systems.

These areas are identified as focus areas, for which decentralised alternatives

will need to be developed. This chapter first describes the status quo, i.e. how oper-

ations are performed in the current Web. This is then compared with state-of-the-art

decentralised implementations and proposals from both academia and industry. The

insights gained are used to formulate a number of open issues.

3.1 Introduction to the Decentralised Web
In recent decades, the World Wide Web has become a fundamental and integral

part of everyday live. The Web not only supports the global economy and provides

entertainment, it is also often the main source of information about the world [137].

Additionally, peoples views, opinions, and choices can largely be impacted by the

Web [138].

While originally designed as a decentralised network of equal peers, the Inter-
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net has evolved into an increasingly centralised system over the past decade, with a

handful of players (e.g. tech giants like Google or Apple) controlling the majority of

the market [139]. While centralisation allowed these giants to provide outstanding

services and QoE for users for free, their centralised model of service delivery has

introduced several drawbacks such as lack of transparency [140], lack of privacy-

protection [141], a single point of failure [27], and censorship [142]. The challenges

introduced by centralisation have been discussed in Section 1.2.

Recent initiatives in research and industry aim to tackle these issues by creat-

ing an open and decentralised Web (DWeb), also known as Web 3.0 or Web3. As

mentioned in Section 1.3, this movement aims to fix the problems that come with

centralisation, by focusing on openness, security by design, and decentralised gov-

ernance and control. This is achieved by using transparent, open source software,

as well as using P2P networks [143], which allow anyone to join and contribute to

the system. Tools like blockchains [144], proofs of work [71] and self-certification

through content addressing [50] form important building blocks to establish trust

between anonymous users and reliably reward system contributors.

The objective of the DWeb is to achieve decentralisation, in terms of redistri-

bution of ownership and control from centralised infrastructures to individual users.

However, it is an open question whether this can be achieved in practice or not. Cen-

tralisation of the Web is caused by economic concentration, and it is unclear whether

the same would not happen to the DWeb. Furthermore, interacting with untrusted,

anonymous peers requires additional security mechanisms that are difficult to de-

sign and can lower the overall performance of the system. Finally, the current Web

retrieval model is derived from services that monetise through advertisements, and

usually are able to deliver high QoS and QoE to users without monetary compensa-

tion. Although end-users do not directly pay for these centralised services, service

providers collect user-related data and display targeted advertisements, making the

ecosystem economically viable [145]. To be successful, the DWeb would have to

reward service providers and content creators, while combating users’ reluctance to

spend money.
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To overcome the challenges of centralisation, a number of decentralised ini-

tiatives have emerged that offer decentralised counterparts of various components

of the Web, starting initially with content storage systems. Over the years, decen-

tralised file systems have gained increasing popularity, with a major file system

recently reportedly serving tens of millions of content requests per day [146, 147].

While technically decentralised file systems are built on top of DSNs, throughout

this thesis they are used interchangeably, as they have become synonymous. Be-

sides (1) decentralised file systems, two other important components have recently

emerged: (2) decentralised search engines and (3) decentralised name registry in-

frastructures. These three components together form the foundations for a Decen-

tralised Web (DWeb), because they form the key pillars of popular content retrieval

workflows. This chapter analyses research trends and emerging technologies used

for decentralising content retrieval on the DWeb.

Several open issues are highlighted throughout the chapter which need to be

overcome in order to realise a truly decentralised Web. For search engines, achiev-

ing good performance (comparable to current centralised search engines) without

sacrificing decentralisation is a major challenge. Furthermore, decentralised file

systems achieve secure content retrieval in a decentralised manner, but they face

both usability (e.g. lack of human-readable names), performance, and privacy is-

sues. Finally, decentralised name registries can solve some of the challenges of file

systems, but require thorough security analyses and can possibly be extended with

better governance and crypto-economic incentive mechanisms.

The rest of this chapter is structured as follows. Section 3.2, describes how

the literature was collected to curate a high quality body of work, after which Sec-

tion 3.3 gives an overview of Web content retrieval and present a systematisation

framework used for structuring this work. Section 3.4 discusses search engines, af-

ter which Section 3.5 analyses name registries. Section 3.6 examines decentralised

file systems, after which the chapter is summarised in Section 3.7.
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3.2 Literature Collection
In order to provide a comprehensive overview of DWeb initiatives from a content

retrieval aspect, a large body of work was surveyed and analysed. This section

explains the scope of the literature, methodology of collection, and related work

who surveyed DWeb related topics.

3.2.1 Scope

While the documentation of novel industrial DWeb projects is often scarce, their

underlying concepts are usually derived from an extensive body of research, which

is utilised for background and comparison to recent projects. The main body of

work spans the time period 2009-2022, and focuses on projects that have produced

working implementations, as well as research proposals. While an overview is pro-

vided of how components are handled in the current Web, there is no analysis of

specific centralised solutions, except when this is appropriate for comparisons.

Furthermore, this chapter highlights architectures, their properties, and their

aims. However, it is too early to definitively conclude that they are able to live up to

their claimed potential, and this nuance has been added in the open issues section.

This work mainly serves as a general analysis of the DWeb at large, a framework

for analysing and implementing new initiatives, and the first comprehensive body

of work looking at DWeb technologies and their role in content retrieval analogous

to the current Web. This work is therefore relevant both to industry practitioners

and researchers who aim to get a better understanding of the field at large.

3.2.2 Methodology

In order to survey a relevant body of work, research search engines (e.g. Google

Scholar) were queried for works which contain {decentralised + Web} in their title,

keywords, or abstract. Further queries for {distributed + Web} were added, which

generally returned works of the prior P2P era. These early works were used in

conjunction with general {Web + content retrieval} works, in order to identify key

components and determine the framework. Key components of the framework were

also inspected using keywords for {search engine, name registry, file system}, and
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works were surveyed which combined these components with keywords like {Web3,

blockchain}.

Besides academic works, industry works were surveyed, which included white-

papers, yellow-papers, and blog posts. Here, particular attention was paid to works

which were additionally cited or extensively studied in academic works, in order

to curate a high quality body of work without marketing focus, obscure or incor-

rect jargon, and over-optimistic claims. To verify quality, sources were manually

inspected and selected. The reason industry works were included and highlighted

is because the area is still rapidly developing and many concepts have not made it

into the formal research stage yet. However the underlying technology was always

inspected and third-party sources were checked in order to ensure objectivity.

Many of the discussed industry platforms lack clear documentation and a vi-

sion of integration to realise a DWeb content retrieval model. Furthermore, terms

used in their documentation differ greatly across projects and the fast development

pace in the field makes obtaining a clear view and deep understanding challenging.

This work aims to clear up some of the contradictions and confusion. By defining

a clear framework, this chapter helps to provide a big picture in order to understand

and define future research opportunities.

3.2.3 Related Work

To the best of my knowledge, this work is the first to provide a holistic view of the

technologies that are useful for decentralised content retrieval. Although the main

focus of this chapter is on the recent works (blockchain-era technologies) related to

Web3, notable P2P-era research is also covered which introduced the key concepts

used by the next-generation decentralised content retrieval systems.

In one of the earliest works on Web information retrieval, Kobayashi et al.

[148] survey the content retrieval technologies in the early Web (i.e. Web1.0) when

it was only few years old. In this work, the authors discuss the search engines and

the users’ experience with the early search technologies of that time.

Other works have focused on surveying only a subset of the technologies in-

volved in decentralised content retrieval in blockchain-era systems. For example,
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a recent survey by Daniel et al. [49] discuss decentralised storage systems in the

DWeb, but without focus on other technologies that enable search and retrieval of

content in those storage systems. Li et al. [149] take a different focus and survey

how future data-driven networks can be realised using blockchains as the underly-

ing technology to enable decentralisation, security, privacy, and resource sharing.

However, their focus is mainly on the blockchain-based solutions and do not take

into account the rest of the DWeb stack. Similarly, Benisi et al. [150] describe how

blockchains are used to create decentralised storage networks, where nodes can rent

out their untrusted storage hardware using smart contracts.

In terms of blockchain, Zheng et al. [42] present a comprehensive overview

of blockchain technologies, which includes technical components such as con-

sensus, as well as potential applications. While certain aspects such as security

and privacy enhancements, and reputation systems have been mentioned, a global

DWeb use-case has not been mentioned. Neudecker and Hartenstein [151] describe

the network layer aspects in terms of attacks, as well as design implementations

and considerations for permissionless blockchain networks. While they focus on

blockchains, other DWeb components like file systems often share network layer

design and concepts, and are therefore highly related. For example, Filecoin and

Ethereum 2.0 have both used GossipSub based messaging protocols in their net-

work layers [103].

Earlier work also surveys the P2P-era content distribution research prior to

the DWeb, which is also briefly used in this work. For a general overview of P2P

networks, Keong et al. [152] study and compare network overlay architectures.

More related to this work, Androutsellis-Theotokis and Spinellis [153] present an

early survey and framework for analysing P2P content distribution technologies.

Similarly, Hasan et al. [154] focus on storage techniques within distributed file

systems.

Xylomenos et al. [155] present a comprehensive survey of information-centric

networking (ICN), which aims to implement a content-centric network layer re-

placing IP. Although the content-centric paradigm (i.e. fetch content by name, not
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location) is also central to many decentralised file systems, the latter are application-

level systems designed to run as overlays on top of an IP network layer.

A number of works have also surveyed popular techniques which distribute

Cloud solutions, but do not necessarily decentralise their ownership and governance

(in contrast with the focus of this chapter). Zolfaghari et al. [156] discuss the state-

of-the-art solutions and future directions for content distribution networks (CDN).

They also describe how CDNs converge with emerging paradigms like Cloud and

edge computing. Ghaznavi et al. [157] focus on CDN security challenges and pos-

sible solutions to these. Mach et el. [158] describe the emerging concept of mobile

edge computing, and present use-cases, integration and standardisation efforts, as

well as technical solutions. Mao et al. [159] also survey mobile edge computing,

but focus on the communication perspective. As mentioned before, while these so-

lutions tackle some issues associated with centralised Cloud and Web, they remain

centralised in their control and governance.

Some works also focus on hybrid solutions which combine distributed storage

and computation techniques with decentralised solutions and governance such as

P2P networks and blockchains. Related to content retrieval, Anjum et al. [160]

survey techniques that complement centralised content delivery with P2P content

retrievals in CDNs. However, such techniques use a centralised architecture, with

trusted CDN servers resolving requests to appropriate peers. Jia et al. [161] also

present a survey on collaboration for content delivery, focusing on collaboration

techniques in network infrastructures including P2P-CDN, collaborative caching,

SDN, ICN and more. Finally, Yang et al. [162] survey attempts to integrate

blockchains with edge computing solutions in the areas of network, computation,

and storage. If these techniques can be integrated with security and privacy first,

they could be used as a building block for the DWeb, for example using computa-

tion and storage platforms to crawl and create indexes, maintain blockchains, and

enhance storage networks.
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3.3 Web Content Retrieval
This section describes the process of retrieving Web content on the current Web

and the DWeb, introduces background on content distribution networks and content

addressing, and defines a systematisation framework for studying works on content

retrieval on the DWeb.

3.3.1 Retrieving Content on the Current Web

On the current Web, content retrieval is comprised of multiple interacting steps.

Most of the time, a search-based workflow is used, where users submit a query to

their favourite search engine with a description of the content object they are in-

terested in. This query often takes the form of a number of descriptive keywords,

which may include a content creator or publisher name, or a real-world descrip-

tion of content. The search engine in turn returns results to the query, which con-

sists of Web references in the form of Uniform Resource Locators (URLs) (e.g.

https://www.ucl.ac.uk/example/)

URLs referencing a content object generally use a hostname/pathname struc-

ture, and thus embed both the hostname of the content’s provider, and the

(server-specific) location of the object within the directory structure of the host-

ing provider’s server(s). As a result, it becomes difficult to move content objects

between providers as it invalidates the existing reference names to the content. Ad-

ditionally, replicating objects across different servers is non-trivial as it requires

duplicating server-specific directory structures across different servers. This makes

both replication and movement of content a difficult task in the current Web [163],

which has led to an increase in centralisation.

After querying the search engine and receiving a valid URL of a content object,

a user needs to find the correct storage location of the content provider for the

content. This step requires a name resolution step to be performed, which links

URLs to locations. In the current Internet infrastructure, this task is performed

by the Domain Name System (DNS), which can be seen as a distributed database,

storing mappings from domain names (host/domain names) to IP address (location)

of hosts. Once the user has resolved a name through the DNS, the desired content
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Figure 3.1: Decentralised content retrieval process on the DWeb.

object can be retrieved.

Currently, the host-centric content retrieval ecosystem on the Web relies on a

centralised trust model, which is exposed to serious flaws and vulnerabilities. This

means that each step in the content retrieval process relies on one or more forms of

centralisation. For example, search engines are mostly controlled by a single owner

(e.g. Google). The same can be applied to the DNS (which is centrally managed

by ICANN), as well as content storage (e.g. Cloud) providers. While it can be

argued that this adds trust and authority to the network, allowing absolute control

to one party may also introduce several drawbacks. At present, there is a large

power imbalance between these centralised entities and users, and this allows these

centralised parties to influence users by adding bias and censorship, track and sell

personal data, influence public opinion, and more. Users are expected by default

to trust these centralised entities unconditionally, while they operate without much

transparency.

3.3.2 Retrieving Content on the Decentralised Web

The DWeb operates using a distributed trust model, which means that content re-

trieval can no longer depend on trusted third parties (e.g. single root of trust like the

DNS). Instead, users should be able to verify all steps of content retrieval, which

are depicted in Figure 3.1. To start, users should be able to verify bindings between

content of a retrieved data object and its reference name, in order to verify correct-

ness. This allows users to ensure the object retrieved is the correct one to match the

queried reference name, without a centralised, third party vouching for its prove-

nance (i.e. the verification of the origin source of content). This verification process
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can be implemented by technical solutions such as self-certifying names and zero-

knowledge proofs [164].

The DWeb aims to evolve the current Web beyond its current host-centric

paradigm and instead use a content-centric paradigm. This allows reference names

(also referred to as content identifiers or CID) to directly identify and verify content

objects. This is also known as content addressing, and allows retrieval of content

objects from anywhere in the network, rather than being restricted to retrieve them

only from one of the content providers’ locations.

The location-independence of this novel paradigm is essential because frequent

replication and migration of content is the expected norm in the DWeb. This is

also important because decentralised services are possibly realised by any node in

the network, regardless of their location or elevated privilege levels. Decentralised

services can be categorised broadly by outsourcing tasks like storage, computation,

or bandwidth. Incentives and rewards are added and play an important role to ensure

a fair compensation for work, and to mitigate against malicious entities.

In the DWeb, this work envisions a similar search-based workflow as is the

case in the current Web. This starts with decentralised search engines, which serves

as a translation between user queries and CIDs of content that are relevant. CIDs

are typically self-certifying names to secure the binding between name and content

object it refers to, and are therefore not human-readable (this is further explained in

Section 3.3.4). Because of this, canonical names for content are important as they

allow humans to refer to content. For this reason, a decentralised name-registry

service is required to replace the DNS and perform the name resolution process

from canonical names to CIDs. Finally, to retrieve the actual content, an extra

resolution is needed to obtain location(s) for CIDs, which is typically performed by

decentralised content storage networks (i.e. decentralised file systems).

Although the search-based workflow is popular, other workflows exist to ac-

cess content on the current Web such as following hyperlinks from one page to

another, as well as shared direct links to objects on Cloud-based shared drives. This

work focuses on the search-based workflow, as it can be argued that this encom-
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passes the other workflows as well. Other workflows differ as they start from later

points in the same sequence of events and resolution, and therefore analysing only

the search-based workflow is sufficient.

3.3.3 Content Distribution Networks

In the current Web, a large part of content retrieval has been physically distributed in

order to improve performance over remote storage locations like the Cloud. In fact,

content producers increasingly rely on Content Distribution Networks (CDNs) for

large scale content distribution such as video streaming to a large number of geo-

graphically distributed users. However, these networks use proprietary technologies

to serve content requests using a distributed infrastructure of content caches, and re-

main centralised in terms of control and management. It can be argued that the need

for CDNs in the current Web stems from the lack of a viable decentralised content

delivery technology.

A number of initiatives have aimed to add further degrees of decentralisation

to CDN’s. The first major step towards this was using Peer Assisted (PA)-CDN

architectures [160]. Here users in a P2P network relieve some of the burden from

the traditional infrastructure by allowing the users to serve content locally where

possible. This hybrid approach adds scalability, as well as traffic savings. There are

however a number of issues with this approach, as it inherits some of the vulnera-

bilities of both P2P systems, as well as centralised systems. There is still a heavy

reliance on central parties, although this ensures high speeds in the case when the

P2P network is not able to serve users. More importantly, PA-CDN’s suffer from

the inherent issues of P2P networks such as instability and a lack of incentives.

However, with the advent of blockchain, peers can be incentivised to be honest and

perform useful work.

Several DWeb projects [50, 165, 166] aim for replacing the CDNs with decen-

tralised file systems, which also form large distributed caches for content. These

are discussed further in Section 3.6. However, in the current infrastructure, CDNs

are mainly used when performance and scalability are essential and require more

stringent guarantees compared to Cloud based solutions, for example for video



3.3. Web Content Retrieval 58

streaming or conferencing. The workflow used slightly differs from the one de-

scribed above, as users generally access content through applications provided by

the content owner, which directly integrate with CDN solutions.

In the DWeb, general file systems may not reach the required performance

guarantees for these niche use-cases. For this reason, a number of initiatives have

emerged which aim to specifically create fully decentralised counterparts to CDNs.

While most DWeb services focus on either one of the service sharing types (storage,

bandwidth, computation), these decentralised CDNs require a combination of all

three in order to produce a usable system.

A few blockchain initiatives claim to create decentralised CDNs, by combin-

ing an incentive layer with an underlying storage layer. Skynet [167] for example

leverages the Sia [168] storage network, and allows for pinning of content by users

to create permanence. However, these initiatives are not well researched in terms of

scalability or real-world performance and their design specifics remain unclear.

More targeted to the CDN use-case, Theta [169] is a blockchain which was

built for the Theta Edge Network, a P2P video streaming service. The Theta net-

work consists of validator and guardian nodes, as well as edge nodes who are re-

sponsible for the relaying of video. In order to earn rewards, edge nodes can up-

grade to elite nodes by staking the associated cryptocurrency TFuel [170]. Video

platforms pay for their traffic to be served on-chain and part of these fees are used as

incentives. Incentivisation is twofold: nodes are rewarded for being online by up-

time mining, and are offered additional rewards based on the traffic they relay, using

a proof of relay. Besides video streaming, Theta has added live video streaming to

the platform. However, it remains to be seen how well it is able to handle traf-

fic, as well as whether the platform is usable. There are also many open questions

regarding implementation.

Livepeer [171] is another initiative which aims to deliver decentralised live

video streaming. A network of transcoders perform useful work (i.e. transcode

video to be streamed) and in return receive rewards. Delegators in the network are

tasked with curating trustworthy transcoders by staking their tokens. Although this
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project tackles the stage before the delivery of content, it may be a relevant building

block for decentralised delivery of live video. The same uncertainties like in the

case of the other projects in terms of real-world performance and implementation

remain.

The rest of this chapter focuses specifically on the workflow mentioned in

3.3.2, as decentralised file systems lie somewhere between CDNs and distant stor-

age solutions, and they are expected to handle the majority of use-cases. For niche

use-cases, decentralised CDNs may play an important role, but currently the work

and practical implementations of this are scarce, and it may be reasonable to assume

that current CDNs will continue to play an important role for these low-latency ser-

vices in a DWeb future.

3.3.4 Addressing Decentralised Web Content

As mentioned above, the distributed trust model of the DWeb requires a secure and

verifiable content retrieval process. This means that the authenticity of the bind-

ing between reference names and the retrieved content object must be verifiable

by users. This can be achieved by using content addressing, as more importance is

given to the integrity of the file, rather than its origin. Decentralised file systems typ-

ically use verifiable (also known as self-certifying [172]) CIDs as reference names

in order to achieve verifiability in the absence of trusted third parties.

Self-certifying names for content objects are typically generated using one of

two mechanisms. First, the hash of the content itself can be used. CIDs are gener-

ated by applying a well-known hash function to the content. Users can simply apply

the same hash function on the retrieved content object to verify the binding between

the name and the object. Second, the hash of a public key controlled by the content

owner can be used. Now, CIDs are generated by hashing a public key whose private

counter part is used to sign the content object. Content object includes a signature,

which can be used to verify the name-to-content binding of an object. The signature

is typically generated by the content publisher who owns the private key, and this

can be updated to achieve dynamic naming.

In practise, it has been shown that the properties of distributed trust (decen-
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tralisation), binding between names to object for self-certification (security), and

human-readable names (usability) are non-trivial to achieve simultaneously, as also

conjectured by Zooko’s trilemma [173]. This states that naming systems can only

have two of the following three properties: human-readability, security, and decen-

tralisation.

Among these three properties, there are a number of contradictions. For in-

stance, security is at odds with human-readability, because secure, self-certifying

names are not human-readable due to the hash function applied. Similarly, the in-

trinsic binding between a human-readable name and its content or content producer

is weak, and verification of this binding through a centralised trusted party such as

the DNS contradicts decentralisation.

Another desirable property is persistence, which ensures that names should not

change when location or ownership changes. Ideally, a minor update to a Web file

should not produce a completely different name. This, however, can be at odds

with the security property, because self-certifying names lead to modifications in

the names of mutable (i.e. dynamic) content upon updates to content (i.e. hash of

the content) or ownership (hash of the public key).

As DWeb content use hash based addressing, they satisfy only the decentrali-

sation and security properties, which are discussed further in Section 3.6. Decen-

tralised name-registries have the potential to square Zooko’s trilemma, in order to

achieve usability while maintaining security and decentralisation. This is done by

mapping human-readable, canonical names to CIDs in a decentralised manner using

a blockchain, as discussed further in Section 3.5.

3.3.5 Systematisation Framework

The process of traditional Web retrieval, as described in Section 3.3.1, can be used to

define a framework which can be applied to study DWeb initiatives. This framework

can be used as an exhaustive method to divide the work in three main categories,

and for each category it defines key components. On top of this, a number of over-

lapping components are integrated, which each step of the framework leverages.

As shown in Fig. 3.2, Web retrieval can be divided into three main compo-
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Figure 3.2: Overview of key content retrieval components on the Web.

nents: search engine, name-registry, and file system. For each of these areas,

decentralised initiatives should be developed. This framework should allow them

to position themselves amidst others in the space, and define how interoperablility

can be achieved.

In order to search for content on the DWeb, users will need to use a search en-

gine, which is able to index DWeb content. The search engine also needs to decide

which content to index through curation, as well as the ranking in which order re-

sults are returned to users, defined by a transparent ranking algorithm. Indexing and

convenient retrieval of content are both dependent on human-readable names (i.e.

canonical names), which are linked to CIDs using decentralised name-registries.

Users need to be able to register name-value mappings to this service, and resolve

any registered name to the corresponding CID. Finally, content is stored on a decen-

tralised file system, (or blockchain or Web servers) and needs to be retrieved from

these networks using its address or CID.

This framework identifies these orthogonal components in order to clearly de-

scribe the key pillars of a DWeb infrastructure. However, in practise a lot of com-

ponents may be overlapping, and they may share underlying technologies. For

example, each of the mentioned components uses blockchains to promote honest

participation in NRS services through incentives. Each component could even use

the same blockchain network and underlying P2P network (e.g. Ethereum [82]), and

support similar decentralised DWeb data.
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In order to keep clarity and structure in this chapter, most of these components

have been introduced in the preliminaries (Section 2), and are only referred to in

analyses when relevant or distinct in implementation.

In the upcoming sections (3.4, 3.5, 3.6) each key component of this framework

will be further defined by going over the status quo of centralised systems, after

which decentralised initiatives are examined and compared. In the end of each

section, a number of open issues and challenges are discussed.

Curating Indexing Ranking Incentive Advertisement Decentralised Network
Function Location Search Content

Presearch [174] Crawling - - Gateway Server Y Y Y N Ethereum
Yacy [175] Voluntary Distributed Combined Local N N Y N Hybrid P2P

Crawling By Document
Brave [176] Crawling Centralised - Centralised - Y N Y -
Nebulas [177] Crawling Centralised NebulasRank Centralised N N N Y -
The Graph [178] Token Subgraph - - Y N Y Y Ethereum

Signaling At Indexer

Table 3.1: Overview of decentralised search engine industry projects.

3.4 Search Engine
This section first investigates how search engines currently work and identifies a

number of their characteristic components. After describing these currently cen-

tralised components, a number of decentralised search engines are introduced.

These are then analysed based on how they incorporate their key components.

Specifically, this section discusses how DWeb search engines differ in terms of cu-

rating, indexing, ranking, and incentives.

3.4.1 Overview of Centralised Search Engines

Currently, when a user looks for content on the Web, they often start by submit-

ting a query to a centralised search engine, consisting of one or more keywords.

Proactively, the search engine has curated content to add to an index by crawling

the Web. Keywords are then extracted from the content, and added to an inverted

index, which maps keywords to the Web pages where they can be found.

Upon receiving queries, the inverted index is used to compile a list of pages

which might be relevant to the users. These results are then ranked using a ranking

algorithm and returned to the user. The centralised search engines control what
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ranking mechanism (e.g. PageRank [179]) is used and are not always transparent

about the specifics. Furthermore, ranking is generally personalised, which may lead

to filter bubbles [22].

To incorporate a healthy business model, most centralised search engines mon-

etise their services by adding advertisements through keyword-auctions in search

results, which allows the service to be free for users [180]. While the network in-

frastructure used might be distributed, the control, management, security, and pol-

icy are centralised, thus introducing a single-point-of-failure which may also lead

to cascade failures [28, 181]. As these network tasks are managed centrally they

do not need to add incentives for participation. However, in a decentralised model,

services likely need to leverage alternative business models and incentives for eco-

nomic feasibility.

3.4.2 Implementations

Decentralised search engines can generally be classified by their degree of decen-

tralisation. The content which is being searched can also be classified similarly.

Centralised data refers to ’traditional’ Web content which is hosted at Web servers.

On the other hand, decentralised data encompasses content stored using decen-

tralised file storage, as well as blockchains. Table 3.2 provides an overview of

these content types. Using this, one can distinguish between three different decen-

tralised search types: centralised search on decentralised data, decentralised search

on centralised data, and decentralised search on decentralised data.

Type Addressing Location Name Registry

Blockchain Data Block Hash Blockchain
Blockchain

Name-Registry
Decentralised
Storage Data Content Hash

Decentralised File
System

Blockchain
Name-Registry

Traditional Web Data IP Web Servers DNS

Table 3.2: Classification of decentralised web content.

These classifications are now used to analyse early stage implementations, as

well as a number of proposals in the research literature which generally have a nar-

row but detailed focus. Table 3.1 gives an overview of notable industry projects and

summarises how they approach the various search components. Table 3.3, on the
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other hand, presents an overview of research proposals, focusing specifically on de-

centralised search mechanisms on decentralised storage networks. The reason this

work divides between research and industry works is because the former generally

focus on one or a few aspects of search, rather than presenting complete systems,

and therefore they have been analysed using different properties. As these projects

are generally narrow in focus, their main properties are discussed first, after which

they will only be referred to occasionally in the rest of the analysis, as they do not

present full and operational systems.

Index Storage Ranking Performance
Optimisation Security Features Privacy Features Governance

SIVA [182] IPFS DHT - Bloom Filter & Caching - - -

Li et al. [183] Kanban Cloud -
Decoupled State
and Computation

Verifiable Search, TEE,
Decoupled Verification

Message Equalising,
TEE

Zichichi et al. [184] Hypercube DHT - Routing using Hypercube - - DAO

Zhu et al. [185] B+ Tree / Hashmap - Index Storage Methods Version Control - -

Wang and Wu [186] IPFS DHT Network Metrics - - - -

Table 3.3: Overview of research proposals for decentralised search mechanisms on decen-
tralised storage networks.

3.4.2.1 P2P Search Engines

The idea of decentralised search engines was first explored by P2P search engines

in order to improve the privacy, security, and performance of search on the Web

and P2P storage networks. A number of initial distributed search engines relied on

unstructured P2P networks [187], which offered high resilience to peer churn and

good performance in retrieving popular items [188]. Some projects focused on im-

proving the performance of unstructured search using techniques such as replication

[189, 190, 191] and random walks [190, 191].

Another method of realising distributed search engines leveraged structured

overlays, specifically DHTs [192, 193, 194, 195]. This allows for more reliable per-

formance guarantees and better efficiency, especially when retrieving less popular

items. A number of these focused on performance optimisations such as incorpo-

rating bloom filters [196, 197] and caching [198, 197], as well as efficient routing

using ant-like behaviour [199]. Some of these used popularity scores to determine

the number of indexers per file [198] or ranking of results [196].
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In order to optimise performance, a hybrid of structured and unstructured net-

works were used. For example, Yacy [175] structures all peers in a DHT, without

implementing DHT routing. Another approach [200] locates rare items using a

structured overlay, while popular items are located using flooding, leading to better

performance and lower overhead.

These early search engines, however, often lacked additional security measures

and incentives for useful work, which are needed due to the absence of a trusted

third party [201]. This ultimately led to their loss in popularity. The rest of this

section focuses on recent initiatives which are able to query novel decentralised file

systems (see Section 3.6) or blockchains.

3.4.2.2 Centralised Search on Decentralised Data

There are a number of centralised search engines, which are able to query decen-

tralised data. Recent works often focus on allowing users to fetch content using

CIDs [176]. However, keyword search is also possible [202], where the central en-

tity sniffs the structured [203] or unstructured network [204] to discover new content

to add to the index.

Rather than creating search engines for decentralised file systems, some works

have aimed to make centralised [177] and decentralised [205] search infrastructures

for blockchain and smart contract data. While the projects above rely on centralisa-

tion, they are likely to play an important role towards adoption of the DWeb.

3.4.2.3 Decentralised Search on Centralised Data

Another class of search engines are those that are decentralised but search the tra-

ditional Web. These offer much better privacy guarantees than centralised engines,

but are not suitable for the DWeb, as they currently do not support indexing content

on blockchains or decentralised file systems.

As mentioned above, P2P search engines lacked incentives to add robustness

and security to the system. Recent decentralised search engines often leverage a

blockchain to add financial rewards, thereby making the network more secure and

robust. For example, Presearch [174] rewards users for participating in upkeep

functions such as crawling and indexing. Instead of centralised methods of issuing
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and distributing rewards, smart contracts may be used for decentralised incentive

governance [206]. Smart contracts can be also used for reaching consensus on

indexing and ranking, as is done by Raza et al. [207] to create a framework for

privacy preserving, decentralised search.

3.4.2.4 Decentralised Search on Decentralised Data

Finally, decentralised search engines are discussed which operate on decentralised

data, as these are the only suitable ones for a fully decentralised Web. However,

at the time of writing and to the best of my knowledge there are no implemented

projects which entirely achieve this.

A number of projects [53, 208, 203, 209] focus on decentralised crawling and

indexing of decentralised storage and blockchain data. Most notably, The Graph

[178] is a decentralised indexing protocol for blockchain data, which itself is built

on top of a blockchain.

Besides these industry projects, a number of research works have proposed

decentralised keyword-search mechanism for decentralised storage networks like

IPFS [50]. As these projects are generally narrow in focus, their main properties

will now be discussed, only referring to them occasionally in the rest of the analysis

as they do not present full and operational systems.

Li et al. [183] proposed DeSearch, which is a search engine for decentralised

services which decouples state from computation by using a centralised Cloud so-

lution to store the index with high data availability, while maintenance of the index

uses decentralised workers executing verifiable tasks (e.g. indexing, query process-

ing). The verifiability property ensures that any third-party (such as receivers of

search results) can confirm that any search-related task involved in the search pro-

cess (carried out by an untrusted worker) is performed correctly. This property is

crucial in a decentralised setting where any worker can misbehave.

A number of works present systems which are fully decentralised (i.e. they also

store the index over a P2P network). SIVA [182] builds a decentralised index for

IPFS and stores it on the IPFS network using the native DHT. To increase perfor-

mance, caching based on the Least Recently Used (LRU) [210] strategy and bloom
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filters are used. Wang and Wu [186] also propose to use the IPFS DHT to store the

index and rank retrieved results from the index based on network metrics such as

freshness, proximity, resource quantity, and bandwidth.

To increase performance, existing work has proposed storing the index in opti-

mised structures rather than a general purpose DHT. For example, Zhu et al. [185]

propose decentralised keyword search on decentralised data networks using B+

Tree and hashmap data structures to store the index. Zichichi et al. [184] pro-

pose a hypercube DHT to store index items, structuring network topology using

keywords. Furthermore, existing work proposes delegating governance of the in-

dex to a Decentralised Autonomous Organisation (DAO) [211], which allows peers

to make governance decisions in a decentralised manner, e.g. propose and vote for

changes, as well as implement tokens.

Another interesting idea is proposed by Fujita [212], who argues for imple-

menting similarity search on IPFS based on locality-sensitive hashing, as an alter-

native to the prevalent keyword-search mechanisms. In their system, content hashes

are stored on a DHT, although further implementation details and feasibility anal-

ysis are an interesting avenue for future work (See Chapter 4). Furthermore, it

remains unclear if this scheme is sufficient for users who expect to submit queries

consisting of keywords and retrieve a range of relevant information, rather than

submitting content and retrieving similar content.

As discussed in Section 3.4.7, while these research systems seem promising,

they are mostly early stage works and therefore suffer from a number of limita-

tions and require further work. A particularly interesting question is whether they

actually truly achieve decentralisation. The remainder of this section examines im-

plemented projects and highlights how some of these projects uniquely implement

the components of a search engine.

3.4.3 Curating

The curation process defines which content is added to the index. A number of

projects take a similar approach to centralised search engines, which rely on crawl-

ing. Yacy is an example of a decentralised crawler, which allows users to crawl
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locally, either manually or proactively. Optimisations for decentralised crawlers

have also been proposed such as leveraging the geographic proximity of resources

[213]. Most other projects [177, 176, 193] remain reliant on centralised crawlers.

In order to crawl decentralised storage networks however, different approaches

are needed. To gain insights on peers and content in structured networks one may

sniff the DHT traffic to discover new peers and CIDs, which can be fetched to

gain insights [202]. A similar approach may be used for unstructured networks,

for example, in the case of the IPFS Bitswap [214] protocol traffic (Section 3.6.4),

which is used to query peers for CIDs, may be monitored [204].

Another approach besides crawling is curation based on network consensus, as

is used in The Graph [178]. Nodes in the network act as curators and use tokens to

signal to indexers what content is valuable. While this might be a viable approach

for on-chain data, it remains to be seen if this approach would work for other content

types. This can be compared to research works which use popularity scores or

managers [198] to signal which items should be indexed, although the latter lack

monetary incentives and are therefore more prone to performance problems.

3.4.4 Indexing

The indexing process in decentralised search engines consists of two main steps.

First, metadata is collected from content in order to create index entries which map

extracted keywords to content identifiers. The second step decides where the index

is stored, which is generally based on partitioning by document or by keyword.

Partitioning by document means that the content objects to be indexed are di-

vided among peers who each maintain a reverse word index for a subset of the con-

tent objects, as is often the case in unstructured networks. This approach is ineffi-

cient when locating rare items, as nodes are required to flood the network in order to

locate and retrieve the query results. Storing replicas of popular items can increase

the performance in these networks [198], and in general many distributed search

engines offer a degree of replication, which also adds resilience against Denial-of-

Service (DoS) attacks.

Most structured and hybrid engines are based on partitioning by keyword,
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where each node maintains an index for the words that appear across different con-

tent, generally by mapping to the closest peer in a DHT [65, 215]. For example,

peer might be responsible for the entry for keyword Apple, and consequently stores

all content items where this keyword can be found, which it returns to any node it

is queried by for the keyword.

Another distinct approach is used in The Graph, where indexers simultane-

ously perform the tasks of producing and storing an index in the form of subgraphs

of blockchain data. Users can then directly contact these indexer nodes to access

the indexed data, and in return issue off-chain conditional micro payments. Other

recent engines manage the index centrally [177, 174, 176].

In DeSearch [183], decentralised workers perform indexing of content in a

verifiable manner through a “witness” process which runs in a Trusted Execution

Environment (TEE) within each worker. The witness process provides logs of inputs

and outputs of tasks carried out by workers for third parties to verify the causality

between the inputs and outputs. The witness logs are also stored in a verifiable data

structure, even thought this happens in a centralised public cloud. Other research

works [182, 186] have proposed to store the index directly on the storage network

on which they operate, as well as optimised structured overlay networks [185, 184].

3.4.5 Ranking

When a user submits a search query, the relevant entries are fetched from the index,

after which the results need to be ranked based on various metrics to be ordered and

returned to the user. There are various ranking algorithms, which may be applied

to decentralised search engines. Most well known is the PageRank [179], which

scores importance of Web pages based on the references pointing to and from the

pages.

PageRank can be modified to determine the value of an entity on the

blockchain, as done in NebulasRank [216]. In this work, transaction graphs are

used to infer an entity’s liquidity, propagation, and interoperability in order to de-

termine its value. Nodes, smart contracts, as well as an entity’s contribution to the

network over a time period can be ranked, in a similar fashion to LeaderRank [217].
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In centralised search engines, the ranking process generally runs globally. In

a decentralised search, clients may locally select and implement their own ranking

policies [218], or combine pre- and post-rankings, where results are initially ranked

based on a number of standard metrics, after which they can be ranked again by

the user based on local configurations [175]. While most research proposals over-

look ranking of results, it has been proposed [186] to use network metrics such as

freshness, proximity, resource quantity, and bandwidth.

Distributed ledgers can also be utilised to reach consensus on ranking, for ex-

ample using random groups of TOR (The Onion Router) [219] block nodes and the

Practical Byzantine Fault Tolerance (PBFT) algorithm [207].

3.4.6 Incentives

Centralised search engines are able to offer free services by monetising advertise-

ments and user data. Most early distributed engines rely on an altruistic model

where users are assumed to participate in the system honestly without the need for

rewards. Recent systems have incorporated incentives using the blockchain. For

instance, the revenue collected from advertisements could be used as rewards for

up-keeping of the system [220].

The monetary inflow and outflow of the system will now be discussed sepa-

rately to illustrate the decentralised network economics.

3.4.6.1 Inflow

There are generally three sources of inflow of money into the decentralised search

mechanisms. The first are users paying for a service. For example, this is the case

for users querying the indexed data in both The Graph [178] and DeSearch [183].

This assumes that users are willing to pay for decentralised services instead of using

free centralised options, which may not hold true in practice.

The second source of inflow comes from advertisements. Generally, adver-

tisers submit bids to show their advertisements with higher priority for particular

keywords on search engines. Centralised engines generally use auctions to deter-

mine which advertisements are shown with higher priority [221, 222], although



3.4. Search Engine 71

decentralised advertisement markets have been proposed as alternatives. An inter-

esting example is keyword staking in Presearch, where the advertiser who stakes the

most tokens on-chain for a particular keyword will be shown. In this case, inflow

is expected to come from per-click fees. However, currently this approach retains

centralisation as it relies on dedicated ad servers.

The advertisements shown to users are generally personalised, which is based

on data collected from previous search behaviour. In this scenario, the user loses

control over their privacy and is required to trust the central entity. To allevi-

ate these concerns, Google introduced FLOC [223, 224], which uses federated

learning [225, 226] to group users in clusters, without data leaving the user’s de-

vice. Although this is argued to be decentralised and privacy first, it may lead

to an advertisement monopoly, as other third party cookies will be removed. A

number of research works have investigated decentralised and privacy preserving

methods of personalised advertisements [227, 228], for example using blockchains

[229, 230, 231].

Finally, in search protocols built on top of blockchains there is a third source

of inflow. These are newly minted tokens, which are periodically released for the

purpose of rewarding for network upkeep [232]. There are also transaction fees that

clients pay to use the underlying blockchain network, which are proportional to the

added load placed on the miners. These fees are often collected directly by miners.

3.4.6.2 Outflow

The monetary inflow into the search protocols needs to be redistributed and flow

out towards involved parties. In centralised search engines, the revenue generated

by advertisements is collected by the centralised operator. In contrast, decentralised

systems may delegate the ad revenue back to the users who watch the ads [176], or

to nodes who assist in network upkeep [174, 220].

For example, in the Graph, indexers earn tokens by serving client queries to

their indexed subgraphs. Delegators can decide to stake tokens for a specific in-

dexer, for which they receive a percentage of their profits. Curators are incentivised

to signal subgraphs honestly, as they can earn a percentage of the query fees.
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Similar to other platforms, slashing of tokens [233] may occur when malicious

behaviour is detected. This leads to a penalty deduction of a node’s staked deposit

on-chain.

On the other hand, DeSearch [183] rewards both workers for carrying out

search-related tasks (e.g. indexing) and publishers of content using tokens. The

reward tokens flow from the consumers of search results all the way to the pub-

lishers of content (that appear in the search results) as in the following chain:

consumers→rankers→indexer→crawlers→publishers. This chain follows the func-

tional dependency between the tasks involved in the search process and rewards

publishers of content based on their popularity, as similarly done in decentralised

social media platforms [234].

3.4.7 Open Issues

3.4.7.1 Reliance on Centralised Infrastructures

As discussed, there are only a few projects which aim to provide fully decentralised

search on decentralised data, and many still rely on centralised back-end or gate-

way servers. For example, DeSearch [149] uses a hybrid infrastructure consisting

of both centralised and decentralised components, but with built-in accountability

(verifiability), achieving some of the desirable properties of decentralisation with

good overall performance.

On the other hand, storage of the index directly on the storage network like

IPFS, while being more decentralised, introduces new challenges. Because the in-

dex should be a mutable object that is frequently updated, storing it on an immutable

storage solution is difficult. The naming layer can be used to alleviate the problem

of mutable data, for example using name-registries. However, there still remain a

number of issues such as management of private keys. In Section 3.5 this is dis-

cussed further.

To conclude, building a truly decentralised search engine is non-trivial, and

therefore a feasibility analysis is required. Specifically the question: ”are industry

or research projects actually able to provide true decentralisation?” needs to be an-

swered. Particularly, the process of curating content to be indexed, maintaining and
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partitioning the distributed index, and ranking in a decentralised fashion need to be

explored further. The difficulty here also applies to designing a system which en-

compasses all of these simultaneously. Alternative search workflows such as those

based on similarity search [212, 54] seem promising in achieving higher degrees of

decentralisation, but these and other workflows should be investigated further. On

top of this, while privacy improvements are desirable, they should not come at a

significant performance degradation, and thus this trade-off should be analysed.

3.4.7.2 Complete Systems

The area of decentralised search engines has been investigated less compared to

other DWeb infrastructures, and this reflects in the fact that most systems are not

complete in coverage of all search steps users expect. For example, the industry

projects covered generally have a specific niche in terms of DWeb network, data

type, or application. They also are not as sophisticated in implementation and de-

sign as some research works, which have a much more narrow focus.

While most research works have proposed some performance optimisations,

few have looked beyond structuring and storing the index, as well as routing of

queries. For example, how results are ranked after fetching them from the index has

been barely explored in these works. Furthermore, how governance using incentives

can be used to make the system more secure, robust, efficient, and usable has been

largely overlooked.

3.4.7.3 Analysis of Claims

It is argued in most works, both in industry and research, that a decentralised search

will lead to better privacy and security, but this has not been shown in practise, as

novel attacks may arise in this new infrastructure. Therefore this work believes se-

curity analyses to be vital. Security is partially dependant on the cryto-economic

incentives and mechanism design, which has not been considered in detail in most

works, specifically in industry. Similarly, there is the issue of trust, as not all opera-

tions can be mediated through the blockchain. Here, reputation systems could play

an important role.
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3.5 Name Registry
This section first gives an overview of the name-registry currently used on the Web:

the DNS. While the DNS is physically distributed, it is controlled and managed

by a centralised entity. Next, two important aspects of name-registry systems are

described, namely registration and resolution. Finally, a number of decentralised

name-registries and DNS alternatives are presented and analysed in terms of how

they differ in their key aspects.

3.5.1 Overview of the DNS

The DNS is the default name-registry system used in the current Web, and one of its

main uses is to perform the mapping from domain names to locations. To achieve

this, the DNS maintains a large number of name records, consisting of domain

names such as hostnames in URLs, mapping to IP addresses of the location of the

server from where a user can retrieve the content. The DNS maintains these records

on a large number of distributed servers, which are used to respond to user queries.

Domain names are hierarchical in structure. At the highest level of the hier-

archy are the top-level domains (TLDs) such as .org and .com. The TLDs can be

extended to numerous subdomains such as company.com, which in turn can extend

arbitrarily to sub-domains such as mail.company.com. The DNS namespace con-

sists of portions called zones, which are each managed by a dedicated organisation

or administration. DNS records for each zone are permanently stored on an author-

itative DNS server (controlled by the zone’s administration) that has the authority

to respond to DNS queries for its zone(s) [235].

An authoritative DNS server for a zone is able to delegate its authority over

the subdomains to other servers, resulting in the hierarchy of distributed DNS

servers across the globe, each responsible for a portion of the hierarchical domain

namepace. The hierarchy of servers starts from the root name servers that hold

“pointer” records, also known as nameserver records (NS), which map each TLD

zone to its corresponding authoritative DNS servers. Each authoritative server for

a zone also maintains a list of authoritative servers of its delegated subdomains.

Using these pointer records, users can determine the authoritative domain servers
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responsible for a domain name through a sequence of queries starting with at the

root servers.

For the resolution of a hostname from a user query, a user first contacts its

local DNS server. If the local server has not previously cached the result, it returns

either a root name server or an authoritative name server for one of the zones that

are part of the queried domain name. In the case where the server is not able to

resolve the name, it returns the authoritative name server for the next subdomain

using its pointer NS record.

The root zones and TLD namespace are centrally controlled by the Internet

Corporation for Assigned Names and Numbers (ICANN) [236], who delegate the

administrative responsibility of each zone to a single manager such as an organisa-

tion or government. In turn, these managers run authoritative servers for the zone

and can allocate subdomains through sale, and delegate the control over that zone to

other parties. Domain names under TLDs are registered with a registrar or reseller,

who is accredited by ICANN and certified by the registries.

Centralisation in DNS refers to ICANN’s control and management of TLD

zones and the root name servers. In addition to the top-level zones, governments

have full power over the DNS servers residing within their territory. This may lead

to censorship, for example the blocking of wikileaks.org by several countries. Fur-

thermore, there are other known, security issues with the current infrastructure such

as DoS attacks [237], DNS hijacking [238], DNS spoofing [239], and DNS cache

poisoning attacks [240]. Existing security extensions, such as DNSSEC [241], have

slow adoption [242] due to large overheads impacting performance and also due to

intrinsic reluctance to change already deployed protocols.

3.5.2 Implementations

A number of decentralised name-registry systems from industry and research are

now discussed. Within the context of the DWeb, these provide registration and res-

olution from human-readable names to CIDs. In doing so, they have the potential to

overcome Zooko’s trilemma, as the content names remain secure (due to hashing),

human-readable (due to the name-registry), and also decentralised (as the registry
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happens on a decentralised network or blockchain).

3.5.2.1 P2P DNS Alternatives

Decentralisation of the DNS was initially proposed by research in P2P systems. A

number of these initiatives proposed alternative name services on top of P2P overlay

networks, and target improved fault-tolerance and security. Overlook [243] targeted

scalability in terms of clients, look-ups, and latency, as well as the ability to handle

flash crowds. This was achieved by using dynamic replication, and by structuring

only server nodes in a DHT, rather than incorporating all clients into the overlay.

Similarly, the solution from Cox et al. [244] was built on top of DHash, a DHT

on top of Chord and advantages of their approach include load balancing, improved

security, and alleviation of system administrators. These improvements present a

trade-off, as the latencies are much higher than the conventional DNS.

Abu-Amara et al. [245] used Chord to build a countermeasure to intentional

DoS attacks of malicious root and TLD servers. DNS resolvers are structured in

a P2P network, and in addition to conventional lookup, a round-robin approach is

used to forward the query to another node, resolving the query in parallel paths.

Handley and Greenhalgh [246] also proposed structuring multiple DNS servers in a

P2P network in order to distribute the top level hierarchy of DNS namespaces. They

argue that, while this is a brute force approach to defend against attacks, it adds lots

of robustness while keeping costs manageable.

P2P initiatives eventually suffered from the limitations of P2P networks and

DHTs, such as the lack of incentives. The rest of this section focuses on solutions

which solve this by leveraging blockchain technology.

3.5.2.2 Hybrid Name-Registry

A number of hybrid approaches have aimed to provide name-registry improvements

over the current DNS by leveraging a combination of centralised and decentralised

infrastructures. DNSLink1 allows IPFS CIDs to be mapped using DNS txt records

to DNS names. This does not overcome Zooko’s trilemma, as it remains reliant on

the centralised DNS.
1https://dnslink.io

https://dnslink.io
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Some works use consortium blockchains to create a decentralised DNS. This

work considers these to be hybrids as well, as these networks are not entirely open

and decentralised. They generally publish domain name operations on-chain, but

store actual domain name data off-chain.

ConsortiumDNS [247] uses a single consortium chain with miner and query

nodes. Additionally, a gossip protocol is used for node synchronisation and an

index is generated of blocks and transactions. In contrast, a hierarchical structure

of multiple chains may also be used [248, 249]. The rest of this section focuses

on solutions implementing open blockchain and smart contract based name-registry

systems.

3.5.2.3 Blockchain-based Name-Registry

A number of industry and research projects have proposed using blockchains for

name-registry, mapping human-readable names to CIDs in a decentralised manner

and claim that they overcome the Zooko’s trilemma. First, projects are described

which use first-order registration, i.e. those that modify the blockchain state directly

using transactions, rather than smart contracts.

A generic name-value registration system is implemented by Namecoin [250],

offering a naming system with decentralised governance. Similarly, NXT [251]

and Emercoin [252] implement generic name-value storage service on their na-

tive blockchains. Another blockchain-based naming protocol is Handshake [253],

which aims to replace the root zone file and root servers. Rather than targeting to

replace the entire DNS infrastructure, the control of the TLDs is decentralised, al-

lowing an infinite number of names to be created. Therefore, compared to other

solutions which allow naming operation within the scope of one or a few TLDs

(e.g. .bit for Namecoin), Handshake is more flexible and customisable. On top

of these naming protocols, other systems can be built to create secondary market-

places for reselling names and easy participation in name auctions [254], as well as

to add security and accessibility2. In sections 3.5.3 and 3.5.4 key aspects of these

mechanisms are discussed in more detail.

2https://github.com/okTurtles/dnschain

https://github.com/okTurtles/dnschain
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Besides these industry initiatives, a number of research works [255, 256, 257,

258] have focused on the security vulnerabilities of the DNS and propose using

blockchain solutions to enhance the security of the current infrastructure. Security

issues are partially due to the absence of a method to certify the integrity of infor-

mation of queried name records. A number of works have improved this by storing

verifiable record hashes on the blockchain [259, 260].

Blockchain-based registry systems may also be extended to Public-Key Infras-

tructure (PKI) encryption schemes, which generally suffer from similar issues due

to reliance on centralised certificate authorities [261, 262].

3.5.2.4 Smart Contract Name-Registry

Decentralised name-registry systems can also be implemented using smart contracts

on top of existing blockchains. The advantage of using smart contracts is that many

services can be offered on the same blockchain. Blockchains that solely implement

naming operations can be less secure as the network is often smaller, and may have

limited functionality. On the other hand, as there is less overall traffic, better per-

formance can be expected. The advantages of both are expected to converge with

sharding [106] and layer-2 solutions [107].

A number of projects use the Ethereum blockchain as underlying infrastruc-

ture [263, 264], and generally use a set of smart contracts for registration and res-

olution. Most developed among these is the Ethereum Name Service (ENS) [265],

which is a general name-registry for the DWeb content including cryptocurrency

addresses. However, around 98% of currently registered names on ENS seem to

identify Ethereum addresses [266]. Stacks [267, 268] also created the Blockchain

Naming System (BNS) on top of their native blockchain using a smart contract,

after initially using the Namecoin blockchain [269].

The industry projects discussed above still have many security vulnerabilities

[270], particularly in the areas of malware, name-registration mechanisms and mar-

kets, phishing, and immutability. Specifically, looking at name-registration, domain

squatting [271] attacks present a big threat. In this attack, malicious users register

as many names as possible at low costs, with the sole purpose of selling them in the
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future for profit rather than using them, or using them for fraudulent activity based

on misdirection or impersonating another source. To illustrate some of these issues,

studies have identified that in Namecoin, squatting is a significant problem [272], a

single entity controlled over 51% of the network [269], and that there are possible

domain extortion and phishing schemes [270].

Another aspect often overlooked in the design of decentralised name-registries

are incentives. Similar to the other components in a DWeb infrastructure, nodes

will need to collaboratively perform work to keep the system working, for which

they expect rewards. In the case of blockchain and smart-contract based solutions,

some of the incentivisation for networking tasks are taken care of by the underlying

blockchain and consensus protocol. However, to mitigate some of the attacks men-

tioned, malicious behaviour should be protected against by aligning incentives with

honest behaviour, specifically tailored for the name-registry use-case. This has been

partially achieved by the registration mechanism, as described in Section 3.5.3.

In the research literature, Liu et al. [249] target availability and consistency

problems for the current DNS, and propose a name resolution and management

system called FI-DNS, which consists of a two tier architecture where the first tier

uses a permissioned network of root peers, governed by smart contracts. The sec-

ond tier uses a permissionless distributed file network, where authoritative peers

store domain name data. Evaluation of the system shows a resolution delays up

to double those of DNS, which is argued to be due to slow execution efficiency of

the blockchain. This performance bottleneck however makes this system unfit for a

DWeb which has a similar QoS/QoE as the current infrastructure.

Scope Ownership Off-Chain Registry Resolution Allow Network
Storage Fee Subdomains

Namecoin [272] TLD Permanent N Flat Fee Local N Bitcoin
BNS [268] Root zone TLD Y TLD Local Y Bitcoin

Dependent Dependent
Handshake [253] Root zone Permanent N Auction Local Y Handshake
ENS [265] TLDs Lease N Length Based Local Y Ethereum
NXT [251] TLD Permanent N Flat Fee Local / Server N NXT
Emercoin [252] TLDs Lease N Length Based Local / Server N Emercoin
CNS [263] TLD Permanent N Premium / Regular Local Y Ethereum

Table 3.4: Overview of decentralised name-registry projects.
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The remainder of this section highlights unique aspects of blockchain and

smart contract name-registries, specifically in the areas of registration and reso-

lution. Table 3.4 gives an overview of key aspects for select projects described in

the previous sections.

3.5.3 Registration

Ownership, pricing, and control of names are handled differently among projects.

Ownership of a namespace can be permanent [253, 250, 251, 263], in which case the

owner has control over the subdomains indefinitely, although there may be periodic

renewals required to ensure liveness at no cost. For example, Namecoin allows

peers to store and update name-value mappings on the blockchain, by paying a fee in

Namecoin’s own crypto-currency (i.e. NMC) to miners. All names are bought using

a flat fee transferred to a ’black hole’ address. Name registrations must be renewed

after expiry. Similarly, aliases in NXT can be created, edited, and transferred by

users for a flat fee. However, studies on the initial design of Namecoin indicate

that the flat valuation of names and very low fees coupled with the lack of a proper

secondary market, where interested buyers can search for names, makes the system

susceptible to domain squatting.

Conversely, ownership may also be temporary and may require periodic re-

newal fees to extend the lease period [265, 252], which may deter squatting attacks.

Ownership permanence may also be set differently among namespaces within the

same system. In BNS [268], different namespaces adopt policies for name regis-

tration. In most popular domain (.id) registration fees are transferred to a ’black

hole’, which aims to deter squatting behaviour. Registration is more expensive for

shorter names, and needs to be renewed every two years. Once domain names are

owned, they can be used to create and sell subdomains off-chain. These are cheaper

as registration happens off-chain, but has similar guarantees as it is anchored to the

blockchain by sending batch transactions from the domain name owner.

Pricing of domains and namespaces also varies across systems (and even

within the same system [268]). Initially, low flat fees were the norm for acquir-

ing domains [250, 251]. However, as mentioned it was shown this pricing model
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made the system susceptible to squatting. To counter this, a number of projects

started charging differently based on the perceived value of a name [263], for ex-

ample based on their length [265, 252]. Another method is leveraged in Handshake

[253], which uses Vickrey sealed-bid auctions [273] on-chain using covenants [274]

to sell namespaces. A registration covenant start the auction process for a domain,

after which bids are expressed using HNS coins. A renewal covenant may be used

to regularly renew the registration period. There are no yearly renewal fees, and

ownership is private as a domain is linked to a user’s private key.

All systems allow for reselling of domain names on a secondary market, as

this is seen to be a security feature against squatting. Some extend this further by

allowing sale of subdomains of a name [253, 265, 268, 263].

3.5.4 Resolution

The hybrid projects mentioned either rely on servers3, the current infrastructure,

or a permissioned chain to resolve names. On the other hand, for blockchain and

smart contract based solutions, the main difference in resolution with the DNS is

that they directly use the blockchain to resolve names. This can be done locally by

running a full node on the network and querying the blockchain records pointing to

the content for each resolution, using a simplified payment verification (SPV) node

[253], relying on browser extensions, or using servers [250, 251, 252].

When querying the blockchain, the entire naming records could be traversed

to find a relevant entry. A faster method uses separate resolver (which maintains an

“authoritative” record set by the owner) and registry (where the search starts) smart

contracts [265, 263]. ENS uses resolver contracts to provide the resolution service.

A name owner can program the resolver of a name as they desire, which is used

when it is queried by users during lookups, similar to the role of a zone’s authori-

tative server in DNS. The registry contract is used to map names to corresponding

resolver contracts, and is used to start a search by a user.

3https://www.opennic.org

https://www.opennic.org
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3.5.5 Open Issues

3.5.5.1 Security

Decentralised name-registries and DNS alternatives are recent developments, es-

pecially those built on top of blockchains. While the initial implementations and

results seem promising, more research is needed into how they hold up in practise,

especially in terms of security. Recent works [270, 272, 266] have exposed some se-

rious security threats and design flaws in early systems. They focus on specific vul-

nerabilities such as domain squatting and phishing, but a wider attack vector needs

to be analysed and evaluated, before one can claim that they offer better or similar

security guarantees as the DNS, and that they are actually able to “square” Zooko’s

trilemma. Furthermore, these systems rely on trust and performance assumptions

of the underlying blockchain network, which has been shown to be too slow [249]

in certain instances. Some projects rely on centralised servers for name resolution

to increase performance, but this adds a layer of centralisation [250, 251, 252].

3.5.5.2 Namespace Management

Another aspect which has often been overlooked is how these systems handle in-

stances where public keys to alter names are lost, compromised, or even just up-

graded. It may also be desirable to use a threshold of public keys, instead of just

one, to verify the identity of owners or publishers for security reasons. Although

P2P literature has attempted to tackle these issues, for example using social and

personal naming systems [275], the blockchain based systems have not identified or

addressed these issues.

The prevalence of various financially-motivated attacks (such as domain squat-

ting) is a sign that there is room for improvement in the decentralised management

and governance of namespaces. For example, popular names, especially those with

commercial values (registered trademarks), require careful management, as they are

obvious targets for such attacks [266]. While decentralised name registries that are

governed by smart contracts have developed mechanisms such as auctions to man-

age namespace ownership, more research is needed for building algorithmic mech-
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anisms for robust namespace governance (possibly together with crypto-economic

incentive mechanisms) to deter financially-motivated attacks on the namespace.

3.5.5.3 Deployment and Support

In terms of ease and practicality of deployment for decentralised name registries,

recently several browsers have introduced extensions (plug-ins) for ENS support.

However, despite the browser support, a recent study [266] has reported only few

thousands of URLs being stored in ENS, while the vast majority (98%) of the names

identify blockchain addresses. This suggests that the deployment, incorporation,

and support for these naming systems are still very young and need time to reach

adoption, which can take a long time in Internet infrastructures [276]. However, the

number of names registered on the ENS system (including the number of URLs)

has been reported to be steadily rising.

3.6 Decentralised File System
This section first describes how content is currently stored on the Web, and discusses

how storage, retrieval, addressing, and incentivisation are handled. Next, a number

of decentralised file system implementations are described and analysed based on

how they approach these key aspects.

3.6.1 Overview of Web Storage

In terms of content storage, the current Web ecosystem is dominated by centrally-

controlled public Cloud infrastructures. While these infrastructures provide users

with on-demand access to a large pool of shared resources, they operate with little or

no transparency. As a result, concerns over the security of confidential or sensitive

data can favour the deployment of private Cloud infrastructures which require large

upfront costs.

More importantly, the centralisation in the infrastructures means that they re-

side in a few locations in the Internet. Consequently, simple network failures can

lead to unavailability of these infrastructures, as experienced by users during recent

outages at Amazon Web Services (which resulted in loss of access to a significant

portion of the Web) and Facebook [181, 28]. While replication of content across
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provider boundaries would lead to better performance and availability for users, the

lack of incentives prevent such cooperative action between providers.

Content retrieval from centralised Cloud infrastructures deployed at remote

datacenters can experience large communication latency. To reduce this latency, the

emerging edge computing [29] paradigm promises to deploy small-scale datacen-

ters at locations close to users. However, such small-scale edge infrastructures are

mostly appropriate for small-scale, low-latency (or high-bandwidth) applications

and can not cope with the workload of the entire Web. Instead, a truly decentralised

Web can be realised by pooling the vast amount of global user resources and incen-

tivising their proper collaborative usage in order to achieve scalability and sufficient

performance.

As discussed in Section 3.3.3, other important actors in content retrieval in the

current Web are Content Distribution Networks (CDNs), which provide large-scale

retrieval of content requiring a high QoS, through on-demand replication of content

at distributed caches around the world. While on-demand replication and caching of

content with simple reactive caching policies (such as LRU) have been shown to be

effective in providing sufficient content retrieval performance, it remains difficult to

replicate or move content across as such actions invalidate existing references to the

content, due to the location-based addressing of content. CDNs have tackled this

issue by using proprietary name resolution mechanisms that immediately update the

invalid Web references to content upon movement or replication.

Despite being a distributed infrastructure, CDNs are centrally-governed sys-

tems and charge content producers for distributing their content. This makes con-

tent delivery expensive, especially for small content producers. Finally, in order to

serve content using HTTPS, CDNs need to hold content publisher’s private keys

further increasing centralisation and lowering security of the entire Web [277].

3.6.2 Implementations

The ideas behind distributed storage networks were first developed for P2P net-

works, and produced unstructured networks like Gnutella [60]. While these were

able to perform well in fetching popular items, they were not as successful in
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Architecture Hash Decentralised Self-Certifying Human Readable Hierarchical
IPFS [50] Multihash Y Y N N

Swarm [165] bzzhash Y Y N N
BitTorrent [278] - N N Y N

Skynet [168] Skylink Hash∗ Y Y N N
Storj [166] - N N Y Y

Table 3.5: Comparison of addressing of decentralised Web content. ∗ unclear which hash-
ing algorithm is used.

quickly retrieving less popular content. A number of projects started leveraging

structured networks and particularly DHTs to achieve more reliable performance

guarantees. Most prominently among these was BitTorrent [278]. Over time it be-

came clear that many of these networks lacked robustness in terms of availability,

security, and stability, partially due to the lack of incentives. Furthermore, BitTor-

rent’s main use became the distribution of unlicensed products [279], leading to

copyright and legal issues.

Recently, novel decentralised storage networks have emerged and gained pop-

ularity [49], most notably IPFS [50], Sia [168], and Swarm [165]. These can be built

on structured, unstructured, or hybrid networks and use content addressing. While

the principles of these projects are closely related to Information Centric Network-

ing (ICN) [51, 155], the implementation of a content-centric paradigm directly in

the network layer that replaces IP, these novel projects differ as they work in the

application layer.

Content addressing is a natural fit for decentralised file systems targeting a

public DWeb, as content is distributed over the network with a level of replication

(as every node which downloads content automatically caches it), and therefore

any node (or a set of locations) may be able to serve a requested file. It would be

counter-intuitive to restrict file retrieval to only a single location as is done in the

current Web (or a few locations if the file is cached at multiple nodes). For storage

of private data however, similar to personal Cloud storage, content addressing is

not always necessary. Such is the case with Storj [166], which also introduces

optimisations targeted towards decentralised Cloud storage and uses satellite nodes

which manage parts of the network.
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DStore [280] takes another approach to create a distributed outsourced data

storage and retrieval scheme. It uses smart contracts to audit the integrity of the

outsourced data, achieving security and efficiency. Liang et al. [281] designed a

storage and repair scheme for fault-tolerant data coding, realising a regeneration

code with high precision and repairability, focusing on blockchain-based networks.

Another distinct project that proposes decentralising storage is Social Linked

Data (SoLiD) [282], which is designed to decouple user’s personal data from the

applications that use them and allows users to set access control policies to main-

tain privacy of their data stored in decentralised storage units. However, users must

trust the decentralised storage units with properly authenticating applications and

following their access control policies. More importantly, the current SoLiD proto-

cols rely on centralised infrastructures such as the PKIs and DNS.

Finally, blockchains should be mentioned as an alternative method of storing

data in a decentralised manner. While storing on the blockchain is secure, it is

extremely expensive, as the data is replicated over all peers and thus distributed with

extreme redundancy. In the rest of this section, the focus is on recent decentralised

file systems on the application layer with live implementations, and their key aspects

are analysed.

3.6.3 Storage

Recent decentralised file systems are generally implemented over P2P storage net-

works, where a DHT structure may be used to find peers that are the providers of

a specific content. Content is typically stored initially only by the publisher who

serves the file, given that the publisher can (and is willing to) actively function as a

provider of their content. Additionally, any peer downloading a content can cache

that content and become a provider [50]. Furthermore, some protocols allow for

nodes to formally publish deals governed by a blockchain, where one node pledges

to store a particular content item [44, 168]. Secondary off-chain markets have also

emerged where providers offer to pin specific files (i.e. permanently make the file

available). Some systems also introduce coding techniques such as erasure coding

to improve the retrievability of content, meaning that only a certain percentage of
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coded segments of a content item is sufficient to restore the content. Combined with

incentivised pinning of files at multiple locations, coding can further improve the

permanence of content stored in these systems.

The content stored on the decentralised file systems is generally public data,

and anyone in the network with the CID can fetch the content. This approach causes

privacy concerns for users, which has been overlooked in some systems. For exam-

ple, the content searched by a peer can be easily monitored, especially by others that

are directly connected to the peer in the P2P network [204]. Some systems such as

OneSwarm [283] distinguish between trusted (e.g. friends and family) and untrusted

peers and introduce address obscuring techniques to increase privacy protection of

participants.

Protecting the privacy of storage nodes is important to avoid censorship of

content [284], and there may be several legal implications. For example, serving

nodes may need to disclose any prohibited content hosted by them, and therefore the

ability of plausible deniability becomes important in these shared storage solutions.

Servers can deny knowledge of content they store, if the clients store content in

encrypted form and separately from the keys used to encrypt the content [285].

MaidSafe [286] and Storj [166] both store data in an encrypted form, and content

is divided into a sequence of chunks which are stored individually on the DHT. In

MaidSafe [286], each chunk is encrypted with the hash of the previous chunk in the

sequence, and each encrypted chunk is then XORed with the concatenated hashes of

the original chunks for further obfuscation. Furthermore, publishers have to publish

a manifest file containing meta-data that maps the hash of obfuscated chunks to the

hash of the real chunks.

Some DHT implementations allow nodes to search for peers who store a given

CID. In these implementations, a client searching for a content object by its CID

can retrieve provider records by querying the DHT, consisting of the IP addresses

and peer identifier of peers that store that content. As this storage privacy is a

challenging problem, a possible privacy extension is to store encrypted provider

records, and allow content publishers control over access to the key, as was done



3.6. Decentralised File System 88

in SoLiD [282]. Another recent idea is to encrypt provider records of a CID using

a key derived from the CID itself [287], which allows providers to be revealed to

only those who know the CID of that content, where the CID is now constructed as

a combination of the hash of the content and secret information known only to the

publisher.

3.6.4 Retrieval

Retrieving content from decentralised file systems can happen through the network

they are implemented on, being either unstructured, structured, or hybrid. In the

unstructured case of Sia [168], nodes gather hints of the possible location through

for example the blockchain deals, after which a select number of nodes are queried,

rather than using a flooding-based approach. The other projects use modified ver-

sions of the Kademlia [65] DHT either just for locating peers [278, 44], or both peer

and content discovery [50, 165, 166].

The hybrid approach in IPFS aims to optimise the performance of content re-

trieval through both unstructured connections with a set of peers and the structured

DHT network based on Kademlia. As part of the unstructured network, each node

maintains connections with a small set of peers that are discovered either through

DHT communications or incoming content requests. These connections are used

as part of the Bitswap [214] protocol to request for content. In the Bitswap proto-

col, nodes exchange lists of wanted content (using their CIDs) with their directly

connected peers. Upon receiving a Bitswap want request, one or more peers may

respond with an acknowledgement of having the content cached locally. Upon re-

ceiving one or more acknowledgements, the node then attempts to retrieve the con-

tent from all of the acknowledging peers in parallel, similar to downloading content

using BitTorrent [278].

A node who wants to download a content object first asks its Bitswap peers

for that content’s CID. If none of the direct peers have the requested content lo-

cally cached, then the node queries the DHT for a list of peers who can provide the

content. In general, clients may be able to retrieve content using their direct con-

nections (especially, the popular content that are previously retrieved and cached by
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many peers) without using the global DHT. Because retrieval of content through a

global DHT can be slow (requiring contacting O(log n)), Bitswap can reduce the

content retrieval latency. The Bitswap protocol also helps with reducing the bur-

den on the DHT network. However, attempting to retrieve unpopular content from

BitSwap peers may end up delaying the retrieval, as it delays switching over to the

DHT to query for content. Therefore, a hybrid system may require optimisations to

improve the content retrieval latency by perhaps using both networks at the same

time at the cost of additional overhead in the system.

In addition to the performance of content retrieval, privacy is another impor-

tant consideration. Ideally, a system should not reveal which particular content is

searched by a given client, providing reader privacy. A recent lightweight exten-

sions to the IPFS DHT enables clients to search for content without revealing the

exact content that they are looking for [287]. This way, the discovery of providers

of a CID and querying the content providers for content become decoupled. Now,

a client can search for providers of a CID by querying the DHT using a prefix of

the CID as the search key. This still allows the DHT to find a region with potential

providers, while hiding the original CID from the DHT nodes that route the query.

When potential providers of the CID are found, the client queries these peers using

the hash of the CID, instead of the CID itself. This way, the providers are unable to

find out which CID a reader is looking for, unless they have the content cached.

3.6.5 Addressing

As discussed in Section 3.3.4, addressing content on the DWeb is not straightfor-

ward, because many of the desirable properties cannot be achieved simultaneously,

as described by Zooko. Most recent projects targeting public data, such as those for

the Web, use content-addressed, self-certifying hashes to refer to content [165, 168].

This can be extended to support multiple hash functions by using prefixes, as is done

by multihash [50]. Human-readability can be achieved using trackers [278], at a loss

of security or decentralisation.

A desirable property of naming is that even mutable content objects have per-

sistent names that users can always use to refer to them. This means that CIDs of
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content objects should not change when their attributes (e.g. location, file contents,

or ownership) change. Hash-based names do not provide persistence, because the

contents of a file determines its name. This could however be achieved with public-

key based names (refer to the types of self-certifying names in Section 3.3.4) such

as IPNS4, which allow identifiers to be linked to public keys. This way, a user can

update a file by signing the updated file with their private key, while keeping the

name of the file the same.

3.6.6 Incentives

Currently, centralised storage options are cheap or even free, because the centralised

parties are able to monetise their services. Decentralised services mitigate against

security vulnerabilities and add transparency, but still require workers to be able to

cover their cost of work, which is why incentives play an important role.

Early P2P storage networks generally leveraged non-financial incentives, such

as BitTorrent’s tit-for-tat [288], which rewards for resources put towards the net-

work by faster downloads in return. Another example is Samsara [289] which fo-

cuses on tit-for-tat behaviour for contributing storage resources, in a symmetric

storage relationships between peers. In Samsara, a peer stores a chunk of data for

another peer, in exchange for the receiving an equally-sized storage promise. The

existence can be verified using a challenge-response protocol which prevents nodes

from removing or compressing. However, malicious peers can refuse to store data

later when requested as the promise mechanism can not enforce peers replacing the

promise with data. Also, the verification adds significant overheads on the peers.

A number of projects have also started incorporating blockchain based rewards

in their networks. Filecoin [44] creates an incentive layer on IPFS where nodes cre-

ate on-chain storage deals. Storage nodes regularly submit proofs that they have

been storing unique copies of the data, for which they receive off-chain micropay-

ments. Similarly, BitTorrent issued a token to add robustness in their platform,

while Skynet, a decentralised CDN, leverages the Sia blockchain. Swarm and Storj

issued blockchain tokens as well. Arweave [290] takes another approach towards re-

4https://docs.ipfs.io/concepts/ipns/

https://docs.ipfs.io/concepts/ipns/
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alising decentralised storage and uses a blockchain-like linked structure with mining

rewards based on pseudo-random previous blocks linked to the latest state. There-

fore, users pay a one-time mining fee for storage, assuming that miners are honest

in keeping and providing their data, which may not hold in practise and lead to poor

scalability and performance.

3.6.7 Open Issues

3.6.7.1 Achieving Desired Properties

One of the main issues in decentralised file systems remains the contradiction of

desired properties of names (Zooko’s trilemma). For example, secure, self-certified

naming is at odds with human-readability. While solutions, such as name-registries

have been proposed to handle these contradictions, they need further analysis and

evaluation. Also, storage of mutable content is another challenge in decentralised

file systems. Even when the hash of a public key is used for persistent naming of

dynamic content, the file system must guarantee that a retrieval operation on a name

would return up-to-date content and not an outdated file that is cached by the nodes

in the network. One possible workaround is to add version control to names, but

this also comes with problems such as retrievers not necessarily knowing the current

version of content.

3.6.7.2 Privacy and Performance

Privacy of both the content retrievers (reader) and content providers (storage) in

decentralised file systems is an active area of research, as discussed above. Recur-

sive routing can improve the reader and writer privacy, and also reduce the latency

of content retrieval, as fewer round-trip times are required to locate storage nodes

[286], and content requests and the corresponding data are routed through interme-

diate nodes.

In terms of reader privacy, there are few other promising approaches that aim to

hide the content that clients are searching for from other participants in the network.

These approaches are generally lightweight, but still prone to content query leakage.

When nodes use a prefix of the CID as a search key to find providers for example,
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while the original CID is hidden, nodes can still infer content queried by matching

the key to popular or cached CIDs [287]. Another approach is to use threshold

cryptography along with quorums of peers to enable routing queries with privacy,

but this adds significant overhead [291].

In terms of performance, decentralised file systems can suffer from slow re-

sponse times as reported recently by measurement studies [146], and it is an active

area of research to improve the performance of content retrieval in these systems.

The use of hybrid P2P networks is an effective approach, especially for retrieving

popular content with low latency. However, striking a balance between performance

and privacy is a challenging problem that requires more attention.

3.6.7.3 Legality and Moderation

Finally the unclear legal implications need to be highlighted across all components

described in this chapter, which will require cross disciplinary work. For example,

the legal implications of adding illegal content to the index and being returned by a

search engine, registering a domain name for a company by someone else, or storing

illegal files on the decentralised file system are not clear.

3.7 Summary
This chapter has presented a framework and thorough overview and analysis of the

content retrieval process on the decentralised Web, also known as DWeb. After de-

scribing how content retrieval is handled on the current Web, essential components

of the retrieval process are identified, consisting of search engines, name-registries,

and file systems. In each of these areas, an overview of the state-of-the-art projects

and proposals is provided, as well as a comparative analysis with the current cen-

tralised model.

The analysis has highlighted a number of open issues, which need to be ad-

dressed for a decentralised Web to be realised. In the area of search engines, most

existing projects are not able to truly meet the demands of DWeb, and often vio-

late the decentralisation property at one or more levels. Furthermore, there is more

work needed to verify the claims made in terms of security, privacy, and perfor-
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mance guarantees. While name-registries have more mature implementations on

blockchains, they also require feasibility analyses and recent works have pointed

out a number of security vulnerabilities which need to be addressed. Out of the

three key components, the file systems are the most mature, and have working im-

plementations and applications. Similar challenges and open questions remain in

this field regarding decentralisation and key ownership, as well as legal and privacy

concerns. A number of contradictions also arise from the self-certifying property of

names, which ensures security but comes at a loss of usability.



Chapter 4

Decentralised Search Mechanisms

for the DWeb

4.1 Overview
This chapter explores decentralised search mechanisms for DWeb content. First,

an experimental indexer and search engine is introduced for IPFS. From this imple-

mentation, a number of conclusions are drawn to determine that a truly decentralised

search is non-trivial to implement, and the proposed infrastructure is not suitable.

In order to overcome the issues of current search systems, Ditto is introduced,

which is a DWeb search mechanism based on similarity search. Ditto uses locality

sensitive hashing (LSH) to extract similarity signatures and records from content,

which are stored on a decentralised index on top of a distributed hash table (DHT).

Furthermore, numerous underlying content networks and types are supported, as

well as a wide range of use-cases including keyword-search. The evaluation con-

firms the feasibility of Ditto, and shows comparable search quality, delay, and over-

head which are currently accepted by users of search and DWeb systems.

4.1.1 Introduction

In the current Web model, search engines such as Google or Yahoo are the main

entry point for users accessing the Internet. Web search can broadly be broken

down into two main categories: keyword-search and similarity search. In keyword-

search, users submit their keywords to a search engine, which returns content it has
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previously crawled and indexed from centrally-managed Web servers. On the other

hand, similarity search (e.g. Google reverse search) requires users to submit a base

item (e.g. an image), for which the engine returns previously crawled items that are

close to the base in terms of a particular distance metric. Similarity search is also

used for multiple kinds of recommendation systems, where users are shown items

(e.g. media content such as songs) that they might like based on their interaction

history.

The decentralised Web has made lots of progress in recent times, as discussed

in Chapter 3. However, despite the significant progress of decentralisation in recent

years, one of the main problems of decentralised search engines remains unsolved.

Previous attempts do not support both keyword and similarity search [182, 186, 185,

178, 184] (search flexibility), do not provide result integrity [182, 186, 185, 184]

(security), are not completely decentralised [183, 202] (decentralisation), are bound

to a specific underlying technology [182, 186, 185, 178, 184], or require a global

view of the network and Cloud infrastructures to ensure performance guarantees

(high-performance), making them difficult to deploy in practice.

This chapter explores decentralised search mechanisms. First, the design of

a keyword-search mechanism for IPFS is provided, which is used to conclude that

a truly decentralised search mechanism is non-trivial to implement following the

traditional model of maintaining a crawled index. This then inspired the design

of Ditto, a decentralised search mechanism for DWeb services based on similarity

search, which allows for various search use-cases on a variety of DWeb content,

independent of the underlying DSN or blockchain. The name Ditto refers to the

property of returning items which are similar to each other.

Ditto achieves its functionality by using a similarity search mechanism based

on locality-sensitive hashing (LSH), which extracts short content signatures that

maintain similarity features. Consequently, Ditto is able to group together content

with high similarity and on top of this build various search functionality beyond

recommendation (which is discussed further in Section 4.4.3). Furthermore, by

extracting and hashing keywords directly from content in the algorithm, a truly
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decentralised keyword-search can be implemented.

Ditto does not require centralised components or a global view of the stored

content, and security is guaranteed by the verifiability of LSH computations. When

adding DWeb content, providers are incentivised to compute similarity signatures.

Mappings from signature to content identifiers (CID) are stored using a modified

distributed hash table (DHT), allowing for quick and reliable lookup. A user or

application can leverage search functionality by supplying a signature, content type,

and similarity range. Section 4.5, describes the system in more detail.

Through an initial evaluation, the feasibility of Ditto is verified. Delays in

terms of signature generation and lookup of LSH are found to be acceptable for a

decentralised setting (sub-second as expected by current Web users). Furthermore,

the overhead of participation does not greatly increase beyond current systems, and

the quality of similarity search and keyword-search is acceptable and comparable

to the baseline (recall up to 57%).

To summarise, this chapter proposes Ditto, which uniquely achieves the fol-

lowing:

• A general decentralised search mechanism with interoperability for various

DWeb content sources and types.

• Similarity search for a broad number of use-cases such as recommendation,

malware detection, and moderation.

• A decentralised way of achieving keyword-search, allowing for semantic

search on the DWeb without any single root-of-trust.

4.1.2 Related Work

While a more complete discussion of decentralised search mechanisms is provided

in Section 3.4, this section briefly extends this discussion of decentralised search for

DWeb content, and additionally includes a discussion on similarity search works.

These focus on works relevant for the specfic discussion in this chapter.
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4.1.2.1 Decentralised Search on the DWeb

A number of works have proposed decentralised keyword-search mechanisms, sim-

ilar to current search engine workflows based on crawling and indexing. Li et al.

[183] proposed DeSearch, which decouples state from computation by using a cen-

tralised Cloud solution to store the index, while maintenance of the index uses de-

centralised workers executing verifiable tasks.

A number of works present improved decentralisation by storing the index on a

P2P network. For example, SIVA [182] and Wang and Wu [186] propose to store a

decentralised index for the IPFS DSN directly on the IPFS DHT, which is similar to

the proposed experimental IPFS search mechanism in this chapter. Other initiatives

[185, 184] have attempted to translate the centralised search engine workflow to a

decentralised setting.

However, these search engines fail to capture the needs of a truly open and de-

centralised network, as they are not entirely decentralised in their index storage, or

require a single root-of-trust for naming consistency and provenance. Furthermore,

these approaches require lots of network participation for tasks like indexing and

crawling, requiring additional incentives, which have not been implemented and it

is unclear who will pay for it (monetary inflow source).

In contrast, Ditto hardly requires additional work for network peers who al-

ready actively store content. This is due to the fact that the crawling/indexing model

isn’t copied directly, but instead a similarity search framework is used. Further, for

content producers, it is an extra incentive to participate in the system for their con-

tent to be found.

4.1.2.2 Decentralised Similarity Search

There has been lots of work on similarity search architectures in terms of implemen-

tations and optimisation techniques, and specifically in locality-sensitive hashing. A

number of works [292, 293] have focused on implementing generic distributed ver-

sions of LSH, proposing a number of performance improvements. However, they

either rely on centralised components, or they do not specify the networking imple-

mentation and solely focus on the algorithm details.
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Some works have proposed to use a DHT to store the mapping of similarity

signatures to content [294, 295]. Haghani et al. [296] leverage a cyclic DHT space

based on Chord [66] to provide nearest neighbour search and queries within a range.

While peers are organised in local DHT’s, their system does leverage gateway peers.

Other works include Bahmani et al. [297], who improve network cost of LSH

by proposing a layered LSH method on two distributed frameworks. Hamming

DHT [298] implements a DHT where identifiers are generated based on LSH and

the hamming distance metric is used in maintaining a Chord based ring structure.

The works mentioned generally focus on increasing performance of LSH frame-

works in a decentralised setting, but are not tailored towards the DWeb like Ditto,

meaning that they lack details on specific security and privacy considerations.

Within the DWeb setting, Fujita [212] argues for implementing similarity

search on IPFS using a DHT, but lacks details in areas like signature generation

and network implementation. Yuan et al. [299] implement a LSH-based image

retrieval scheme using blockchain smart contracts and distributed storage on IPFS.

Ditto differentiates itself in a number of ways from prior works. Interoper-

ability and support for different content networks and types is guaranteed, which is

required in a DWeb environment. Furthermore, the wide range of DWeb use-cases

described, and specifically keyword-search using LSH has not been explored prior.

4.2 Experimental Indexer and Search for IPFS

4.2.1 Overview

In order to explore the feasibility and design of decentralised search engines for the

DWeb, I developed and implemented an experimental search mechanism for IPFS,

as a part of a call for projects from the DI2F workshop at IFIP Networking [300]. At

the time of development, no decentralised search mechanisms implementations for

IPFS existed (besides hybrid approaches e.g. [202]). The project was implemented

and released as command line interface, gateway service, and source code [53].

Deece Search provides an open and collaborative keyword search mechanism

for IPFS, where any node running the protocol can crawl content on the network and
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Figure 4.1: Adding crawled content to the top-level index in Deece Search.

add references of this to a decentralised index, stored on the IPFS network itself.

Deece Search allows for decentralised search on decentralised content. The index is

split up into a two-layer hierarchy, the first being the Top Level Index (TLI) and the

second being the Keyword Specific Index (KSI), which are both stored on IPFS. The

TLI contains the identifiers (CID) for the KSI for each keyword, and is constantly

updated when a node submits a crawl result. This record is pointed to by an IPNS

name record to ensure persistence. When crawling, the nodes add to the current

KSI a list of the identifiers of files that contain that keyword.

Besides crawling, nodes can perform search queries, which leverages the latest

TLI to find the KSI for each keyword in the user query. After fetching results,

they are filtered based on decentralised ranking, e.g. based on the intersection of

keywords.

4.2.2 Design

The proposed architecture relies on a collaborative network of nodes, as a subset

of the total IPFS network, who collectively maintain a shared index and are able to

perform searches. The system is built on top of the existing IPFS implementation,

and therefore nodes can easily start participating, without having to run a separate

P2P overlay.

The experimental implementation uses a trusted node and lacks security or

incentivisation, following an altruistic model in the early stage. However, nodes
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Figure 4.2: User submitting a search query in Deece Search.

need to be incentivised to be honest in updating the index, for which rewards may be

used, possibly funded by a decentralised advertising market. The two main actions

a node can perform in the network are search and crawl.

Search: A user starts a search by compiling a query which contains a num-

ber of descriptive terms (keywords), similar to a centralised approach. The node

then fetches the latest TLI by resolving the IPNS1 name set by the gateway to the

corresponding CID, after which the TLI is traversed and checked against submitted

keywords. If a match is found, the relevant KSI is queried, and results are returned

to the user who can locally rank them. The user can then retrieve these files from

the network.

The ranking mechanism is an essential component of search, which generally

happens in a centralised manner. While sophisticated ranking mechanisms have not

been implemented, clients are envisioned to locally rank, leading to greater control

and transparency, as well as personalisation.

Crawl: In order to decide what content is added to the index, nodes can decide

what they deem important information (in centralised search this is all Web content).

In a crawl, a node fetches content and analyses it to extract important keywords.

Besides extracting keywords, other metadata may be added. After extracting the

keywords, a reverse word index is created, consisting of records of keywords and

1https://docs.ipfs.io/concepts/ipns/

https://docs.ipfs.io/concepts/ipns/
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all the content where they appear. Next, the index is stored on IPFS in a two-level

hierarchy. Each keyword has an index file (KSI), and a separate index points to these

records (TLI), which achieves persistence by using IPNS for naming. However,

IPNS requires a private key to be updated, and hence uses a trusted node which

holds the key (i.e. gateway). When a node updates the KSI’s after crawling a file,

they update the pointer in the TLI to these files, and requests the gateway to update

the pointer which the IPNS record resolves to.

4.2.3 Key Findings

One key drawback of this project is that in its current form a trusted node is needed

to update the naming records (IPNS) pointing to the latest version of the TLI. There

is a trade-off between trust and security, as making the key available to more nodes

increases decentralisation, but at the cost of possible security vulnerabilities. Mech-

anisms like zero-knowledge proofs or threshold cryptography could be useful, but

this has been largely unexplored.

Furthermore, IPNS proved to be a serious performance bottleneck, which is

due to the fact that nodes need to traverse all provider records in the DHT for a

name record in order to ensure that the latest version of the index has been fetched,

which becomes especially crucial when the TLI is often updated.

To summarise, this project found that a single root-of-trust is required for nam-

ing consistency, which can be described as the top-level index problem: Keyword-

search systems storing their index on a DSN using self-certifying names face diffi-

culty in tracking the latest index file. This can be solved using naming mechanisms

like IPNS or name-registries, but this often leads to performance degradation, cen-

tralisation, or security vulnerabilities, analogous to the blockchain trilemma [97].

To overcome these issues a fully decentralised search mechanism is needed.

The rest of this chapter focuses on how this can be implemented using an alterna-

tive model based on similarity search, which implements various search workflows

including keyword-search.
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4.3 Preliminaries: Similarity Search

Similarity search aims to provide a mechanism for identifying content with high

similarity. When a query is submitted, the goal of the algorithm is to return a number

of items with high similarity of content. This has been applied in a variety of use

cases [301], and implemented either using space partitioning methods such as tree-

based mechanisms [302], or using hash-based approaches like Locality Sensitive

Hashing (LSH) [303]. As the latter has higher performance guarantees at lower

overhead, this is the method used in Ditto.

The goal of LSH is to extract a short signature from content based on hashing,

where the hashing algorithm maximises hash collisions for similar items. As signa-

tures retain information about similarity, they can be used to perform comparisons

and find similar items, rather than having to use the raw file, greatly improving

performance.

Popular LSH mechanisms include random hyper-planes [304], multi-probe

[305], and LSH forest [306]. In this chapter a minhashing [307] approach is used,

which reduces a high dimensional content vector into a short signature using N ran-

dom hash functions. First, a binary feature vector is extracted from the content, after

which a large number of randomly permutated hash functions are generated, where

the signature length determines the number of hash functions used. The values in

the signature are then given by the position of the first row with a 1 entry following

each hash function.

The minhashing approach maximises the probability that contents which are

similar are mapped to the same bucket in the signature. In the general minhashing

LSH algorithm, signatures are further split into buckets, creating a large number of

hash-tables that capture part of the signature. When looking for similar content, a

requestor checks all hash-tables to generate a candidate set, on which a similarity

metric is applied to get the closest items. While a number of similarity metrics

can be used [308] such as cosine similarity and Hamming distance, the minhashing

approach estimates the Jaccard similarity [309], which is defined as the intersection
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over the union between two sets A and B:

J(A,B) =
|A∩B|
|A∪B|

4.4 System Properties
This section discusses the assumptions made in the design of Ditto, a decentralised

similarity search system. Then, the desired properties and possible use-cases of

Ditto beyond similarity search are discussed.

4.4.1 Assumptions

This chapter has a focus on the networking aspects and feasibility of implementing

decentralised similarity search for the DWeb, and while data pre-processing and

LSH tools are used and discussed, they are not the main contributions. Rather, this

work presents a system of known parts, applied to a novel environment and use-

case. To achieve Ditto, a number of assumptions have been used in the design of

the similarity search mechanism.

• A search is defined in the system as nodes submitting a large number of

queries to the network, consisting of a number of parameters specifying the

search, and in return they receive all relevant content in the network.

• The network in Ditto is defined as a collective of nodes in a P2P network who

collaborate to provide search functionality. A node can simultaneously be a

search node as well as a network node, but is not required to be both.

• When discussing content, this refers to data of various mime types, and stored

on a number of different underlying P2P storage networks (i.e. multiple de-

centralised data sources). These collectively store a set of files and data,

where each item is identified by a content identifier (CID). An agnostic ap-

proach is taken towards the storage network implementations and CID con-

ventions. However, in the rest of the chapter, for simplicity, the focus remains

on a network where the CID convention uses self-certifying names (which

mirrors IPFS).
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• A random distribution of files to nodes that store them is assumed (i.e. each

participant decides independently which files to store without following any

specific rules), although a DHT is used to store pointers to content providers

(nodes who can provide the content).

• It is assumed that nodes in storage networks are incentivised to make their

content available on a search system, and would therefore participate in a

collaborative search system. The presence of arbitrarily malicious nodes in

the P2P network is assumed, who may not follow the protocol for individ-

ual gain. No single node is trusted entirely by its peers. However, at least

one neighbouring node is assumed to be honest (i.e. nodes are not entirely

eclipsed).

4.4.2 Desired Properties and System Goals

In designing a decentralised search mechanism for the DWeb (specifically one based

on similarity search), the following desired goals have been identified:

4.4.2.1 Search Flexibility

Since the DWeb is comprised of a large number of complementary protocols and

content sources (e.g. many different DSN’s and blockchains), a search mechanism

should be flexible in supporting a wide range of content types (e.g. text and videos),

as well as various storage networks. The naming convention of identifiers (i.e. sig-

natures) should also be compatible with current DSN’s.

Furthermore, keyword-search should be supported as this is currently the most

popular workflow, but a number of other search use-cases should be implemented,

which is described in Section 4.4.3. It is further desired that users have control over

system parameters to allow for personalised search and recommendation services.

For example, the query similarity threshold and ranking policies should be user-

defined.

4.4.2.2 Decentralisation

There should be no central or trusted entity involved in the search mechanism, and

global knowledge about all the files stored in the network should not be required to
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query or participate in system upkeep. Each participant should be able to calculate

signatures of files and securely verify each step of retrieval.

In order to achieve decentralisation and realise an open system, participation or

resource-constraint nodes should be enabled, and therefore the system should have

low-resource usage, and should not require costly global synchronization.

4.4.2.3 Security

The search mechanism should be secure against malicious peers and attacks.

Specifically, each step of the search process should be verifiable. Without verifi-

ability, any malicious nodes could return fraudulent results forcing the requesting

node to accept irrelevant files.

The calculation of signatures and the distance between them is deterministic

and verifiable by requesting nodes. This property is required to ensure the correct-

ness of the returned results, and each peer should be able to independently produce

signatures. Finally, the integrity of the content itself should ideally also be verifi-

able, for example using self-certifying naming conventions, but this is dependent on

the underlying content network.

4.4.2.4 High Performance Guarantees

For a decentralised search mechanism to be useful, it needs to have comparable

performance compared to centralised alternatives. Here, performance refers to a

number of properties. First of all, user queries need to be returned quickly without a

high delay (users expect sub-second delays in current systems). Second, the results

returned need to be of high quality (i.e. a high recall of the theoretical most relevant

results globally), comparable to centralised search engines.

Finally, the overhead of calculating the signatures and storing them should be

low, in order to limit the bandwidth, storage, and computational power that peers

have to dedicate to the network. If the overhead becomes too large, peers may

require extra incentivisation for participation in the network, adding a layer of com-

plexity. Specifically, any network tasks should have sub-second delays on average

user machines, and storage overhead should at most be comparable to other P2P

network storage (e.g. storage networks).
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4.4.3 Use-Cases

Ditto, the proposed similarity search system, can be applied in a number of DWeb

use-cases. These are described below in order to provide additional context on the

contribution of such a search system.

4.4.3.1 Decentralised Search Engine

One of the main use-cases for Ditto is to facilitate decentralised search and replace

current search engine based workflows. Users can submit content queries and re-

trieve all network content which is similar to it. This is extended to traditional

keyword-search by hashing keywords directly and producing signatures from ex-

tracted keywords alone. This is further discussed in Section 4.5.

4.4.3.2 Recommendation Engine

Ditto can be used to create a decentralised recommendation engine for services and

applications (DApps), which gives content providers and users recommendations

for similar content on the DWeb. For example, music or video services can use

similarity search to propose relevant items for users based on content they enjoy,

without running centralised machine learning or data collection. This may also

be applied to achieve decentralised and privacy-preserving personalised advertise-

ments.

4.4.3.3 Malware and Illegal Content Detection

DSN’s can be used to store and distribute copyrighted and illegal content without

control from centralised parties, flying under the radar of law enforcement. Distrib-

utors of this content may slightly change files from the original so they cannot be

found using known image hash databases of illegal content. To combat this, similar-

ity search can be used to do an extensive search of potentially illegal files comparing

to these databases. Conversely, copyright owners can apply the same techniques to

find copyright-infringing content, which they can report to law enforcement. It

must be noted that while this content can be detected, it cannot be removed from

the network, and hence local moderation techniques may be implemented.

A similar technique can be used to check files for malware, which involves
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Figure 4.3: Overview of Ditto, where users submit queries and are able to query from var-
ious underlying content sources.

submitting signatures of content before opening them and checking for high simi-

larity of known databases of malware and illegal content, allowing to asses whether

the file is potentially hazardous.

4.4.3.4 Decentralised Moderation

As mentioned above, malware, illegal, and copyrighted content can be detected us-

ing similarity search. However, there are more types of content which may not be

desired by a user based on their individual preference. For example, hate speech or

extremist views may want to be avoided. As complete censorship in the network is

not possible (similar to illegal/copyrighted content), users may implement local de-

centralised moderation strategies, which may avoid or assign low ranking to results

which are similar to content that the user has flagged to be unwanted. This method

allows for transparency and control of censorship and result ranking.

4.5 Architecture Design

4.5.1 Overview

This section describes the architecture design of Ditto, which captures the desired

goals outlined above. The presented system is agnostic to content data type and
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underlying DWeb network, but to illustrate its functionality terminology from the

IPFS DSN is used for simplicity. First, an overview is given of system functionality,

before describing individual components.

As described in Section 4.4.1, Ditto takes inputs from different decentralised

data sources. When a content owner uploads content to the network they simultane-

ously extract a similarity identifier (SID) based on an LSH signature. These content

owners are incentivised to produce these identifiers for public content, as otherwise,

their content will not be searchable in the network. Signature generation is verifi-

able by the network, as nodes can easily recompute SIDs. The SID is structured

such that it supports different data types and content networks.

To store the decentralised index, an overlay network based on the Kademlia ID

space is used, but incorporating the Jaccard similarity as the default distance metric.

Nodes in the network store content records close to them in the ID space in the form

of {SID:Metadata/CID}, where metadata specifies the content source and type, and

CID is the identifier to query the content itself. When searching for content, a

user sends a query to the overlay network consisting of a SID and a parameter r,

specifying a similarity range. The SID can be in the form of the signature of content

for which users want similar items or recommendations for example, or keywords

to implement semantic search, depending on the use-case. The network then returns

all results which are within the similarity range, and the user can filter these based

on local ranking policies (e.g. based on content type or size) and then fetch them on

the underlying data source. Figure 4.3 gives an overview of Ditto.

4.5.2 SID Generation

To generate a decentralised search index on the DHT, first SIDs need to be gener-

ated. To achieve this, an LSH signature is extracted and then arranged into a SID

record format.

4.5.2.1 Signature Generation

In order to generate an LSH signature, separate pipelines are needed for different

content types, as the pre-processing and hash extraction should be optimised per
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Figure 4.4: Overview of inserting a similarity record.

type. For each content type, the dimensionality of data is first reduced and stan-

dardised, after which the reduced data is used to generate a feature vector, capturing

the uniqueness of the content. Feature vectors are then parsed into the LSH algo-

rithm, where parameters are tuned per mime type, and which (in the text case) is

based on Minhash. The evaluation in this chapter focuses on text files, as this is the

base for most Web searches (HTML is text). Describing the pre-processing for each

specific type is out of scope.

In order to provide deterministic outcomes, the same LSH parameters should

be available to the whole network. This could be done for example using blockchain

solutions or a decentralised autonomous organisation (DAO) [211], allowing flexi-

bility in changing the parameters. Alternatively this can be hard-coded in the pro-

tocol, although this is not desirable.

4.5.2.2 Addressing

One of the main benefits of the proposed approach is that it allows for a general

DWeb search, rather than focusing on a single content source. This is achieved

by formatting SID records to include metadata. In the hash-table entry the SID is

the key, and the value is given by the path: content type/content source/CID. For

example an IPFS image would have the entry {SID:Image/IPFS/CID}. Using this

addressing, the security properties of the CID naming convention are maintained,

while this could add additional useful metadata such as content title, adding human-
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Figure 4.5: Overview of a user query for a specified SID.

readability.

4.5.3 Network Implementation

After generating the SID for a content item, the content owner stores the corre-

sponding record on the DHT overlay network. Nodes close in the hash space to the

content store the record, and respond to queries if their records show any content

within range r.

4.5.3.1 ID Space

In order to structure the network peers, the Kademlia ID space is used which can

be visualised as a binary tree. A node has more knowledge of close nodes in the

ID space which speeds up look-ups. When nodes join the network, they randomly

generate an ID in the space and starts building its routing table buckets.

4.5.3.2 Insert

Inserting and querying the DHT follow slightly different algorithms, because insert

is not as time sensitive compared to serving user queries. In this protocol, another

key parameter is the DHT threshold, which specifies the closeness of a node to

a record for it to store it. This is because the Jaccard metric has the symmetry

and triangular properties like the XOR metric, but it is not unidirectional (i.e. the

distance between a node and any two others nodes may be the same), which means

there may not be a closest node, but a number of closest nodes. The DHT threshold
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can be adjusted to tweak the amount of caching in the network.

To insert a record into the distributed index, a node checks the Jaccard sim-

ilarity to itself and their direct peers. They then place the record with any node

within the threshold, and send it to the N closest nodes (who also forward it to their

closest nodes) in terms of Jaccard similarity. Along with the record, the node sends

a parameter H to indicate after how many hops a receiving node can discard a re-

quest, so it does not stay live in the network. Nodes receiving records verify the

correctness of the {SID:CID} mapping before adding it.

After a time period, the node makes sure the record has been added to the net-

work, and if it cannot find it, the above steps are repeated. Parameters H and N are

again set on a protocol level, similarly to the DHT threshold and LSH parameters.

4.5.3.3 Query

In order to query the network a node first needs a SID in which it is interested, for

example based on similar content it has (as a recommendation engine). It sends the

SID and a similarity range to its peers.

Each node which receives the query checks their local index for any entries

which fall in the range, which they return to the sender. They also send it to their top

N closest nodes until the termination condition H is met. In order to ensure security

the node may recompute the distance of results to ensure it is correct. Alternatively,

this system could easily be extended to return the top K closest results to an SID.

Ditto also implements decentralised ranking, as the querying node is respon-

sible for compiling the results and ranking them based on a local policy. This can

be based on similarity to the query, size, file type, or content network for example.

However, the system can be extended to include metadata in the index files such as

keywords, and content producer name, which allow for more fine-grained ranking

mechanisms.

4.5.3.4 Keyword-search

Ditto, as described above, can be modified in order to allow for keyword-search.

Rather than supplying SIDs of known content, a node can compute the SID directly

based on the keywords it is interested in only. A system is desired where a user
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provides a number of keywords, which are then hashed into a signature, and which

can then be queried in the network to receive relevant SIDs. However, if the system

described above is implemented directly (with signatures in the SID based on the

content shingles), it is likely that there will be extremely small similarity scores

to compare. This is because the keywords are not weighted in the shingles and

therefore their importance in the signature is not captured.

Instead, the most important keywords from content can be extracted and used

directly to produce a signature and SID, allowing for a better comparison of Jaccard

similarity. This could be achieved using natural language processing tools for ex-

ample, similar to crawling. A drawback of this approach is that it requires a stronger

mechanism to ensure the SID record mapping to content is correctly calculated (e.g.

ensure that the keywords used in the signature are correct). This could be done using

zero-knowledge proofs, which is discussed further in Section 4.6.5. The feasibility

of keyword-search in Ditto is explored further in the evaluation.

4.6 Evaluation
In this section the feasibility of Ditto is examined and the design goals outlined in

Section 4.4.2 are verified. As this work is the first to explore LSH as a general search

mechanism including keyword-search for DWeb settings, the main focus is on its

application and feasibility, leaving further evaluation of network and DHT aspects

for future work. Specifically, the desired properties defined in Section 4.4.2 are

assessed: the performance of the decentralised mechanism is measured, the search

flexibility is tested using keyword-search, and the security aspects are analysed.

4.6.1 Setup

For the evaluation2, a Wikipedia mirror is used which represents a large dataset

of content which can be found on the IPFS network. From this, a subset of the

Wikipedia articles is taken in Dutch from the archive3 to use as the dataset in the

rest of this evaluation. This dataset is chosen to model popular Web content, and the

2https://github.com/navinkeizer/ditto
3https://wiki.kiwix.org/wiki/Content_in_all_languages

https://github.com/navinkeizer/ditto
https://wiki.kiwix.org/wiki/Content_in_all_languages
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Figure 4.6: Delay (s) of signature generation for full signatures and different top keyword
sizes.

Mean Standard Deviation

XOR 0.518 0.42

Jaccard 0.942 5.94

Euclidian 2.011 1.21

Hamming 2.029 2.38

Cosine 5.450 7.11

Table 4.1: Delay of similarity calculation with different distance metrics (in 10−5 s).

subset is taken to assess the scalability of the mechanism. The LSH implementation

used can be seen as a lower bound, as no optimisations are proposed, and therefore

the main goal of this evaluation is to establish that there is value in using LSH as a

DWeb search mechanisms.

To calculate LSH signatures, a Minhash implementation in Python4 was used.

First, the text from a page was extracted in order to produce shingles with length

k, where k is set based on the length of the text (generally k=6 for the data used).

The algorithm then calculates the signature based on the specified number of per-

mutation functions. The simulations were performed on a local laptop with average

specifications.

4https://github.com/ekzhu/datasketch

https://github.com/ekzhu/datasketch
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Figure 4.7: Jaccard similarity difference and signature delay for varying shingle size.

4.6.2 Similarity Metric

The proposed system relies heavily on the calculations of Jaccard similarity for

querying and inserting content into the decentralised index. To verify that this does

not deteriorate performance significantly, the performance of this metric is com-

pared against other known similarity metrics.

A random subset from the dataset is selected and signatures are computed from

them, on which the delay in computing a similarity score is measured. As shown in

Table 4.1, Jaccard similarity is relatively fast and comes close to XOR performance.

While XOR is taken as the baseline because of its speed and use throughout DHT-

based solutions, it must be noted that XOR is not applicable in this system as it uses

the longest prefix match, instead of comparing sets within the signature. XOR is not

suitable as this may result in a low distance in signatures, even though there is a lot

of overlap in the content (but in different positions). This is a problem particularly

for keyword-search, and for this reason the rest of the evaluation focuses on the

LSH specifics, rather than performing a comparative analysis with an XOR-based

DHT.

4.6.3 Minhashing Performance

Next, the performance of the minhashing algorithm is assessed in terms of the de-

lay and accuracy in translating the information in the original document to a short
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Figure 4.8: Jaccard similarity difference and signature delay for varying number of permu-
tation functions.

signature. Two subsets are extracted from the dataset on which signatures are gen-

erated, which are subsequently stored along with the raw shingles. Content pairs are

then randomly picked, on which the Jaccard similarity of the raw shingles is com-

pared against the signature. The percentage difference between the two similarity

scores is measured, along with the delay of generating signatures.

Figure 4.7 shows how both the delay and the difference (accuracy) go up with

higher values of k, suggesting that for this particular use-case a smaller k-value is

appropriate. Figure 4.8 shows that the delay and accuracy are inversely correlated

with higher numbers of permutation functions. However, in either case the delays

are reasonable as it adds sub-second delays to the overall latency, which are only

incurred when adding or verifying content. Therefore, this delay is also not incurred

often and meets the high performance goal.

4.6.4 Search Performance

Finally, the performance of search using LSH is evaluated. From the dataset, sub-

sets of different sizes are used in order to analyse scalability. The main metrics

measured are overhead, query delay, and the recall —which is defined as the per-

centage overlap of items returned compared to baseline (i.e. on raw shingles). The

reason these metrics are chosen is because they directly impact the performance

and user experience, and have therefore been used in related work to assess search
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Figure 4.9: Query delay (s) of search mechanisms for varying number of top results.

Figure 4.10: Query recall (%) of search mechanisms for varying number of top results.

mechanisms. As the baseline a search system based on comparing similarity of raw

shingles is used, which is compared against an implementation of traditional Min-

hash LSH using bands, as well as Ditto’s signature comparisons (including keyword

search).

After taking a randomised subset, shingles and signatures are parsed into the

various search mechanisms. Next, a smaller subset is taken to be used as query data

on which the performance of each mechanism is assessed (as the test data for the

simulation). The sorting/searching algorithm has not been optimised for the stored

LSH data, so performance can be seen as a lower bound.

Besides these implementations, keyword-search is implemented by extracting
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the top keywords from the text file using Automatic Keyword Extraction5 and hash-

ing these directly. Queries are then performed on keywords only (extracting the top

keywords from the query subset), which is then compared to the other implementa-

tions.

In terms of overhead, storing signatures instead of raw shingles reduces the

size in memory by about 103 times. Figures 4.9 and 4.10 show respectively the

delay and recall for varying the number of results returned by the search. While the

delay is very low for lsh bands, the recall is extremely poor. This implies that this

mechanism is fast in returning results, but that the quality of results is not suffient.

Comparatively, signature lsh approach performs much better, and keyword-search

also works well, especially when setting the number of top keywords extracted for

the signature at 35. Using raw shingles is not a feasible option as there are large

delays which grow linearly.

When sweeping across the number of content in the system in Figures 4.11

and 4.12, the same can be observed, where delays grow linearly, but remain man-

ageable for signature lsh, and are very low for keyword-search. In terms of recall,

signature lsh performs best, while keyword-search also achieves reasonable quality.

In terms of generation delays, Figure 4.6 shows that using full signatures generally

achieves delays of under 0.1s, while the keyword signature delays grow with larger

numbers of keywords extracted due to the extraction algorithm overhead.

To summarise, it has been shown that keyword-search is a feasible option be-

cause it has comparable delay, recall, and overhead compared to native similarity

search, but extends the use-case to allow users to submit search descriptions, cap-

turing the first design goal of search flexibility.

Furthermore, the proposed system achieves the goal of high performance,

as delays are sub-second, and recall is between 30-50% of baseline. It is also

lightweight enough with low-resource usage to be deployed in a decentralised set-

ting. Section 4.6.5 discusses how the security property can be met in more detail.

5https://github.com/LIAAD/yake

https://github.com/LIAAD/yake
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Figure 4.11: Query delay (s) of search mechanisms for varying number of content in the
network.

Figure 4.12: Query recall (%) of search mechanisms for varying number of content in the
network.

4.6.5 Security Analysis

As mentioned in Section 4.4.2, one of the desired properties in this work is security,

both in terms of SID record mapping, as well as protection against malicious peers,

who may not respond or return incorrect content records, or may not participate

in network tasks like computing SIDs. Ditto mitigates against these threats in a

number of ways.

First of all, peers who upload content as public files are incentivised to calcu-

late the SID mapping, as their content otherwise will not be discoverable. Second,

using Jaccard similarity for inserting along with the similarity threshold parameter
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means that there will be redundancy in the network in the form of caching, as mul-

tiple close nodes store SID records. This means that even if one or more nodes are

malicious, there is still a high probability of finding the file from an honest peer.

In the querying process, nodes can verify that returned results are actually

within the similarity range wanted with a lightweight Jaccard check. Furthermore,

the mapping from CID to signature is verifiable as the algorithm and its parameters

are set on a protocol level and can be computed by any peer. When using keywords

directly, this mapping can also be verified if the keyword extraction is standard-

ised. However, additional mechanisms like zero-knowledge proofs may be used,

avoiding the need to re-verify integrity at all nodes who come across the file.

4.7 Summary and Discussion

This chapter presented Ditto, a decentralised search mechanism for the DWeb based

on similarity search. Ditto supports numerous decentralised content networks and

types, and uniquely implements decentralised keyword-search. The evaluation ver-

ifies the feasibility and shows that the system goals of flexibility, decentralisation,

security, and performance are met. A search recall of up to 57% recall of baseline

is reached, and sub millisecond delays are achieved in keyword search for a net-

work size up to 5000. Ditto opens up a new research direction of search for the

DWeb using LSH, and specifically based on keywords. While these initial results

are promising, improvements in terms of search delay, overhead, and quality of

results are required in order to compete with centralised approaches.

While this chapter focuses on the feasibility of decentralised search, the net-

working specifics of this approach should be explored in future work. Particularly,

design specifics and evaluation of the proposed DHT should be investigated, as

well as unstructured and hybrid approaches for implementing decentralised search,

in order to improve performance. Another area which needs to be worked on fur-

ther is the security implications and mitigation, e.g. those based on verification like

zero-knowledge proofs, or network consensus.

Another area which has not been covered in depth in this work is incentivisa-
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tion of network participation. The argument was made that users do not perform

much additional work and therefore incentives are not as crucial as for example

in blockchains. It may still be desirable to add monetary rewards to add robust-

ness and security to the system. A natural extension of this work could leverage a

monetary inflow source backed by a decentralised advertisement market, where ad-

vertisements are mixed in with search results. Using similarity search personalised

advertising could also be explored, analogous to the current Web model.



Chapter 5

Service Allocation for Decentralised

Network Resource Sharing

5.1 Overview

Many decentralised services have recently emerged on top of blockchain allowing

any node in the network to share its resources. In order to be a competitive alter-

native to their central counterparts, their performance needs to match up. Specifi-

cally, service allocation remains a performance bottleneck for many decentralised

services.

This chapter presents FLOCK (Fast, Lightweight, and Scalable Allocation for

Decentralised Services on Blockchain). On top of being highly scalable, fast, and

lightweight, it allows nodes to indicate their preference for clients/sellers without

needing to submit bids by using stable matching algorithms. Price discovery is

decoupled and this function is outsourced to a smart contract on the blockchain.

Additionally, another smart contract is used to orchestrate the allocation and take

care of service discovery, while trusted execution environments securely compute

allocation solutions, and off-chain payment networks are used to send rewards.

Evaluation of FLOCK shows that gas costs are manageable and improve upon

other solutions which leverage auctions. Furthermore, the instance of the stable

matching algorithm used in this work greatly improves run-time and throughput

over auction counterparts. The end of the chapter discusses practical improvements
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to further increase performance.

5.1.1 Introduction

Ongoing efforts in the DWeb aim to decentralise traditionally centralised Web ser-

vices, and offer alternatives built on concepts like blockchain and DSN. Main ex-

amples of these services are network resource sharing services (NRS), which focus

on data storage, computation outsourcing, and bandwidth sharing. An important

challenge for the functioning of these services is allocating nodes requiring services

to ones that offer the corresponding services, while maintaining decentralisation.

Although a brute force allocation approach, whereby nodes requiring and providing

services individually discover each other, can be viable with limited participants, a

scalable allocation mechanism is needed in order for the decentralised services to

compete against their centralised counterparts.

In conjunction with scalability, two other desirable features for an allocation

mechanism are price discovery and support for preference-based assignment. The

price derivation determines appropriate rewards for nodes providing services based

on market dynamics. Enabling nodes requesting services to indicate their preference

over others in the allocation process is highly desirable in a decentralised system

where any (potentially malicious) node can offer or request services.

These three properties, namely scalability, price discovery, and node prefer-

ence, are in practise difficult to achieve simultaneously. For example, decentralised

auctions, which have been proposed as a solution to this problem, inherently lack

sufficient scalability.

This chapter presents FLOCK, an allocation system for decentralised services

on blockchain, which captures all three desired properties. Ideal use-cases for this

system are services with large volumes and tight time constraints such as content re-

trieval in decentralised storage markets. Unlike heavyweight auctions that combine

price derivation with node assignment, FLOCK achieves lightweight and scalable

allocation by decoupling its price discovery from the preference-based assignment,

outsourcing this market function to an oracle smart contract. This oracle sets a

global price per service, and can be triggered by any node in the network.
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FLOCK uses stable matching algorithms to allow for node preferences, where

nodes submit a partial preference ordering of nodes offering or requesting a service

to a billboard contract. The computation of matching is outsourced to an off-chain

trusted execution environment (TEE). This keeps smart contract costs low, and en-

sures privacy and speed. The TEE is compensated by the allocated nodes using an

off-chain payment network, ensuring speed, low cost, and scalability.

Implementation and evaluation of FLOCK’s contracts shows that gas costs are

sufficiently low, especially compared to auction-based solutions (reducing cost by at

least 52%). Comparing the proposed algorithm to auction algorithms demonstrates

that FLOCK scales much better in terms of computation run-time and throughput,

staying under 0.5 seconds for 9000 clients.

5.1.2 Related Work

Work directly related to FLOCK is now discussed. Stable matching algorithms

have been widely studied and applied in real world settings [310]. Examples of this

are in cloud resource allocation, student roommate allocation, and hospital resident

allocation. The rest of the related work is divided in two sections: outsourcing

computation using TEEs, and auctions on blockchain.

5.1.2.1 Computation Outsourcing Using TEEs

TEEs are used as secure computation enclaves (see Section 5.2.1), and are used in a

variety of security use-cases, including off-chain computation outsourcing. One of

main downsides of smart contract computation is the lack of confidentiality and pri-

vacy, which are essential for use-cases like sealed-bid auctions, because their code is

stored on-chain which anyone can access. Therefore most works optimise privacy

rather than scalability. The overheads in these solutions result in slow execution

times, and are therefore not suited for fast and scalable allocation.

ShadowEth [311] presents a framework for leveraging TEEs to confidentially

execute smart contracts off-chain using a bounty contract on-chain and distributed

storage. Airtnt [312] and SPOC [313] outsource computation using TEE’s, off-

chain payment channels, and a smart contract, targeting fair exchange of resources,
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security, and correctness. One-to-one allocation of clients to workers is assumed

(rather than multi-input, single output). Ekiden [314] is another system that uses

TEEs to address the lack of confidentiality and poor performance of blockchains,

by separating execution and consensus.

Although it does not leverage TEEs, Hawk [315] presents a decentralised smart

contract system that tackles the privacy issue. Hawk private smart contracts can be

programmed without cryptographic primitives, which are added by the compiler.

Finally, Kosto [316] is a framework for secure computation outsourcing using TEEs,

and uses a wrapper function for accounting, producing a proof of computation. A

broker node allows for minimal open payment channels.

5.1.2.2 Auctions on Blockchain

There has been much work in auction mechanisms. These have traditionally been

applied in a centralised manner, as decentralised auctions are difficult to orchestrate.

Blockchain has made it possible to implement decentralised auctions on top of smart

contracts, either on-chain or outsourced to a dedicated node to keep gas costs low.

Because sealed bid auctions require strong privacy guarantees, they often require

expensive cryptographic overheads, lowering their scalability. The following works

focus mainly on ensuring privacy and accountability.

AStERISK [317] presents a single item Vickrey [273] auction on smart con-

tracts. Distributed authority is used for issuing bidding credentials, as well as a

number of cryptographic operations. Enkhtaivan et al. [318] implement an anony-

mous English auction using TEE and blockchain, and use group signatures to pro-

vide bidder anonymity.

Desai et al. [319] propose a hybrid auction mechanism on blockchain, combin-

ing public and private chains, and using simple cryptographic proofs. An auctioneer

starts, orchestrates, and deploys the auction. Private chains lower the cost and la-

tency, but the cost of the public portion of the smart contracts and role of auctioneer

lower security and scalability.

Galal and Youssef propose a number of sealed bid auctions [320, 321]. Most

recently, Trustee [322] presents a Vickrey auction on Ethereum using TEEs. The
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smart contract is used as a billboard, after which computation is transferred to an

enclave using a relay controlled by an auctioneer. The auctioneer can be untrusted

and gains no bid information.

The works mentioned above are not applicable for fast and scalable alloca-

tion, as they remain expensive in terms of costs and overhead. Besides, they are

all single-item auctions, while large numbers of nodes need to be allocated at once.

PASTRAMI [323] is a decentralised multi-item auction relying on the Vickrey-

Dutch Multi-Item Auction [324] to derive the Vickrey-Clarke-Groves (VCG) equi-

librium, allowing multiple buyers and sellers to be matched in one round. After

assembling bids on the smart contract, a dedicated node performs the computation

to minimise gas fees. All nodes can check the solution and submit proofs of misbe-

haviour. PASTRAMI is still not scalable enough for the targeted use-case as there

are high gas fees and latency, and it suffers from general inefficiencies associated

with auctions such as the delay of valuing items and gathering bids.

Finally, a number of papers propose using Secure Multi-Party Computation to

create decentralised auctions (e.g.[325, 326]), but these are highly unscalable due

to the expensive cryptographic functions used and its high interactivity.

5.2 Preliminaries
Key concepts related to FLOCK are now discussed: TEEs, and stable matching

algorithms.

5.2.1 Trusted Execution Environments

TEEs allow secure computation to be performed on remote untrusted nodes, using

hardware enclaves [327]. The code to be executed in the enclave can be verified for

correctness, and external access to the enclave is protected against. Among others

(e.g. [328, 329]), Intel software guard extension (SGX) [330] is a TEE implemen-

tation which allows users to upload and execute code into a tamper proof secure

container, called the enclave. After being uploaded, the code cannot access the OS

functions. SGX allows code to be attested to prove it is running properly. This can

be done via remote attestation or using intra-attestation. Furthermore, enclave data
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can be sealed outside of the secure memory.

Although there are many benefits of using SGX, there are known drawbacks

as well [331]. First, there is limited secure memory of 128MB. There can also be

availability failures as the platform owner can (maliciously) terminate an enclave.

SGX can also be susceptible to side-channel attacks [332] and single point attacks.

Section 5.5.4 discusses why these drawbacks are not a problem in FLOCK. SGX is

used as the TEE in the rest of this chapter.

5.2.2 Stable Matching Problem

Stable matching algorithms have been used in a wide range of applications [310],

as a mechanism to pair entities from two sets based on their preferences for each

other, without monetary bids. In its most basic form the problem is also known as

the stable marriage problem, with a set of men and a set of women with preference

ordering of each man or woman in the other set. Gale and Shapely [333] provided

a simple algorithm to produce a stable matching, and the problem has since had

many extensions, including partial preference lists, student-roommate allocation,

and student-project allocation.

More notably, stable matching has played an important role in hospital resident

allocation [334], where the simple problem is extended. Residents are allowed to

include in their preference list any subset of the hospitals, and hospitals rank all

residents that ranked them. Furthermore, all hospitals have a budget of residents

which they can accept.

One feature of stable matching algorithms is that the set of nodes which takes

the initiative in the algorithm produces a matching which is best for that set, and

thus has an advantage. This yields that the second set is not incentivised to be

truthful.

5.3 System Goals
This section describes desirable properties an allocation system should have, and

discusses how other initiatives have failed to capture these. Next, the allocation

landscape for decentralised services is sketched from which two types of allocation
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Figure 5.1: The allocation triangle, showing the desirable properties for decentralised
blockchain-based service allocation.

can be derived. Finally, decentralised storage network use-cases for decentralised

allocation are explained.

5.3.1 Desirable Properties

An allocation mechanism for DWeb NRS services should have several properties

on top of decentralisation. First, the solution needs to be scalable, especially when

user numbers grow into the millions (e.g. BitTorrent1). This scalability is in terms

of latency, throughput, and cost. Second, any node offering a service is potentially

malicious. To mitigate against the risk of attacks and insufficient service, nodes

need to be able to indicate a preference over their allocated node. Last, as there is

no centralised sale of the service, there needs to be some way to set prices. This

price discovery should be based on market dynamics to reflect supply and demand,

but can be extended to include other factors. Surveying previous works shows that

it is been particularly difficult to achieve all of these properties simultaneously. To

illustrate, the allocation triangle in Figure 5.1 can be used.

Normally, decentralised storage networks like Filecoin [44] use an on-chain

orderbook to match clients and sellers based on their bid price. This approach would

only capture the price discovery aspect of the triangle as it is not scalable and there

is no method for specifying a preferred node in a bid. Derived prices are different

for individual storage instances (i.e. storage is seen as heterogeneous and can be

1https://www.bittorrent.com/company/about-us/
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priced different for different nodes).

Auctions generally improve on this as they capture both price discovery and

user preferences through bids. The downside however is their scalability, especially

in low latency settings. To start with, the preparation phase of auctions (valuating

items and gathering bids) in itself incurs a time delay too significant for instant

allocation. The execution phase increases this delay further.

In Vickrey auctions, large numbers of allocations require many subsequent

auctions, while the performance of multi-item auctions such as the VCG quickly

degrades with increasing numbers of participants and items. These auctions gen-

erally require extra privacy measures to keep bids sealed, as they need to mitigate

against a number of attacks. These attacks become less lucrative when no money

is involved in the allocation, as is the case with stable matching algorithms. These

capture the user preferences, and are faster and more scalable than auctions. In

Section 5.5.1 this is combined with price discovery to achieve all three desirable

properties.

5.3.2 Types of Allocation

In an allocation, it is assumed that there is a large number of clients and sellers.

Generally, the number of sellers will be less than the number of clients. These

sellers, can offer many different types of goods, depending on the decentralised

application. It is envisioned that for each large decentralised application there will

be a separate allocation to which clients and sellers flock.

Two general service types are considered which need fast, scalable, and

lightweight service allocation:

1. Services where a seller sells a single instance of a service. This service can

be denoted as binary: either it is provided or it is not.

2. Services where the seller sells a part of a good within a certain capacity. Sell-

ers have a budget and try to maximise their revenue by selling in smaller

chunks.

These two service types require different modifications to the allocation algo-
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rithm used. For the first type, it can be modelled as a regular stable marriage prob-

lem, but extended using incomplete preference lists, which ensures that nodes do

not need to submit preference orderings over large sets of users. This will produce

a matching of clients to sellers for the single service instance.

The second type can be ideally modelled as the hospital/residents problem.

This again allows for incomplete preference orderings from the client side, and

allows the sellers to define a budget they have available. Clients can be assigned to

this seller as long as it has remaining capacity, which is especially relevant when

sharing network resources.

5.3.3 Decentralised Storage Use-Cases

The service types defined above can be easily illustrated using decentralised storage

and retrieval markets (similar to Filecoin). Typically, such networks use the storage

market to sell storage to client nodes in storage chunks (in GB) within their capac-

ity. This is a clear example of the second service type, and can be modelled using

hospital/residents allocation.

The retrieval market on the other hand is used by nodes in the network to fetch

specific content from one of the storage nodes. In this case the client contracts

a retrieval miner, which either delivers the file or not (for which it receives some

off-chain payment). This is an example of the first service type.

The rest of the chapter focuses on these two service types, and for the evalua-

tion specifically on the second type. This has been done for simplicity and clarity,

but the solution can easily be adapted to support more complex cases. One such

extension is as follows.

The retrieval market has stringent time constraints, as a client does not want

to wait long before fetching a website for example, and hence performing the al-

location as requests come in might not be fast enough. In Section 5.7.3 a method

is discussed for performing the allocation before requests come in, by allocating

retrieval nodes to content providers rather than clients to sellers.
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5.4 Trust and Reputation for Decentralised Web Ser-

vices
While the blockchain can be used to establish trust for transactions on-chain and

implement allocation and auction mechanisms, the NRS service itself is provided

off-chain and occurs directly between two parties. Therefore, an honest majority of

the network does not automatically guarantee security in transactions. For example,

a provider node may commit to a service, but not actually provide it. It does not

result in additional rewards, but does result in negative consequences for the client

in the deal, leading to a risk of malicious conduct at zero cost.

To discern between honest and malicious parties and incentivise honest trans-

actions a reputation system is needed. As discussed in Section 2.5, a reputation

system generates scores for network participants which indicate the trust in a likely

positive experience of a transaction. A score is produced by aggregating various

metrics and using a particular scoring mechanism. Current reputations for cen-

tralised and early P2P services are not suitable for a DWeb application, as they rely

on a single root-of-trust, have excessive complexity, and suffer from security vul-

nerabilities. They also do not incorporate DWeb and blockchain transaction data in

their scoring mechanisms.

5.4.1 DWeb Reputation System Requirements

Currently, NRS services either do not use a reputation system, or rely on a cen-

tralised service, forming a single point-of-failure and lacking in transparency and

control (in terms of metrics and scoring functions used). For example, Stor-

age.Codefi2, a 3rd party Filecoin Dashboard, puts more emphasis on storage faults

than ask price when calculating reputation scores, which may not represent all user

preferences and their risk aversion.

A decentralised reputation system is needed for DWeb services. Due to the

close integration of decentralised services and blockchain, a DWeb reputation sys-

tem should use on-chain data to derive metrics for computation of reputation

2https://storage.codefi.network
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Figure 5.2: Overview of the DDPG algorithm, which could be used for reputation scoring.

scores. Furthermore, the system should be accurate, quickly converging, secure,

and lightweight.

Finally, reputation scores are highly subjective metrics. One node’s view of a

sellers reputation might be different from others, based on personal preference and

experience. In fact, a single seller may be seen reputable as a storage node, but not

so much in other services. Therefore, a highly personalised reputation service is

needed, which self-adapts based on a personal preference profile.

5.4.2 Artificial Intelligence Based Reputation

This section proposes to use artificial intelligence (AI) - specifically deep reinforce-

ment learning (DRL) - to assist in calculating personalised reputation scores. This

meets the requirements as described above, creating a decentralised reputation so-

lution for DWeb services. Using DRL allows us to take into account a wide range of

metrics to produce an optimised scoring function, as the algorithm continually finds

the ideal weights, and may take into account otherwise overlooked metrics. The

proposed system is an early stage design, with evaluation needed in future work.

Reputation calculation is comprised of two parts: gathering information and

computing scores. The proposed solution uses blockchain data directly as input, as

most NRS service deals are stored on-chain, and much can be inferred from past

transactions. The user of the reputation system also submits a personal preference
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profile, which may include preference for e.g. cost savings or security with different

weights.

The second part (i.e. the computation of scores) is taken care of by the DRL

algorithm, which is learning from past experiences to create a scoring function. The

specific DRL algorithm proposed is Deep Deterministic Policy Gradients (DDPG)

[335]. The main advantage of DDPG compared to others is its ability to output

approximate continuous actions. Since the application should have a wide range

of possible outputs, other DRL algorithms will not be eligible. As shown in Figure

5.2, the algorithm takes environment information as input state, after which the actor

inside the agent outputs an action. This action will be random in the beginning, but

becomes smarter over time with training, as feedback is received by the critic based

on the reward of an output action. This way, the critic continually updates the actor.

Using the personal preference profile of a user, the proposed model generates a

personalised reputation scoring function, which the user then uses with blockchain

data to calculate scores. While training the model can be computationally intensive,

the actual calculation of scores when the model weights are obtained is lightweight.

Training the model is initially done using historical blockchain data, after which it

is continually updated with usage data.

5.4.3 Filecoin Example

To illustrate how the model could work in decentralised storage markets, Filecoin

can be used as an example. Here, the input state to the agent consists of a node’s

information (who is to be scored), inferred from blockchain transactions, as well

as a virtual balance of the user. Examples of blockchain inferred data are average

deal time, storage size available, failed deals, and time since joining the network.

Meanwhile, a preference profile of the user is required in order to evaluate the ac-

tion. Initially the model will need to be trained based on historic data pulled from

the chain in order to become accurate.

Every input cycle, the DDGP algorithm will output an action (a reputation

score from 0 to 100) based on the input states. In this example, the consequence of

a bad output could be a loss of profit due to a wrong recommendation, as well as
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failing to make a deal with an honest counter-party. Evaluating actions is essential

to give feedback to the model for it to learn.

After an output score is generated, it is mapped to a step function which indi-

cates the probability P of making a deal with the node. P is 1 if the score is over

95, and P is 0 if it is below 30 (following the step function). The accuracy of an

action (and therefore the reward) is decided by the distance between P and the user

decision D. In the initial training, D is obtained by inferring the preference profile

from the node’s information, whereas this preference can be obtained from user

feedback. When P and D are both below or above 0.5, the reward will be positive,

and this reward is increased the closer they are together. The reward is added to

the virtual balance which is going to be forwarded to the next state. After enough

training the model will learn user preference and optimise this balance.

5.4.4 Discussion

This section has described how the DRL model can be used to create a personalised

reputation scoring system. While calculating scores is fairly lightweight when the

function has been trained by the model, the actual training phase can be compu-

tationally intensive. Therefore, an open question remains how this training would

happen in practise. A completely distributed scenario would have every node run its

own DRL algorithm, but this might not be feasible for all nodes, especially mobile

users, as their devices may be relatively resource and energy constrained. Further-

more, this would create lots of redundant work, as many users will have similar

preference profiles and therefore similar functions.

A more feasible architecture would allow nodes in the network to outsource the

training of the algorithm, while calculating the scores locally. They would submit

their preference profile, fetch the matching function, and calculate the score locally

after querying the blockchain for input data. This and performance considerations

should be explored further in future work.
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Figure 5.3: Simplified sequence of events in FLOCK. All sellers and clients have been
represented in single actors.

5.5 Architecture Design

5.5.1 Overview

In this section FLOCK is presented, an allocation mechanism which satisfies all

desirable properties of the allocation triangle of Section 5.3.1 for decentralised allo-

cation of blockchain services. First, an overview of the solution is presented, after

which each system component is described in detail.

The proposed solution is comprised of two parts, which together achieve scal-

ability, price discovery, and preference based allocation. In the first part, a smart

contract is used to function as a billboard for the allocation, which registers partic-

ipants and orchestrates the initial phase. Service discovery is taken care of by this

contract, as it is public and reachable by all nodes. The complexity of this contract

is kept to a minimum to save gas costs, and execution of the allocation algorithm is

outsourced to an SGX enclave (execution node), which assures privacy and correct-

ness of execution without expensive techniques such as SMPC or zero-knowledge

proofs.

To incentivise proper behaviour of the execution node, a small reward is trans-

ferred by nodes in the allocation using off-chain payment networks. This keeps the

cost and overhead low, ensuring scalability.
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Algorithm 1 Setup (threshold)
Require: ! in progress

1: Delete: clients, sellers, execution node
2: T HRES HOLD← threshold
3: c count, s count← 0
4: in progress← true
5: waiting f or node← f alse

The algorithms used to compute the allocation are instances of stable match-

ing. Partial preference orderings are submitted based on metrics like personal ex-

perience, expected QoS, and reputation. This reputation could be inferred from

previous on-chain transactions, or using off-chain reputation systems (as described

in Section 5.4).

So far, the solution is scalable and allows for preference based allocation, but

lacks price discovery. To solve this, the second part of the solution uses an oracle

contract, which decouples the price discovery from the allocation computation. This

way, market function is outsourced based on macro parameters to the smart contract,

rather than doing this on a per item basis, making the process more efficient.

Figure 5.3 shows a sequence of events during allocation. Any node in the

network can trigger an allocation, after which interested nodes register either as a

client or seller. After a threshold of nodes is reached, the billboard contract picks

an execution node and sends them a list of nodes in the allocation among other

parameters. All clients and sellers compile a partial preference list of the nodes

in the opposite set, and submit this to the execution node along with an encrypted

payment promise. The execution node then computes the allocation and returns the

solution to the clients and sellers, which in turn unlock their payments.

5.5.2 Billboard Contract

The billboard contract orchestrates the beginning phase of the allocation. First,

nodes who are interested in participating in an allocation register at the contract as

a client or seller. The contract sets parameters to dictate when the allocation is full;

this could for example be a time interval (in terms of blocks) or a pre-set number of

nodes allowed to join.
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Algorithm 2 Register (x, caller address)
Require: in progress & ! waiting f or node
Require: ! already registered

1: if x == 0 & ! c f ull then
2: c← c+1
3: clients.add(caller address)
4: else if x == 1 & ! s f ull then
5: s← s+1
6: sellers.add(caller address)
7: end if
8: if c Full & s Full then
9: waiting f or node← true

10: end if

Algorithm 3 ClaimTask (caller address)
Require: in progress & waiting f or node
Require: ! already registered

1: execution node← caller address
2: in progress← f alse

5.5.3 Integration with SGX

After the registration phase, the smart contract chooses an execution node with an

available enclave. This can be an execution node claiming a task, or chosen and

contacted by the contract based reputation.

The execution node then obtains a nonce, and a list of node addresses in the

allocation. The nonce decides which set in the allocation algorithm will be the

initiators for that round. This is not known beforehand so all are incentivised to be

truthful in their preferences. Clients and sellers send their preference lists directly

to the execution node.

It is assumed that nodes are connected to a payment network, and they can

send off-chain payments without added cost. The node in the allocation sends the

execution node an encrypted payment receipt, which the latter will be able to unlock

upon completion.

Next, the enclave runs the algorithm to produce an allocation. This algorithm

will be publicly available (e.g. stored on decentralised storage) and should be re-

motely attested by a subset of nodes to verify correct instantiation. Finally, the

enclave sends the results back to the nodes, after which the secret is released and
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their balance is updated.

The approach described above differs to the centralised approach of resource

allocation in a number of ways. Most importantly, the function of the sellers, smart

contract, and execution node are all concentrated to a single entity.

5.5.4 SGX Security Analysis

The disadvantages associated with SGX are not a problem for FLOCK. As opposed

to auctions, there is little to be gained from attacks on the allocation, as there is

no money directly involved. SGX specific attacks and vulnerabilities are now dis-

cussed, and specifically how they are unlikely to affect FLOCK.

Side-channel attacks aim to infer information from inside an enclave, but in

the case of FLOCK the costs of an attack is much higher than potential gain, as

price discovery is decoupled and therefore there should be indifference over allo-

cated nodes. Single-point attacks may be launched as a general attack against a

service, aiming to exploit the single point of failure of the enclave. This requires

considerable resources, and the smart contract has a number of backup nodes if an

enclave fails, and could revert to computing the allocation on-chain.

Attacks from the SGX platform operator are incentivised against as a gas fee

is paid to claim the task, which is recovered from off-chain payments. If it acts

maliciously it will not recover these funds. Similarly, availability failures should be

rare as the platform owner wants to keep the enclave running.

Finally, there is limited protected memory on SGX of 128MB, which poses

a constraint on the computation. The required memory is mainly for storing ad-

dresses and preference lists. Ethereum addresses consist of 42 hexadecimal char-

acters, which take up 21 bytes. Assuming an average preference list size of 5 per

node, the enclave needs to store 6 addresses per node. This means that per node

126 bytes need to be stored, allowing to fit 1,015,873 addresses within the memory

limit. This does not take into account storage of the allocation algorithm or nonce,

but as not even 10% of this amount is not expected (due to the desired quick time-

line of allocations), there should be plenty of space left. Therefore, the memory

limit should not be a problem for the computation in FLOCK.
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5.5.5 Oracle Contract

The oracle contract is responsible for a global price discovery. The contract derives

its state (i.e. the price to be paid for a service) from the underlying billboard con-

tract and other public parameters. The oracle contract can be deployed for different

services and incorporate complex financial rules dictating the price. The simple

contract used in Section 5.6.1 uses the ratio of clients to sellers and the change of

the price of Ethereum to set a price.

The oracle contract updates its price when called by a node. Its pricing mecha-

nism and the parameters from which the price is derived are transparent. Therefore,

any node can see if there is a discrepancy between the current price and what it

should be, and can call the function to update. This is financially incentivised when

the price difference will cause more gain than the cost of calling the contract.

The work in this chapter is aimed at fast allocation of large numbers of nodes,

and for this use-case global pricing is an efficient solution. However, it must be

noted that there is still a need for other mechanisms like auctions for popular items.

A secondary market can be envisioned based on multi-item auctions for the top

sellers and others who want to sell spare capacity from the primary market. This can

be compared to the spot market approach from Amazon, where flat and on-demand

instances of services are sold on the primary market based on a global price, after

which spare capacity is offered based on bids on the secondary market, usually at a

lower price.

5.6 Evaluation
To evaluate FLOCK its key components have been implemented3. On these, ex-

tensive simulations have been performed in order to assess latency, cost, scalability

and more. Specifically, the smart contracts used are examined in terms of gas costs,

and the proposed allocation algorithm is compared to other initiatives. The de-

sired properties of scalability, preference based, and price discovery are analysed

by implementation of the smart contracts, as well as the matching algorithms. The

3https://github.com/navinkeizer/FLOCK

https://github.com/navinkeizer/FLOCK
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Figure 5.4: Progression of gas costs (GWEI) for functions of the billboard contract using
on-chain storage of nodes.

simulations were performed on a local laptop with average specifications.

5.6.1 Smart Contract Cost

The billboard and oracle contracts have been implemented in Solidity, and sev-

eral simulations have been performed to explore their gas costs. Remix IDE is

used as the platform for implementation, along with Ganache virtual blockchain

and Ethereum testnets.

Starting with the billboard contract, its main functions are tested: Setup, Reg-

ister, and Claim. For completeness their pseudo-code has been added. The Setup

function (algorithm 1) is used to reset the allocation state and start a new allocation

with a new Threshold. Nodes can use Register (algorithm 2) as long as they have

not already registered as client or seller, which is checked with an internal function.

The number of nodes in either set are registered and updated using count variables.

Finally, an execution node can use Claim (algorithm 3) if it is not participating in the

allocation. Its gas fee can be seen as collateral which it will regain after successful

computation.

Figure 5.4 shows the progression of the gas costs as more nodes participate

in the allocation. A clear linear increase of the gas costs can be observed, which

quickly become unmanageable. This is due to the simplicity of implementation

using on-chain storage for the intermediate states (the list of nodes participating in
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Figure 5.5: Progression of gas costs (GWEI) for functions of the billboard contract using
off-chain storage of nodes.

the allocation), and therefore this simple proof-of-concept implementation lacks in

performance.

An off-chain storage solution is needed for the contracts, which is discussed

further in Section 5.7.1. The billboard contract has been implemented with this

assumption of off-chain storage available, and in Figure 5.5 it can be seen that in this

case, gas costs are not only an order of magnitude lower (note that the y-axis differs

by 101), but also remain nearly constant. There will be some interaction needed

between the smart contract and the off-chain component, and therefore Figure 5.5

can be taken as a lower bound on gas costs, whilst Figure 5.4 is the absolute upper

bound.

Table 5.1 shows how the proposed on-chain solution for a 5 node setup outper-

forms implementations of PASTRAMI and Trustee, for all actors associated with

the allocation/auction. For the on-chain implementation, the gas costs paid by the

execution node is assumed to be fully refunded with an added premium by nodes

in the allocation through the payment network, and this is reflected in the gas costs.

Furthermore, PASTRAMI has an added cost of up to 131,804 in case of misbe-

haviour.

Table 5.2 shows the gas costs of the oracle contract, along with the conversion



5.6. Evaluation 141

On-chain PASTRAMI Trustee

client 143,827 391,046 1,847,178

seller 92,673 95,934 143,720

execution node - 7,108 -

Table 5.1: Comparison of individual gas costs (GWEI) of allocations/auctions on
blockchain (5 node setup).

Function Gas Cost Cost (USD)

deploy contract 213008 $2.8168

setup oracle 71360 $0.9437

update oracle 56931 $0.7529

Table 5.2: Gas costs (GWEI) and USD conversions of oracle contract functions.

to USD4. It should be noted that the deployment and setup of the contract are one

time costs, after which the update cost is paid by those who to call it, when they

notice a price discrepancy. Nodes are incentivised to call this function when their

gain of a new price exceeds $0.7529.

With the introduction of layer 2 scalability solutions, as well as the transition

to Ethereum 2.0, gas costs are expected to decrease. In fact, gas cost have fallen by

about 48 % since the time of performing this analysis. However, at the same time

the price of ETH has tripled in the same period, causing the total cost to increase

overall. While prices of gas and ETH continue to fluctuate, they will stay in a cost

range which is considered manageable for participation in FLOCK.

5.6.2 Allocation Algorithm Performance

To verify the scalability of FLOCK, it is next shown that the proposed allocation

algorithm executes with low latency, and achieves a significant improvement over

other algorithms that could be used. The focus here is on the second type of ser-

vices from Section 5.3.2 and this is modelled using an implementation of the hos-

pital/resident (HR) stable matching algorithm5.

For a comparison with auctions, the VDA implementation from PASTRAMI

is used, as well as a simple implementation of a Vickrey auction, which does not

4based on the average gas price and Ethereum price on 08-11-2020
5https://github.com/daffidwilde/matching
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Figure 5.6: Single-item allocation algorithm comparison.

implement the security functions needed for sealed bids. Implementations of VCG

auctions were also considered, but as they were significantly slower they have been

omitted from the results. Finally, a simple mechanism was implemented to allocate

at random without any constraints, which represent an optimally scalable solution

(to be used as baseline). Secure enclave overheads have not been considered as

these would be similar for all solutions.

First, the algorithm run times are compared for a constant number of sellers

(100) and increasing numbers of clients. The assumption is made that there will be

more clients of services than sellers, as there are barriers to becoming a seller such

as spare capacity available and system requirements.

Figure 5.6 shows the run time for varying clients for the different algorithms

in the single-item case —that is, where all sellers only have one item to sell. Note

that the y-axis is inverted and therefore a higher line translates to a lower delay.

It is evident that until about 3,000 clients, the HR algorithm performs better than

the Vickrey. It is important to note that the strength of the HR algorithm lies in

allocating large amounts of nodes at the same time, which is not exploited in the

single item case.

Therefore, Figure 5.7 is more relevant, as it shows the same simulation for the

multi-item case (i.e. all sellers can have capacities higher than 1). The HR algorithm

clearly outperforms the VDA and remains close to optimal, staying under a second
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Figure 5.7: Multi-item allocation algorithm comparison (maximum capacity = 3).
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Figure 5.8: Multi-item allocation throughput comparison (maximum capacity = 3).

of run-time when approaching 10,000 clients.

So far, the HR algorithm is much faster than the VDA algorithm. Looking

solely at latency however, gives a skewed image in favour of the Vickrey auction

(as seen in the single-item case). To inspect this comparison further, the throughput

in matching per second is explored next.

Figures 5.8 and 5.9 show the throughput of the evaluated algorithms for in-

creasing numbers of clients. The maximum capacity in terms of items to sell per

seller has been varied, as this illustrates the strength of the HR algorithm. Evidently,

the HR algorithm outperforms the VDA algorithm, as well as the simple Vickrey

auction up until a certain limit. This limit moves from 6,000 clients for a maximum
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Figure 5.9: Multi-item allocation throughput comparison (maximum capacity = 10).

capacity of 3, to over 10,000 clients for a maximum capacity of 10. This illustrates

the scalability of the HR algorithm.

Furthermore, it is important to note that in these simulations the simple Vickrey

auction only matches one client per seller rather than within a capacity like the

HR, which results in a much lower percentage of clients being matched. A simple

solution could be to duplicate the bids for any of the instances of a node, but this fails

in practise as a client may only require a single instance or would lower their prices

for a subsequent instance as its utility for it is lower. Practical implementation would

require more sophisticated bids like the VDA, which has been shown to perform

suboptimal compared to the HR algorithm.

Additionally, Figure 5.10 confirms that if the sellers are increased for the Vick-

rey auction, as to make for a fair comparison with the HR algorithm, its performance

lacks behind. This is shown by comparing its runtime of 0.12 seconds to match

about 150 sellers to 500 clients, to the runtime of the HR in Figure 5.7, when there

are 100 sellers with on average 1.5 items matched to 500 clients, of 0.0066 seconds.

Figure 5.11 shows the increase of the algorithm runtime as the preference list

size is increased. The figure shows a linear increase, confirming that small prefer-

ence lists are preferred for faster execution, which is in line with users not being

able to submit full preference lists.

Finally, although this cannot be shown in simulation, it must be noted that the
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Figure 5.10: Performance of Vickrey auction (clients = 500, maximum capacity = 5).
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Figure 5.11: Influence of preference list size on performance (for hospital/resident algo-
rithm, maximum capacity = 3).

preparation phase for the auctions are much longer, especially when adding more

complex bids. For the HR allocation, the preparation phase can be automated, where

all nodes have a list of trusted nodes, from which it submits those that are available

to the allocation. Furthermore, as mentioned before, a very primitive version of the

Vickrey auction is used in the comparison, which does not implement the security

features needed for sealed bid auctions, and therefore its performance can be seen

as an ideal case.
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5.7 Discussion
This chapter has presented a decentralised service allocation system on blockchain,

which supports lightweight and scalable pairings of clients and sellers. The im-

portance of capturing all sides of the allocation triangle was introduced and high-

lighted, in order for decentralised services to compete with centralised counterparts.

The proposed solution captures these aspects, but is by no means the only possible

solution. Possible extensions to this work are now discussed, which could improve

on its limitations and performance.

5.7.1 Off-Chain Storage for Intermediate States

The simple billboard contract implementation is meant as a proof-of-concept. How-

ever, as seen in the evaluation, on-chain storage is not feasible and quickly renders

the system unusable. Instead, while collecting the nodes in an allocation round, this

intermediate data should be outsourced off-chain. For example, decentralised stor-

age (IPFS, Storj) can be used to temporarily store the user list, as long as retrieval

of these nodes remains quick. Another method could be to use another dedicated

node with SGX capabilities as temporary storage node. Implementation of this is

left to future work.

5.7.2 Decoupled Service Discovery

To further decrease the cost and delays associated with an allocation, a completely

off-chain solution may be needed. Smart contracts are used as their public reachabil-

ity provides an inherent service discovery. This is at a cost, which can be significant

if it needs to be repeatedly paid by users. Therefore, a solution may decouple the

service discovery completely, and use other mechanism to query the P2P network

and find allocations orchestrated in a decentralised manner. Service discovery could

also take into account the distance of nodes, and thereby minimise networks delays

between allocated nodes.

5.7.3 Real-Time Allocation

Although the performance of the implementation meets scalability and speed con-

straints, certain applications may need near real-time allocation. The delays includ-
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ing gathering preferences, blockchain consensus, and algorithm execution might be

too long. An example of this is content retrieval markets, where nodes requesting

some content should not have to wait for the allocation to be ran upon every request.

In this case, the performance of the system can be increased by performing

the allocation beforehand, rather than as requests come in. The allocation now is

between the content provider and the retrieval miner (seller). This can be done

periodically, assigning the task of retrieval of some content to a node. Other nodes

can request the content from this node, and payment by clients is still based on the

oracle contract. In practise this is an easy extension to the proposed implementation.

5.7.4 Oracle Contract Extensions

In this work, a simple oracle contract was described. This concept can be extended

much further. As a start, each decentralised service that is offered may have its own

oracle dictating its price. One step further could define different prices for different

nodes in the same service, based on parameters such as QoS, reputation (i.e. Section

5.4), and location.

The composition of the contract is left to developers. The implementation in

this work uses the most basic market dynamics, and lacks financial sophistication.

The oracle can be made arbitrarily complex however, and its design may be based

on financial incentives and game theory.

Finally, as the complexity of the oracle is increased, its cost will increase too. A

solution to this could be to outsource its computation to a secure enclave, similarly

to how the allocation is computed. This would however decrease the decentralisa-

tion and security of the solution, and would require more complete security analyses

as there might be attack vectors with monetary gain, as in this computation there is

an important monetary aspect.

5.8 Summary
This chapter presented FLOCK, a decentralised service allocation system on

blockchain, which supports lightweight and scalable pairings of clients to sellers.

This solution leverages smart contracts, stable matching, payment networks, and
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TEEs to achieve the properties of the allocation triangle. General allocation types

are distinguished, and use-cases in decentralised storage and retrieval markets are

explored.

Evaluation of the system shows that cost and overhead of FLOCK are man-

ageable and much lower compared to systems using auctions, reducing cost by at

least 52%. Furthermore, using a hospital/resident stable matching algorithm greatly

improves performance over auction algorithms in terms of latency and throughput,

staying under 0.5 seconds for 9000 clients. Finally, additional ways to improve on

FLOCK’s performance and limitations are discussed.



Chapter 6

Decentralised Mechanisms for P2P

Networking: NAT Traversal

6.1 Overview
Traversing Network Address Translators (NAT) remains a big issue in P2P net-

works, which are the basis of DWeb services. Previous attempts to solve this issue

do not function without trusted centralised servers. This chapter presents a de-

centralised, relay-based NAT traversal system, where any reachable node is able

to assist an unreachable node in NAT traversal. Smart contracts on the Ethereum

blockchain are used to ensure fair rewards. Besides financial incentives, a repu-

tation system based on transactions on-chain is used to mitigate against malicious

behaviour, and guide peer discovery.

Evaluation of the proposed system peer discovery and reputation system shows

that a combination of historic performance metrics leads to an optimal scoring func-

tion, that the system takes little time to reach stability from inception, and that the

system is resilient against various attacks. Implementation of the smart contract

shows that the cost for participants is manageable.

6.1.1 Introduction

P2P networks have been popular in the design of various DWeb applications due

to their decentralised nature and associated benefits. There are however a number

of challenges and issues in P2P networking. One main challenge stems from the
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incompatibility with the current Internet infrastructure, which is tailored towards

the client-server model. As most DWeb initiatives like blockchains and DSNs are

built on top of P2P networks, they suffer from these same issues.

One of the most prominent is the issue of unreachable peers, which can be

caused by NATs, firewalls, VPN’s and more (from here these are all generalised as

NATs). In a P2P network, a node must be able to act as a client and a server at the

same time. However, NATs make it impossible to receive requests from the network

if the node itself has not already set up a connection with the other node.

In the early days of P2P networks research focused on fixing this problem of

NAT traversal [336, 337, 338, 339, 340], and this produced a number of protocols

such as STUN, TURN, hole punching, connection reversal, port number prediction

and more. The reason a large suite of protocols originated is the lack of standardis-

ation in NATs, making protocols only suitable for a subset of NATs.

One of the main issues with the proposed solutions is the need for a set of

centralised servers assisting in the network by relaying messages or maintaining

connections with various nodes. These servers are prone to various attacks [339],

require complete trust in the central infrastructure, and can be situated far from

the node using its services, thus incurring high latencies. While this is acceptable

for certain applications, many latency-sensitive applications would incur significant

performance degradation, e.g. P2P video calls, P2P live video streaming (such as in

P2P gaming), blockchain based computation offloading for latency sensitive tasks,

and block propagation in a blockchain network.

This chapter proposes a decentralised, relay-based NAT traversal system for

P2P networks with a built-in reward system for relays who assist nodes in their

communication. In this system, any reachable node in the P2P network can become

a relay, which requires incentivisation of honest behaviour and stronger security

measures, as these nodes are untrusted and potentially malicious.

The proposed system is realised by a combination of i) dual-path routing, pro-

ducing a Proof of Timely Relay (Section 6.4.1), which ensures a client of honest

behaviour of relay nodes, and ii) smart contracts (Section 6.4.2) on the Ethereum
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blockchain, which ensure fair exchange for the work done by relays. Nodes are

incentivised to behave properly in order to claim maximum rewards.

A reputation system (Section 6.4.3) is incorporated on the blockchain to protect

nodes from potential malicious nodes, and increase the chance of being used as a

relay when behaving properly. The reputation scoring policy is determined locally

based on historical transactions on the blockchain (as a simplified version of the idea

presented in Section 5.4), and assists in the peer discovery process (Section 6.4.4).

The evaluation (Section 6.5) explores different reputation scoring policies and

their ability to avoid contracting malicious relays, yielding a low malicious peer

pick ratio of 5% using two rounds of peer discovery for up to 30% of malicious

nodes in the network. Furthermore, it shows that the reputation system is able to

quickly stabilise from inception (within 5-10 cycles). Finally, the cost overhead

and performance of the smart contract implementation is tested, in order to assess

performance and feasibility of the approach.

The main contributions of this chapter are as follows:

• A reward system for relays assisting in decentralised relay-based NAT traver-

sal, incorporated using smart contracts. Incentives are used to promote honest

behaviour, and rewards are based on the relay performance.

• A node-centric, open, on-chain reputation system, where nodes locally decide

a scoring policy, and which is used to aid in peer discovery.

6.1.2 Related Works

There are a number of works which implement NAT traversal solutions in a way

which is highly related to this chapter. Several works propose rewards for relaying

connections and files. Ghosh et al. [88] propose the use of TorCoins to reward

users offering bandwidth for relaying of TOR connections. A proof of bandwidth

is used to verify that the bandwidth claimed for rewards is the correct bandwidth

transferred, and contributors in a circuit claim rewards proportionally to the end-to-

end QoS measured over the whole path. Goyal et al. [341] introduce a system for

decentralised content delivery incorporating secure incentivisation in P2P networks.
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This system focuses on content providers, who start smart contracts for a file they

want to distribute, and pay relay peers for content delivery, based on a proof of

delivery chain.

Norton and Simanavicius [342] propose a smart contract based segment rout-

ing WAN system, based on a centralised controller. Users provide or consume spare

bandwidth, forming a network of segment routers on user machines, used to find less

congested network paths. Rewards are claimed through smart contracts, which are

updated by tickets submitted to the centralised controller. The work in this chap-

ter is distinct from these approaches as a mechanism is implemented for rewarding

based on QoS measured, combined with a reputation system to prevent contract-

ing malicious peers in peer discovery, as well as smart contract micro-payments to

ensure fair exchange.

Jiang et al. [343] present a hybrid architecture for VoIP calls using either de-

fault paths or a managed overlay solution, comprised of relays in data-centres man-

aged by a centralised controller. This improves performance and QoE by deciding

relay paths based on prediction guided exploration. The work in this chapter could

extend this to public relays, exchanging spare resources for rewards with distributed

control.

6.2 Preliminaries: NAT Traversal

This section presents background on the issue of NAT traversal and mentions solu-

tions from early P2P literature. NATs perform both port and address translation at

the boundaries of public and private networks [336], enabling a much larger num-

ber of nodes in the private networks to be connected to the public Internet through

a single public IP address. Public ports are assigned to specific private IP/port com-

binations when connections are going outward, leading to connectivity issues when

an outside peer wants to connect to a node behind a NAT in a P2P network [338].

The additional public address space introduced by IPv6 will most likely not solve

this problem, as NATs will be used to communicate between the two versions, and

firewalls and VPN’s will continue to be present. Therefore, it is essential for P2P
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networks to succeed that NAT traversal is taken into careful consideration.

There have been numerous proposed protocols to aid in traversing NATs. In

general, there are two cases when NATs create issues for P2P networks for com-

munication between two nodes: i) both peers are unreachable (behind a NAT), and

ii) only one of the two peers is unreachable. In the first case, connection in both

directions will fail, whereas in the second case only the connection from the public

node to the unreachable node will fail.

For the first case, STUN and TURN are the most notable solutions. STUN uses

a set of central servers to help peers behind a NAT with discovering their perceived

address from the public Internet. TURN leverages a set of centralised servers to

relay entire connections and transmissions to the unreachable node. Although the

performance of TURN is lower comparatively, the reliability is high [338].

For the second case, connection reversal is most reliable, as it uses a centralised

server to initiate the connection to the unreachable node, after which a direct con-

nection is set up. All the above protocols besides TURN have specific requirements

in order to succeed.

The centralised approaches described above have a number of issues associ-

ated with them. From a performance perspective, the latencies are not acceptable

for certain real-time and latency sensitive applications. Furthermore, there are a

number of well-known security threats and attacks, such as the man-in-the-middle

attack, where a malicious node can insert itself in the path of all packets going to

the victim [338, 339]. By pretending to be the NAT to the client and vice versa,

the malicious node can in this case drop packets, alter content, delay packets, and

learn about network topology and other vulnerabilities of the victim. There is also

communication hijacking, denial of service attacks, and partitioning attacks which

can isolate and overflow the victim.

Besides these centralised approaches, Libp2p [344] has proposed decentralised

versions of STUN and TURN, where any peer in the network can replace the cen-

tralised server. This approach, however, lacks peer discovery and bootstrapping.

More importantly, the Libp2p implementation lacks required security measures,
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which are essential since any peer can provide this service, and is intrinsically un-

trusted. Launching an attack as an adversary in the position of network assisting

(relay) node becomes trivial without incentivisation of proper behaviour and identi-

fication of malicious nodes.

6.3 Threat Model and Assumptions
The P2P network is assumed to be divided into two sets of nodes: reachable and

unreachable peers. Reachable peers can act as relays, whereas unreachable peers

need a relay to participate in the network. Reachable peers are peers that are able to

function as a client and server at the same time.

In the system, unreachable peers act as clients and reachable peers can decide

to act as relays. Both are assumed to be potentially malicious actors, but rational. In

this case, a malicious actor is one who may exploit the system for monetary gains

and information, but also a node which oversubscribes its limited (bandwidth) re-

sources and is thus unable to provide the good relay service promised. The latter is

assumed to be more common, as there are no direct financial incentives for launch-

ing an attack, but there are for serving more nodes as a relay (oversubscription

attack).

Because the clients and relays mutually distrust one another, smart contracts

are deployed on a blockchain to behave as a trusted, mediating third-party. One dis-

advantage of the smart contract approach is the requirement of network synchrony,

and constant blockchain monitoring, for example to avoid a timeout event as an

honest node. All peers are assumed to be connected to the Ethereum blockchain

(based on previous relays or as light nodes). Furthermore, the majority of network

links are assumed to be stable and thus this should not add large additional latency.

The proposed system aims to present a secure NAT traversal mechanism for

P2P networks, where malicious attacks are irrational and malicious nodes are eas-

ily identified, while ensuring honest nodes a fair exchange of rewards for their re-

sources. These goals are achieved through incorporating the following:

• Financial incentives through smart contracts to stimulate good behaviour and
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mitigate against malicious attacks.

• Reputation system on-chain to identify potential malicious nodes and predict

the performance of a node.

• Peer discovery based on nearby peers, their reputation score (computed lo-

cally based on transaction history on-chain), and possibly a blind auction to

receive the highest bids (from client perspective in terms of promised mini-

mum QoS).

Besides security, the system should have an increased performance in the best

case (when an honest nearby node is contracted) over centralised solutions. The

system and smart contract should not add significant overhead (processing, network

traffic, and cost) compared to the centralised solution either.

In terms of the actual NAT traffic relaying, this work builds on current NAT

traversal techniques (e.g. Libp2p) and adds a layer on top of them to facilitate de-

centralised NAT traversal. Because of this, the rest of this chapter focuses on the

latter, and leaves NAT traversal details out of the scope.

6.4 Architecture Design
The goals mentioned in the previous section are reached through a combination of

Proof of Timely Relay (PoTR), which guarantees the unreachable peer that data has

been relayed correctly and timely, and a smart contract which governs the rewards,

ensures fair exchange, and implements a reputation system through mutual scoring.

The unreachable client nodes contact a number of relays to help become

reachable in the network. This agreement is stored on the smart contract on the

blockchain, and includes parameters such as the contract duration, QoS promised

by the relay, and payment rate.

Depending on the situation, the relay node either uses connection reversal (in

the case the peer dialling the unreachable peer is reachable in the network) or sets

up a circuit relay if both parties are unreachable. This work focuses mostly on

the latter since it has a higher reliability, and since there is no prior knowledge of
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Figure 6.1: Proof of Timely Relay (PoTR).

network topology, the worst case should be assumed. The mechanism is similar to

that in the centralised case, but instead of using the central server, the peer acts as

the intermediary.

6.4.1 Proof of Timely Relay

Proof of timely relay (PoTR), as shown in figure 6.1, is the mechanism which en-

sures the unreachable client node that the relay they have contracted is not acting

maliciously. It allows the client communicating with a peer to verify that the data

has been relayed without any additional delay higher than promised in the contract,

without the data being altered, and without a large packet drop rate.

In order for the client node c to have this verification, they pick two relay nodes

in the P2P network: one as a check node (Rc) and one as the “true” relay node (Rr).

Rr acts as a standard relay, where a peer p (who is communicating with the relay’s

client) would send its data to Rr (using end-to-end encryption to prevent tampering)

which the relay node Rr in turn forwards it to c. At the same time, the peer p sends

a hash of the data and timestamp of the start of transmission of the file to the check

node Rc, which in turn forwards it to c. This information then allows c to assess the

performance of Rr.

The client and the relay nodes both keep a record of their view of the per-

formance of Rr in their local performance log, based on PoTR for c and based on

forwarding delays and approximate network delays for Rr. Every evaluation inter-
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Figure 6.2: Relay operation and smart contract termination.

val (6.4.2), both parties calculate the average performance over the interval they

perceive and use this to settle payments.

6.4.2 Smart Contract

The smart contract is used to document the agreement between unreachable clients

and relays on the blockchain, and govern payments by c for the services provided

by Rr without the need of a trusted third party. The smart contracts allows for

conditional payments based on the QoS provided by the Rr, and allows for micro-

payments ensuring fair exchange.

The proposed smart contract is implemented in Solidity and deployed on the

Ethereum blockchain. When a client starts a new agreement with a relay, it submits

the following negotiated parameters to the blockchain:

1. Minimum QoS score promise, as any statistic of:

• Latency

• Packet drop rate

• Throughput

2. Evaluation interval time

3. Deposit

4. Payment rate function parameters
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5. Timeout duration

The minimum QoS score promise is the lowest QoS score that is acceptable for

c, and for which it is willing to reward Rr. The QoS score is based on performance

metrics such as latency, drop rate, and throughput. This composition is envisioned

to be different for different applications, and the implementation is left to application

developers.

The evaluation interval represents the interval when c looks into its perfor-

mance log and compares the performance in this interval to what was promised

(minimum) by Rr. If it is insufficient, it will terminate the agreement. If the QoS

has been satisfactory, it sends a signed payment update to Rr, according to the QoS

score and the payment rate function. The interval can be set larger to avoid the

overhead of calculating scores frequently, but there is a trade-off with security as

smaller intervals allow malicious behaviour on either side to be identified early.

Upon receiving the payment update, Rr compares this to what it expects, based

on its own observed performance, to check c is not underpaying. If it notices ma-

licious behaviour from c or has other reasons to terminate the agreement (such as

oversubscription) it can close the payment channel any time by submitting the latest

signed payment channel update to the smart contract and triggering the termination

process.

A client submits a deposit which will act as their relay credit, forming a pay-

as-you-go structure. The deposit will set the duration of the contract, based on the

maximum payment rate. A contract can be extended by additional deposits.

The termination process can be triggered by c or Rr to end the agreement and

settle the payment. First, the node sends a termination message to the other, submits

a trust score to the smart contract of the perceived trustworthiness of the other peer

(explained in Section 6.4.3) and in the case of Rr also the payment receipt. Next,

the other node submits the trust score they observed to the contract (and payment

receipt if Rr), after which the payment is made to Rr and the rest of the deposit is

returned to the c. The smart contract will only pay the funds when both scores have

been received by the contract, and thus incentivises a terminating node to notify
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Figure 6.3: Example of payment function with pmax = 10 and QoS min = 20.

the other node, and it incentivises both nodes to participate in the scoring. If one

node becomes unresponsive and holds the other node hostage, a timeout event can

be called if the duration has expired to give the calling node their payment and

automatically assigns a negative trust score to the unresponsive node.

The payment rate function is another parameter which is negotiated between

c and Rr, and it describes the payment rate for different levels of QoS score. This

incentivises Rr to perform better to receive better pay, and should be chosen to deter

oversubscription attacks. One example of this could use a negative exponential

function, with a minimum promised QoS score acting as a lower bound for receiving

rewards. A maximum payment bound is also introduced to prevent infinite rewards,

both dictated by supply and demand. To simplify, the QoS score is quantified as

a number from 0-100, which in reality will be based on the latency, throughput,

and drop rate (and may be normalised to this range). Using these constraints, this

function could be formed as follows:

P = pmax ∗ (1− e−
1
20∗(Q−QoS min)) (6.1)

Where P is the payment per interval, pmax is the maximum payment rate, Q is

the QoS score over the interval, and QoS min is the minimum QoS score promised.

Figure 6.3 illustrates this payment rate function with pmax set at 10, and QoS min

at 20. As a QoS of 20 is reached, there are increasing rewards until the negotiated
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Figure 6.4: Peer discovery based on on-chain transactions.

level of 10.

6.4.3 Reputation System

The smart contract records the trust scores given to the peers involved in the contract

for each agreement. As the blockchain is open and anyone can query the ledger to

get the previous transaction data including the trust scores, this makes for an open,

decentralised and node-centric reputation system. Nodes can locally decide their

own policy for calculating reputation scores of nodes in the network (similar to

the idea proposed in Section 5.4). This can be a pure indication of trust scores

assigned in history, or go further and incorporate metrics such as contract duration

and promised QoS scores. They can also opt to use public information only, or

combine it with private information based on its own previous agreements.

The trust scores given to each node is either positive (i.e. 1), or negative (i.e.

0). Re-join attacks are avoided by setting negative scores to 0, as now nodes will

not gain from rejoining the network after receiving a negative score, because they

will still start at 0 (the same as before).

6.4.4 Peer Discovery

In order for an unreachable client to discover potential relays, both the reputation

of nodes and the expected performance are important. Malicious nodes should be

avoided in general, even though they can easily be picked out in operation through

PoTR and eliminated through the smart contract, as they may still damage honest
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nodes. First, the time spent initiating a contract, waiting for an evaluation interval,

and terminating a contract will delay the transmissions of files in the network and

will reduce the overall QoS. Second, instantiating the smart contract and subsequent

functions on it requires gas, which is paid for in Ether, leading to a monetary loss.

Last, packets might be lost due to the confusion, and this may affect the clients

perceived trust by the network.

Contracting Rr with close proximity to c will likely lead to a better expected

performance. Furthermore, the Rc would need to be close to ensure timely delivery

of the PoTR. For this reason, peer discovery is proposed as follows.

First, c finds nodes providing relaying services nearby. There are various pro-

posed ways this can be done, such as flooding the network and waiting for the first

response, registering nodes at servers based on location, and using application level

anycast [345], although this raises the question if globally reachable nodes are re-

quired. Further details of this is left for future work. After obtaining the set of

nearby nodes, c calculates their reputation scores, in order to filter out potential ma-

licious nodes. Calculating only the scores of these nodes rather than all nodes in the

network increases performance and decreases overhead.

In the next part, the top N peers are contacted. If this number is low, c could

initiate a direct relaying request to the peer(s) and negotiate the parameters. If N

is large, c can set up a blind auction (possibly on-chain [317]) to receive bids for

the highest QoS/Payment function parameters. The contacted peers will locally

calculate the trust score of the client to decide whether to participate or not. A

contract is set up with the highest bidder by the client, and if all parameters are

correct Rr starts relaying. Implementation and evaluation of this is left for future

work.

6.5 Evaluation

Different aspects of the proposed system are now evaluated by running simulations,

and this shows how the design goals outlined in Section 6.3 are met. The simula-

tions were performed on a local laptop with average specifications.
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Figure 6.5: Malicious node pick ratio for different scoring functions (against malicious per-
centage in network).

6.5.1 Peer discovery and Reputation System

In order to evaluate the performance of peer discovery using reputation metrics the

PeerSim P2P simulator [346] in Java was used. A network of 100,000 nodes was

created, all with an ID and boolean variable to indicate maliciousness, thus divid-

ing the network into a set of malicious and honest nodes. All nodes can act both

as a relay and a client. Historic transactions are next generated on the blockchain

including the number of previous transactions, trust, duration, and QoS scores asso-

ciated with peer identities based on a Zipf distribution with different exponents for

malicious and honest peers.

The assumption is made that most malicious peers will start with a lower num-

ber of historical transactions, because increase in usage would lead nodes to be more

invested into the system due to the built up reputation. Only a minority of malicious

nodes will have a larger number of historic transactions (such as oversubscribed

honest peers), and this is modelled by setting the number of transactions using a

higher exponent Zipf distribution for malicious nodes compared to honest nodes.

Every simulation cycle, each node randomly connects to N nodes (representing

neighbours found), performs a scoring system on their data, and chooses the highest

of them. A range of different scoring functions and parameters were tested in the

simulation, beginning with scoring based only on the trust score, QoS, or duration.
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Figure 6.6: Malicious node pick ratio for different number of transactions used in 1:4:5
combined scoring.

Functions combining these parameters were also evaluated.

First, the effectiveness of the different types of scoring policies made by the

local nodes is measured. Figure 6.5 shows the performance in terms of malicious

node pick ratio (how many malicious nodes are picked as the best relay option

based on the scoring function, as a fraction of the total nodes picked). The duration

based and parameters combined scoring functions perform the best, followed by the

trust based, QoS based, and random picking. Adjusting the ratios of the combined

function a 1:4:5 ratio of QoS:trust:duration is found to outperform all strategies.

Next, the impact of the amount of previous transactions used in scoring is

assessed, for different malicious percentages in the network. Figure 6.6 shows that

the combined function improves with a higher number of transactions used. There

is however a trade-off in performance and precision to be considered, as for more

than about 10-20 transactions used, the malicious node pick ratio starts increasing

again. This is due to the loss of accuracy of current behaviour as it is averaged over

a longer period. As 10 transactions achieves a good result and trade-off, this is set

constant for the next simulations.

Last, the effect of the amount of peers chosen for the second part of negotiation

of peer discovery (as discussed in 6.4.4) on the malicious node pick ratio is exam-

ined. There is a trade-off between financial gain and security. The more peers are
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Figure 6.7: Malicious node pick ratio for varying number of nodes invited to second round
(of nearby found peers).

invited for auction, the higher the chance of a higher bid, however, this will lower

the quality of potential relays as lower scored are permitted, and thereby lower the

security guarantee. Figure 6.7 shows the expected upward trend in malicious pick

ratio with more peers in the second round, with the steepness of the curve increas-

ing after 40 %. This suggest that the amount of peers chosen for auction should be

lower than 40% of discovered peers.

6.5.2 Stabilisation Time Reputation System

As discussed above, the solution for peer discovery based on reputation scores

works well in eliminating malicious peers from being chosen as a relay. This is

however based on the assumption that all or most peers have had previous trans-

actions on the blockchain, indicating their ability to provide a good and trusted

service.

At the system inception, no node will have this data available and therefore

some delay can be expected in convergence to a stable reputation system. This

period should be as small as possible, as users might be discouraged from using

the system, as there are lower guarantees of avoiding malicious peers and incurring

unwanted fees.

To evaluate this, two simulations were performed in PeerSim. First, a network

of 10000 nodes was used, with malicious percentages of 20%, 30%, and 40% per
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run (i.e. 2000-4000 malicious nodes). Each node starts with no previous transac-

tions and a score of 0. Every simulation cycle, a subset of the network (set at 20%)

gets scored, based on different Zipf distributions in order to model malicious and

honest nodes. Every cycle the average score is calculated of all nodes in the net-

work. It can then be observed which percentage of malicious and honest nodes are

above the average.

Figure 6.8 shows that the time it takes for 90% of malicious nodes to be below

the average is between 40 and 75 cycles, depending on the malicious percentage in

the network. At this point, between 60% and 80% of honest nodes are above the
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Figure 6.10: Node pick ratio’s and ratio of nodes with good service, redistributing mali-
ciousness at 20% and 40% (remembering only last unacceptable peer).

average, with these percentages improving with more cycles. What is important to

note is that this stabilisation time is between 80,000 and 150,000 transactions. To

put this into context, the Ethereum blockchain has over 1 million transactions per

day1. The percentage of honest nodes above the average improves and stabilises

more quickly, within 10-20 cycles.

Although this seems like a large number of transactions, it can be argued that

in practise this won’t be the case as all nodes only have a small number of peers

out of which they choose the top ones. To substantiate this, the network is set up

as before, and all nodes choose their best peers (set to top 5) as a relay, using the

combined metric scoring function. All nodes can act both as a relay and a client.

If a peer’s score is above a threshold (set so all metrics are above 50%), the peer

is defined as acceptable. All nodes are scored every round based on maliciousness,

until an honest peer is found with acceptable service. If an unacceptable peer is cho-

sen, it is remembered in a nodes local log, and is omitted from consecutive picking

rounds. Figure 6.9 shows the malicious and honest node pick ratios, progressing

with more cycles, for different percentages of malicious nodes in the network. It

can be observed that within a couple rounds, a malicious node pick ratio of under

10% is achieved for varying levels of malicious nodes in the network.

1https://etherscan.io/chart/tx



6.5. Evaluation 167

The strategy of remembering unacceptable peers works well, but falls short

when there are a small number of peers nearby which have previously provided

unacceptable service, but now may be able to provide adequate service, or when an

honest node becomes oversubscribed. Therefore, another strategy is explored where

instead of remembering all previous unacceptable peers, a node only remembers the

latest one. The network is set as before, but at cycle 20 and 40 the malicious variable

is redistributed randomly so that some nodes will change from malicious to honest

and vice versa. Figure 6.10 shows how the second strategy is able to largely recover

and readjust quickly (within 5-10 cycles) to a low malicious node pick ratio and a

high percentage of nodes with good service.

6.5.3 Security Analysis

The security of the proposed system is now examined, after which mitigations

against various attacks are discussed.

First, the situation is considered when both c and Rr behave honestly, but due to

network events such as failures, the service provided is inadequate, leading to both

nodes mutually giving each other negative scores. Although this negatively impacts

honest nodes, such network-level failure events are assumed to happen infrequently,

and therefore this will not impact the overall trust score of a node significantly. Fur-

thermore, the proposed combined metric scoring uses more metrics besides trust,

which leads to a small impact of one-off incorrect scoring. In the negotiation phase,

setting a low minimum service requirement also ensures that temporal network con-

gestion does not immediately lead to contract termination, allowing Rr to recover

and provide better service.

Collude attacks are considered next between actors in the system. When Rr

and c collude to try to boost scores with short forged transactions, they will not be

able to impact the overall score by submitting trust scores, as the duration and QoS

metrics will be controlled by the smart contract, where duration is measured and

QoS inferred from micro-payments. Attempting this attack would also be expensive

as every transaction on-chain would incur costs. It is easier and more financially

attractive to boost scores by serving nodes properly, while earning rewards.
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Function Gas Cost Cost slow Cost medium Cost fast

deploy contract 1738464 0.0086923 ( $1.33861) 0.0132123 ($2.03469) 0.0173846 ( $2.67723)

start relay agreement 231292 0.0011565 ($0.1781) 0.0017578 ($0.2707) 0.0023129 ($0.35619)

terminate agreement client 48440 0.0002422 ( $0.0373) 0.0003681 ($0.05669) 0.0004844 ($0.0746)

terminate agreement relay 78980 0.0003949 ( $0.06081) 0.0006002 ($0.09243) 0.0007898 ($0.12163)

timeout 62281 0.0003114 ($0.04796) 0.0004733 ($0.07289) 0.0006228 ($0.09591)

submit trust score client 65173 0.0003259 ($0.05019) 0.0004953 ($0.07628) 0.0006517 ($0.10036)

submit trust score relay 95970 0.0004799 ($0.0739) 0.0007294 ($0.11233) 0.0009597 ($0.14779)

extend relay agreement 34219 0.0001711 ($0.02635) 0.0002601 ($0.04006) 0.0003422 ($0.0527)

Table 6.1: Smart contract costs per function, with different transaction speeds.

Collusion between Rr and Rc to keep c in the dark is also irrational as relaying

packets properly would provide financial rewards. Sending dummy messages to c

to maximise rewards will be noticed if it is not expecting this traffic, which makes

this type of attack unfeasible as well.

Sybil attacks are largely ineffective as the attacker will have finite bandwidth,

needed for participation in the system. All new nodes entering the network start

with a zero score, and will not be able to consistently serve as Rr unless it provides

satisfactory service, due to the peer discovery mechanism. Therefore, creating new

identities or rejoining the network with new identities has no benefit for a malicious

party. Using sybil identities to boost scores is also mitigated against since collude

attacks are ineffective.

The final type of attack discussed is a dishonest scoring attack, where nodes

score dishonestly to lower competition in the network. This attack stems from the

absence of direct loss when scoring dishonestly. However, when a node is scored

incorrectly, it can keep the identity of the dishonest peer in its log and avoid con-

tracting them in the future, and share this information with other peers, which will

judge the information based on the nodes score, potentially costing the malicious

peer future business. Thus, assuming this attack to be rare, this will not greatly

impact the overall score. Further exploration of this mechanism is left for future

work.
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terminated by relay timeout with 5 extends, terminated by client
Client 296465 ($0.37473) 342013 ($0.4323) 450827 ($0.56984)

Relay 78980 ($0.09982) 141261 ($0.17856) 95970 ($0.12131)

Table 6.2: Smart contract cost for client and relay for different scenarios.

6.5.4 Smart Contract

To evaluate the smart contract performance and costs, the code was implemented in

Solidity and deployed on a private virtual blockchain on Ganache. The Remix IDE

was also used to interact with the accounts and contract functions.

Table 6.1 shows the costs associated with all functions based on the gas used.

This is calculated using the GWEI/GAS estimates from the Ethereum Gas Station

and taking the USD conversion rate in April 2020. It is important to reiterate that

gas fees can greatly vary, and the overall costs have increased since performing this

work. Assuming that layer 2 scaling solutions and Ethereum 2.0 fix the high gas

fees in the future, these results can be seen as a worst case scenario.

The different speeds have different costs, and should be used based on the time

sensitivity of the function in the contract. Starting a new agreement may be more

instantly, as well as submitting or extending before the timeout occurs.

From this data, it can be concluded that client cost of a contract would be

around $0.40 - $0.60, and relay cost between $0.10 - $0.20. This is concretely

shown in Table 6.2. These costs may become more significant if there is a high

frequency of calling relay agreements, but this is not expected as clients should stay

with a trusted relay over time.

Out of all contract functions, deployment is the most expensive. This event

should happen rarely however, as all agreements are stored on one contract. Con-

tracts can be envisioned to be deployed per application using the relays and the

cost paid by the application developer, and potentially have different contracts for

geographic regions.
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6.6 Summary and Discussion
This chapter presented a reward system for decentralised NAT traversal, where

nodes are incentivised to be honest due to financial rewards. To ensure fair ex-

change, off-chain micro-payments and a smart contract on Ethereum are used. Re-

lays are rewarded proportionally to their performance, and clients are protected

from malicious attacks by relays through a Proof of Timely Relay. A two-way

reputation system is used to discover nearby honest peers, based on previous open

data on the blockchain, and peers can enforce local scoring policies.

The evaluation shows the performance of the reputation system for different

scoring policies with different parameters, yielding a low malicious peer pick ratio

of 5% using two rounds of peer discovery for up to 30% of malicious nodes in the

network. A strategy has been defined which handles changes in maliciousness of

nodes, and the system reaches stability within 5-10 cycles of inception. The costs

of the interaction with the smart contract were reasonable for both client and relay,

given a long term interaction.

While this chapter focused on NAT traversal using relays to send files, this

work can be extended to more general relay and bandwidth sharing applications

(e.g. decentralised content delivery such as real time communication and live-video

streaming).

Another direction which extends this work is to set up multiple contracts with

peers, creating a pool of relays, allowing clients to have a larger guarantee of being

served if one relay is busy. In a file system, this could include per file negotiation,

where the client sends expected traffic of retrieving a file and a relay can pledge to

serve this file.



Chapter 7

Conclusions and Future Research

Directions

7.1 Overview

The DWeb aims to tackle challenges in the current Web infrastructure stemming

from centralisation of control, governance, and management. Recent technologies

like blockchains and decentralised storage networks (DSN) have introduced meth-

ods for establishing trust and storing content without a single root-of-trust. This

thesis has explored whether these novel techniques can be leveraged to create de-

centralised counterparts to centralised Web services, especially in the area of con-

tent search and retrieval, without compromising on key features like performance

and security.

In order to verify the hypotheses derived in Section 1.5, which state that a

DWeb can be realised (although special care needs to be taken to QoS, security,

privacy, and performance objectives, as well as novel emerging challenges), this

thesis presents an extensive background discussion, as well as a number of novel

architectures which solve particular challenges in the DWeb.

First, a framework is proposed for studying related works in the area. This

is then used to perform an extensive analysis of both novel industry and research

initiatives, as well as building blocks from the P2P era. The three main areas of

search engines, name-registries, and file systems are discussed and in each area a
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number of open issues are defined.

Next, search on the DWeb is explored, first yielding a novel experimental IPFS

search mechanism, which uniquely targets decentralised keyword-search using an

index-based approach. However, this mechanism is insufficient and therefore in-

formed the design of a novel search mechanism based on similarity search. This

mechanism uses locality sensitive hashing (LSH) to extract similarity signatures

and records from content, and stores these on a DHT. Various underlying content

networks and types are supported, and the system can be used in a wide range of

use-cases.

A critical component of the DWeb is collaborative network resource sharing by

peers (NRS service). To achieve this, providers and consumers of the resources need

a way of finding each other, in a mechanism that captures the following properties

simultaneously: scalability, preference based, and price discovery. To achieve this,

an allocation system is introduced which is highly scalable, fast, and lightweight,

and allows nodes to indicate their preference for clients/sellers without needing to

submit bids by using stable matching algorithms. A smart contract is used to decou-

ple price discovery, as well as to implement a billboard orchestrating an allocation

and service discovery.

A big issue in P2P networks is NAT traversal, which presents connectivity

problems for peers to participate in the network as full peers. Previous solutions

to solve this all suffer from the challenges of centralisation. To combat this, a de-

centralised, relay-based NAT traversal system is presented, where any full node can

serve as a relay, for which it is rewarded using off-chain payments through a smart

contract. To ensure satisfactory performance, a QoS check and reputation system

are added.

These works have addressed, tested, and confirmed the initial hypotheses. H1

–which states that decentralised network resource sharing services can be designed

using blockchain-based incentives– has been addressed in the works on allocation

and NAT traversal. H2 –which states that a decentralised Web can be realised with

the aid of network resource sharing services, blockchains, and decentralised storage
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networks– has been addressed in the proposed framework, as well as in the sections

on search and allocation. Finally, H3 –which states that it is not trivial to ensure

satisfactory QoS/QoE, security, privacy, and performance in a decentralised Web–

has been explored throughout the chapters.

To summarise, the work in this thesis has concluded that implementing decen-

tralised alternatives to the current Web model is feasible, but non-trivial. Tools like

blockchains and DSN are useful, but require careful considerations in incentivisa-

tion, security vulnerabilities, and scalability. Furthermore, most works in the area,

including this thesis, are early stage research, and therefore the assumptions, design,

and results should be verified and tested in future work.

7.2 Future Work
This thesis has explored the foundations of realising a DWeb, especially in content

retrieval and delivery. However, as mentioned above, this research area is relatively

young, and therefore a number of future directions are discussed below which di-

rectly extent the work done in this thesis.

7.2.1 Decentralised Search Implementations

Besides Ditto, few projects aim to provide fully decentralised search on decen-

tralised data, and many still rely on centralised back-end or gateway servers. Using

a traditional crawled index approach raises a number of unsolved issues when trans-

lated to a decentralised setting, for example due to the immutability of the top level

index. Other known challenges include key management, integration with name-

registries, as well as meeting performance goals.

These issue should be explored further, as well as alternative workflows like

those based on similarity search, producing complete systems. A number of claims

regarding the benefits of decentralisation of search should also be explored further

to verify they hold in practise.

7.2.2 File System Privacy

While file systems based on DSN have come a long way, they remain vulnerable

when it comes to privacy, both in the reader and writer case. These vulnerabili-
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ties can be exploited to monitor the entire network traffic, and therefore obfuscation

techniques should be prioritised to improve user privacy, without degrading perfor-

mance.

Another important open question remains around the unclear legal implications

of storing content. The legal implications of adding illegal or copyrights content

to an index are currently unclear, and requires cross disciplinary work. This also

applies to retrieving harmful content from search engines, registering a disputed

domain name and more, as there is a lack of moderation techniques available.

7.2.3 Generalised Relays for Bandwidth Sharing

Chapter 6 described using network relays to assist in NAT traversal. This idea may

be generalised in order to have a larger impact as a solution to situations where

shared bandwidth is needed as a general NRS service. Users who have spare band-

width may sell this to users who require extra bandwidth, and in turn receive rewards

proportional to their work in cryptocurrency. Adding the monetary incentives se-

cures the system against malicious attacks.

There are many use-cases for decentralised bandwidth sharing. First of all,

such a system may be used in order to create decentralised VPN’s. These differ-

entiate themselves from services such as TOR by offering cryptocurrency rewards.

Second of all, bandwidth sharing schemes can enable decentralised CDN’s, as well

as allow for multi-casting in the case of live video or video conferencing. Finally,

improved routing paths may be found compared to the default network path. This

way, a premium is paid by a client to receive better QoS.

7.2.4 Reputation System

One of the main benefits of blockchains is that there is no need for a trusted central

party, due to the distribution of the shared ledger and the consensus algorithms.

However, when sharing services directly from one peer to another, this property of

the blockchain cannot be leveraged, as either peer may be selfish and malicious.

Therefore, another method of applying trust is needed, as discussed in Section 2.5

Historically, reputation systems have largely been centralised. Distributed rep-
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utation systems have been attempted as well, but they failed to reach adoption, due

to their complexity and security issues. On top of this, reputation as a metric is

difficult, as the view of someones reputation is subjective, and changes in different

contexts. The AI-based, personalised mechanism described in Section 5.4 provides

a promising direction, but should be explored further in future work.

7.2.5 Decentralised Blockchain CDN

Although a number of projects have started working on decentralised CDN’s pow-

ered by blockchain, they largely remain in an early stage without much public spec-

ifications available. As this is the case, many open questions remain in this area.

First of all, studies are needed to assess the feasibility of decentralised CDN’s, and

how their performance would compare to the current infrastructure, as well as hy-

brid PA-CDN’s.

Content placement is another open challenge, as traditionally in DHT’s content

is placed at the user with the closest ID, but in a CDN awareness and consideration

is required of the location of the nodes where content is cached. For a commercial

party to use a decentralised CDN, they would need assurance that the content is

widely available and quickly accessible, which would require their content to be

available at a number of geographically spread out nodes. The question of how

often data is replicated also arises.

Another open question is that of incentivisation and who will pay for decen-

tralised nodes to cache content. A node should also earn more rewards as their QoS

provided is larger, but should not be penalised if network failures occur.
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