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Abstract. The scattering phase, defined as log detS(\lambda )/2\pi i where S(\lambda ) is the (unitary) scat-
tering matrix, is the analogue of the counting function for eigenvalues when dealing with exterior
domains and is closely related to Kre\u {\i}n's spectral shift function. We revisit classical results on asymp-
totics of the scattering phase and point out that it is never monotone in the case of strong trapping
of waves. Perhaps more importantly, we provide the first numerical calculations of scattering phases
for nonradial scatterers. They show that the asymptotic Weyl law is accurate even at low frequencies
and reveal effects of trapping such as lack of monotonicity. This is achieved by using the recent high
level multiphysics finite element software FreeFEM.
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1. Introduction. The scattering phase and its close relative, the spectral shift
function, have been studied by mathematicians at least since the work of Birman and
Kre\u {\i}n [BK62]. In the case of radial scattering, the scattering phase is the sum of phase
shifts which are a central and classical topic in quantum scattering---see, for instance,
[Sa20, section 6.4].

The scattering phase is defined using the scattering matrix, S(\lambda ), which is a uni-
tary operator mapping incoming waves to outgoing waves---see section 2 and Figure 3.
Because of its structure, the determinant of S(\lambda ) is well defined and we put

(1.1) \sigma (\lambda ) :=
1

2\pi i
log detS(\lambda )\in \BbbR , \sigma (0) = 0,

where the last condition fixes the choice of log.
The scattering phase, \sigma (\lambda ), is appealing to mathematicians since it is a replace-

ment for the counting function of eigenvalues for scattering problems---see [DyZw19a,
sections 2.6, 3.9] and references given there. More precisely, as established by Jensen
and Kato [JeKa78] and Bardos, Guillot, and Ralston [BGR82], \sigma (\lambda ) satisfies

(1.2) tr(f( - \Delta \BbbR n\setminus O) - f( - \Delta )) =

\int \infty 

0

f(\lambda 2)\sigma \prime (\lambda )d\lambda , f \in S (\BbbR ).
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THE SCATTERING PHASE: SEEN AT LAST 247

Here, as in the rest of this paper, we specialized to the case of Dirichlet Laplacian,
\Delta \BbbR n\setminus O on \BbbR n \setminus O, where O \Subset \BbbR n is a bounded open set with a piecewise smooth
boundary and connected complement. (Strictly speaking, f( - \Delta \BbbR n\setminus O) and f( - \Delta ) are
defined on L2(\BbbR n \setminus O) and L2(\BbbR n), respectively, using the spectral theorem, but we
consider the former space as a subspace of L2(\BbbR n) using extension by 0.)

It could then be considered somewhat surprising that, to our knowledge, \sigma (\lambda )
has only been exhibited for radial scatterers. That is, there has never been any form
of an actual assignment, via a numerical approximation, of \lambda \mapsto \rightarrow \sigma (\lambda ). (For radial
scatters, the calculation of the scattering phase is classical, appearing, for example,
in many physics textbooks, e.g., [Ha13].) At the time when asymptotic formulae for
\sigma (\lambda ) were mathematically investigated (see section 1.1) it is safe to say that such
numerical computations were out of reach. Here we benefit from major advances in
computational power and, in particular, from the recent high level multiphysics finite
element software FreeFEM---see section 4.

The numerical results for a variety of two-dimensional scatterers O are shown in
our figures. The main conclusions are as follows:

\bullet The Weyl asymptotics for \sigma (\lambda ) given in (1.5) provide an accurate approx-
imation starting at 0 energy; this accuracy is particularly striking in the
case of nontrapping geometries---see Figure 1. They also appear remarkably
accurate in trapping geometries.

\bullet Strong trapping immediately causes lack of monotonicity of \sigma (\lambda ) which in
accordance with (1.7) is related to the presence of resonances near the real
axis (as reviewed in section 1.2)---see Figure 2, top. Here, by strong trapping
we mean that a small perturbation of a trapped ray remains trapped.

\bullet Mild trapping, illustrated in the two bottom figures of Figure 2, does not
seem to destroy monotonicity but there is a visible effect from scattering res-
onances at least for low frequencies. We show examples with two types of
mild trapping, parabolic and hyperbolic. In parabolic trapping, a perturba-
tion of the trapped rays of size \sim \epsilon escapes in time \epsilon  - 1, while in hyperbolic
trapping (the weakest form of trapping), this perturbation escapes in time
log \epsilon  - 1.

\bullet For star-shaped obstacles the scattering phase is monotone [Ra78]. This
monotonicity is not known for nontrapping obstacles even though [PePo82]
provided full asymptotic expansion for \sigma (\lambda ); numerical examples suggest that
\sigma (\lambda ) may always be monotone for nontrapping obstacles---see Figure 1. More
experimentation would, however, be required for a firm conjecture.

1.1. Weyl law for \bfitsigma (\bfitlambda ). Possibly the most striking result about the counting
function for the eigenvalues of the Dirichlet Laplacian, \Delta O , on a bounded domain
O \subset \BbbR n is the Weyl law is, with

N(\lambda ) := | Spec( - \Delta \scrO )\cap [0, \lambda 2]| ,

N(\lambda ) =
\omega n vol(O)

(2\pi )n
\lambda n  - \omega n - 1 vol(\partial O)

4(2\pi )n - 1
\lambda n - 1 + o(\lambda n - 1),(1.3)

where \omega n := vol(B\BbbR n(0,1)). It was conjectured by Weyl in 1913 and established
by Ivrii in 1980 (see [SaVa97] and [Iv16] for the history of this problem) under the
assumptions that \partial O is smooth and the set of periodic orbits has measure zero (a
generically valid fact expected to be true for all O with smooth boundaries).

The trace formula (1.2) shows that \sigma (\lambda ) is the exact analogue of N(\lambda ) since
trf(\Delta O) =

\int \infty 
0

f(\lambda 2)N \prime (\lambda )d\lambda . It is then natural to ask if (1.3) holds for \sigma (\lambda ), with

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

04
/2

5/
24

 to
 9

2.
18

.1
3.

60
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://freefem.org/
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Fig. 1. Scattering phase and the corresponding geometry. From top to bottom: a star-shaped
obstacle, a star-shaped obstacle with corners, and a nontrapping nonstar-shaped obstacle. We also
indicate the comparisons with the Weyl law (1.5) and the (conjectural) three term Weyl for obstacles
with corners (1.6).
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Fig. 2. Scattering phase and the corresponding geometry. From top to bottom: strong trapping
in a cavity, parabolic trapping from bouncing ball orbits, and hyperbolic trapping in the form of one
closed orbit. In the case of strong trapping, we see numerical manifestations of (1.7). For the two
rectangles, we expect resonances with | Im\lambda j | \sim 1/| \lambda j | so that (1.7) is inconclusive. In the case of
two or more discs, the resonances satisfy | Im\lambda j | > c (see [Va22] and references given there) and,
as a result, at high energies their effect is weak. The peaks in the strongly trapping cavity occur
at \lambda \approx 3.78 and \lambda \approx 6.85. This corresponds, roughly, to having 1

2
or 1 wavelength vertically in the

cavity, respectively.
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250 J. GALKOWSKI, P. MARCHAND, J. WANG, AND M. ZWORSKI

the understanding that in agreement with (1.2) we now consider the renormalized
volume of \BbbR n \setminus O. Hence the natural analogue of (1.3) is given by

\sigma (\lambda ) = - \omega n vol(O)

(2\pi )n
\lambda n  - \omega n - 1 vol(\partial O)

4(2\pi )n - 1
\lambda n - 1 + o(\lambda n - 1).(1.4)

The difficulty in obtaining (1.4) stems from the fact that classical Tauberian theorems
used for (1.3) use monotonicity of N(\lambda ). As we will see in section 1.2, \sigma (\lambda ) is not, in
general, monotone.

However, for star-shaped obstacles \sigma \prime (\lambda )\leq 0 was established by Helton and Ral-
ston [Ra78] (see also [Ka78]). This monotonicity allowed Jensen and Kato [JeKa78]
to obtain the leading term in (1.4) in that case (the convex case was treated by Bus-
laev [Bu75]). For convex obstacles Majda and Ralston [MaRa78a], [MaRa78b], and
[MaRa79] improved on [JeKa78] by obtaining a three-term asymptotic expansion of
\sigma (\lambda ). Using advances in propagation of singularities for obstacle problems (see [H\"oIII,
Chapter 24] and references given there) Petkov and Popov [PePo82] obtained a full
asymptotic expansion of \sigma (\lambda ) as \lambda \rightarrow \infty .

The first proof of (1.4) for all obstacles (for which the conditions after (1.3)
hold) was given by Melrose [Me88] using his trace formula for scattering poles (see
[DyZw19a, sections 3.10, 3.13]). Since that formula holds only in odd dimension, the
same restriction was imposed. This restriction was lifted using different methods by
Robert [Ro94]. (A proof in all dimensions following Melrose's idea can be given using
[PeZw99] and [PeZw00].) In this historical account we only discussed the Dirichlet
obstacle case. For more general perturbations see, for instance, [Ch98].

Specialized to two dimensions, (1.4) becomes

\sigma (\lambda ) = - | O| 
4\pi 

\lambda 2  - | \partial O| 
4\pi 

\lambda + o(\lambda ).(1.5)

In the nontrapping case, in addition to further terms in (1.5), there is an asymptotic
formula for \sigma \prime (\lambda ) [PePo82]. When a nontrapping O has corners (i.e., has piecewise
smooth, Lipschitz boundary), the following formula is suggested by heat expansions
for interior problems which can be found in [Ch83, MaRo15]:

\sigma (\lambda ) = - | O| 
4\pi 

\lambda 2  - | \partial O| 
4\pi 

\lambda +
1

24

\sum 

j

\biggl( 
\theta j
\pi 

 - \pi 

\theta j

\biggr) 
 - 1

24\pi 

\int 

\partial O

Hds+ o(1),(1.6)

where \theta j are the angles at the corners (measured from outside) and H is the curvature
(with the convention that H > 0 for circles; we note that if there are no corners and
connected O,

\int 
\partial O Hds = 2\pi ). However, to our knowledge only the first asymptotic

term of (1.6) is known rigorously in this case.
In the figures illustrating numerical results both asymptotic formulas are plotted

against the computed scattering phase and its derivative. It is interesting to note
that for most frequencies \sigma \prime (\lambda ) seems to agree with the asymptotic formula given by
formal differentiation of (1.5) even in trapping cases. This is similar to phenomena
proved in the recent work of Lafontaine, Spence, and Wunsch [LSW21] and perhaps
could be rigorously established by similar methods.

1.2. Breit--Wigner approximation at high energies. Scattering resonances,
which replace discrete spectral data for problems on unbounded domains, can be
defined (in obstacle scattering) as poles of the meromorphic continuation of S(\lambda )---
see [DyZw19a, section 4.4]. Since S(\lambda ), \lambda > 0 captures observable phenomena, it is
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THE SCATTERING PHASE: SEEN AT LAST 251

interesting to see how those (complex) poles manifest themselves in its behavior. The
Breit--Wigner formula (see [DyZw19a, section 2.2]) is one such way. In high energy
obstacle scattering it was proved by Petkov and Zworski [PeZw99] and [PeZw00] and
takes the following form:

\sigma \prime (\lambda ) =
\sum 

| \lambda j - \lambda | <1

1

\pi 

| Im\lambda j | 
| \lambda  - \lambda j | 2

+\scrO (\lambda n - 1),(1.7)

where \lambda j 's are the scattering resonances, that is, the poles of S(\lambda ). From the point
of view of the scattering asymptotics (1.4) we note that the sign of the Breit--Wigner
terms (the sum of Lorentzians on the right in (1.7)) is opposite of the overall trend.
In particular, if there exist \lambda j 's with | Im\lambda j | \ll (Re\lambda j)

1 - n, then \sigma \prime (\lambda ) > 0 for \lambda 
near Re\lambda j . Strong trapping, such as that shown in Figure 2 (top figure), is known
to produce resonances with Im\lambda j = \scrO (| \lambda j |  - \infty )---see [St99], [TZ98]. Consequently,
whenever such strong trapping occurs the scattering phase is not monotone.

The strong and parabolic trapping examples in Figure 2 (top two figures) show
the presence of Lorentzians in \sigma \prime already at low energies. In the very weak trapping
illustrated in the bottom of Figure 2 there is some evidence of a low energy resonance
but the effect seems minimal.

1.3. Low energy asymptotics. The numerical methods used to compute \sigma \prime (\lambda )
are not effective at very low energies---see section 4. To obtain \sigma (\lambda ) by integration
we used low energy asymptotic formulae for \sigma \prime (\lambda ). There has been recent progress on
this subject and it is natural to review it here.

The first result we are aware of was obtained by Hassell and Zelditch [HaZe99]
(using monotonicity of \sigma (\lambda ) as a function of the obstacle [Ra78]) and stated that
\sigma (\lambda ) \sim 1

2 log\lambda . That was a by-product of their work on planar obstacles with the
same scattering phase (an analogue of the isospectral problem). This result was
successively improved by McGillivray [McG13], Strohmaier and Waters [StWa20],
and Christiansen and Datchev [ChDa22] and a more precise asymptotic formula is
given by

\sigma \prime (\lambda )\sim  - 2

\lambda 

1

( - 2 log 2\lambda +C(O) + 2\gamma )2 + \pi 2
(1.8)

with C(O) the logarithmic capacity of O (see below) and \gamma the Euler constant. One
way to define C(O) is to consider the Green function of O:

 - \Delta G(x) = 0, x\in \BbbR 2 \setminus O, G(x) = 0, x\in \partial O, G(x)\sim log | x| , | x| \rightarrow \infty .

Then

G(x) = log | x|  - C(O) + o(1), | x| \rightarrow \infty .

We used the leading term of the low energy asymptotics to enhance the numerics.
Indeed, the method described below numerically approximates \sigma \prime (\lambda ) and is then in-
tegrated to obtain \sigma (\lambda ). Since our numerical computation of \sigma \prime (\lambda ) is not accurate
for 0<\lambda \ll 1, in the integration step we instead use the leading small \lambda asymptotics
when \lambda \ll 1.

2. A formula for the derivative of the scattering phase. In order to com-
pute \sigma (\lambda ) we recall a definition of the scattering matrix in dimension n = 2; for
motivation and a detailed presentation see [DyZw19a, sections 3.7, 4.4].
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252 J. GALKOWSKI, P. MARCHAND, J. WANG, AND M. ZWORSKI

ω

planespherical

Fig. 3. The waves used to define the scattering matrix.

We start with perturbed plane waves; see (2.3) below. For that we let \omega \in \BbbS 1,
\lambda \in \BbbR and define u(\lambda , \cdot , \omega )\in C\infty (\BbbR 2) as the unique outgoing solution to

( - \Delta  - \lambda 2)u= 0 in \BbbR 2 \setminus O, u| \partial O = - ei\lambda \langle x,\omega \rangle | \partial O .(2.1)

(We note that, to streamline notation, the convention is slightly different than in
[DyZw19a].) Here, by outgoing, we mean that there is b(\lambda , \cdot , \omega )\in C\infty (\BbbS 1) such that

u(\lambda ,x,\omega ) = e - 
\pi i
4

\sqrt{} 
2\pi /(\lambda | x| )ei\lambda | x| b(\lambda ,x/| x| , \omega ) +O(| x|  - 3/2).(2.2)

Remark. There is a corresponding notion of an incoming solution where ei\lambda | x| 

is replaced by e - i\lambda | x| in (2.2). All solutions to (2.1) can then be written as linear
combinations of these two types of solutions.

We then define

e(\lambda ,x,\omega ) := ei\lambda \langle x,\omega \rangle + u(\lambda ,x,\omega ).(2.3)

The scattering matrix, S(\lambda ) :L2(\BbbS 1)\rightarrow L2(\BbbS 1), is then given by S(\lambda ) := I+A(\lambda ),
where A(\lambda ) is an integral operator defined as

A(\lambda )f(\theta ) :=

\int 

\BbbS 1
A(\lambda , \theta ,\omega )f(\omega )d\omega , A(\lambda , \theta ,\omega ) := b(\lambda , \theta ,\omega ).(2.4)

The scattering matrix S(\lambda ) is unitary and extends meromorphically to the Riemann
surface of log\lambda .

It will be useful when computing the scattering phase to rewrite the integral
kernel A(\lambda , \theta ,\omega ) as an integral over \partial O.

Lemma 1. Let \nu denote unit normal to \partial O pointing out of O. Then, in the
notation of (2.3), we have (with ds(x) the line measure on \partial O or \partial B(0, r))

A(\lambda , \theta ,\omega ) =
1

4\pi i

\int 

\partial O

e - i\lambda \langle x,\theta \rangle \partial \nu e(\lambda ,x,\omega )ds(x).(2.5)
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THE SCATTERING PHASE: SEEN AT LAST 253

Proof. Green's formula shows that, with e(x) := e(\lambda ,x,\omega ) and O \subset B(0,R),

0 =

\int 

B(0,R)\setminus O

\Bigl( 
[( - \Delta  - \lambda 2)e(x)](e - i\lambda \langle x,\theta \rangle ) - e(x)[( - \Delta  - \lambda 2)e - i\lambda \langle x,\theta \rangle )]

\Bigr) 
dx

=

\int 

\partial O

e - i\lambda \langle x,\theta \rangle \partial \nu e(x)ds(x) - 
\int 

\partial B(0,R)

\Bigl( 
\partial re(x)e

 - i\lambda \langle x,\theta \rangle  - e(x)\partial r[e
 - i\lambda \langle x,\theta \rangle ]

\Bigr) 
ds(x).

(2.6)

To compute the last term in (2.6), we use the formulae (2.2) and (2.3) together with
the stationary phase method (see [DyZw19a, Theorem 3.38]): for a\in C\infty (\BbbS 1),

\int 

\partial B(0,R)

a(x/| x| )e - i\lambda \langle x,\theta \rangle ds(x) =
\sqrt{} 
2\pi R/\lambda (e - 

i\pi 
4 a( - \theta )ei\lambda R + e

i\pi 
4 a(\theta )e - i\lambda R)

+\scrO (R - 1
2 ).(2.7)

By applying (2.7) when \theta \not = \omega , and the x \mapsto \rightarrow  - x symmetry when \omega = \theta , we obtain\int 
\partial B(0,R)

\langle x/| x| , \omega + \theta \rangle ei\lambda \langle x,\omega  - \theta \rangle ds(x) = \scrO (R - 1
2 ). This and (2.3) give, with u(x) :=

u(\lambda ,x,\omega ),
\int 

\partial B(0,R)

\Bigl( 
\partial re(x)e

 - i\lambda \langle x,\theta \rangle  - e(x)\partial r[e
 - i\lambda \langle x,\theta \rangle ]

\Bigr) 
ds(x)

=

\int 

\partial B(0,R)

(\partial ru(x) + i\lambda \langle x/| x| , \theta \rangle u(x)))e - i\lambda \langle x,\theta \rangle ds(x) +\scrO (R - 1
2 ).

In the notation of (2.2), we put B := e - \pi i/4
\sqrt{} 

2\pi /\lambda b(\lambda ,x/| x| , \omega ) and then apply (2.7)
to see that this expression is equal to

ei\lambda RR - 1
2

\int 

\partial B(0,R)

(i\lambda + i\lambda \langle x/| x| , \theta \rangle )Be - i\lambda \langle x,\theta \rangle ds(x) +\scrO (R - 1
2 ) = 4\pi ib(\lambda , \theta ,\omega )

+\scrO (R - 1
2 ).

Combined with (2.6) and (2.4) this completes the proof of (2.5) by taking R\rightarrow \infty .

Remarks.
1. For evaluating the traces in Lemma 2 numerically we note that, using a posi-

tive parametrization [0,L)\rightarrow \partial O, s \mapsto \rightarrow x= x(s), | \.x| = 1, \nu (s) = ( \.x2(s), - \.x1(s))
(\nu is the outward normal),

\partial \nu (e
i\lambda \langle x,\omega \rangle ) = i\lambda \langle \.x,\omega \bot \rangle ei\lambda \langle x,\omega \rangle ,

\BbbS 1 \ni \omega = (cos t, sin t), \omega \bot := ( - sin t, cos t), t\in [0,2\pi ).
(2.8)

2. We recall the following symmetry of e(\lambda ,x,\omega ) [DyZw19a, Theorem 4.20]:

e(\lambda ,x,\omega ) = e( - \lambda ,x,\omega ).

3. Note that although \partial O may have corners in our examples, since the boundary
is piecewise smooth and Lipschitz, the formula (2.5) makes sense and remains
valid.

Next, we calculate a formula for \sigma \prime (\lambda ) in terms of e(\lambda ,x,\omega ). The definitions give

\sigma \prime (\lambda ) =
1

2\pi i
trS(\lambda )\ast \partial \lambda S(\lambda ) =

1

2\pi i
tr\partial \lambda A(\lambda ) +

1

2\pi i
trA(\lambda )\ast \partial \lambda A(\lambda ).(2.9)

We start with the first term on the right-hand side of (2.9).
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254 J. GALKOWSKI, P. MARCHAND, J. WANG, AND M. ZWORSKI

Lemma 2. We have

tr\partial \lambda A(\lambda ) =
1

4\pi 

\int 

\BbbS 1

\int 

\partial O

e - i\lambda \langle x,\omega \rangle G(\lambda ,x,\omega )ds(x)d\omega ,(2.10)

where, in the notation of (2.3),

G(\lambda ,x,\omega ) := - \langle x,\omega \rangle \partial \nu u(\lambda ,x,\omega ) + \partial \nu v(\lambda ,x,\omega ),

( - \Delta  - \lambda 2)v(\lambda ,x,\omega ) = - 2i\lambda u(\lambda ,x,\omega ), x\in \BbbR 2 \setminus O,

v(\lambda ,x,\omega )| \partial O = - \langle x,\omega \rangle ei\lambda \langle x,\omega \rangle | \partial O .

(2.11)

Proof. The integral kernel of \partial \lambda A(\lambda ) is given by

\partial \lambda A(\lambda , \theta ,\omega ) =
1

4\pi i

\int 

\partial O

\Bigl( 
\partial \lambda [e

 - i\lambda \langle x,\theta \rangle ]\partial \nu e(\lambda ,x,\omega ) + e - i\lambda \langle x,\theta \rangle \partial \nu \partial \lambda e(\lambda ,x,\omega )]
\Bigr) 
ds(x).

(2.12)

From (2.3) we see that \partial \lambda e(\lambda ,x,\omega ) = i\langle x,\omega \rangle ei\lambda \langle x,\omega \rangle + iv(\lambda ,x,\omega ), where v is defined in
the statement of the lemma. Hence, in the notation of (2.8), and with e := e(\lambda ,x,\omega ),
the integrand in (2.12) for \theta = \omega is given by

i\langle \.x,\omega \bot \rangle + i( - \langle x,\omega \rangle \partial \nu u(\lambda ,x,\omega ) + \partial \nu v(\lambda ,x,\omega ))e
 - i\lambda \langle x,\omega \rangle .

This gives (2.10) since
\int 
\partial O\langle \.x,\omega 

\bot \rangle ds= 0.

We now move to the second term in (2.9).

Lemma 3. We have

trA(\lambda )\ast \partial \lambda A(\lambda ) =
1

16\pi 2

\int 

\BbbS 1

\int 

\BbbS 1
H(\lambda ,\omega , \theta )F (\lambda ,\omega , \theta )d\omega d\theta ,(2.13)

where in the notation of Lemma 2,

H :=

\int 

\partial O

ei\lambda \langle x,\theta \rangle 
\Bigl( 
 - i\lambda \langle \.x,\omega \bot \rangle e - i\lambda \langle x,\omega \rangle + \partial \nu u(\lambda ,x,\omega )

\Bigr) 
ds(x),

F :=

\int 

\partial O

e - i\lambda \langle y,\theta \rangle 
\Bigl[ 
(\langle \.y,\omega \bot \rangle (\lambda \langle y, \theta  - \omega \rangle + i)ei\lambda \langle y,\omega \rangle  - i\langle y, \theta \rangle \partial \nu u(\lambda , y,\omega )

+ i\partial \nu v(\lambda , y,\omega )
\Bigr] 
ds(y).

Proof. The integral kernel of A(\lambda )\ast is given by

A\ast (\lambda ,\omega , \theta ) = - 1

4\pi i

\int 

\partial O

ei\lambda \langle x,\theta \rangle \partial \nu e(\lambda ,x,\omega )ds(x),

and hence trA(\lambda )\ast \partial \lambda A(\lambda ) is given as an integral over \partial Ox \times \partial Oy \times \BbbS 1\theta \times \BbbS 1\omega of

1
16\pi 2 e

i\lambda \langle x - y,\theta \rangle \partial \nu e(\lambda ,x,\omega ) ( - i\langle y, \theta \rangle \partial \nu e(\lambda , y,\omega ) + \partial \nu \partial \lambda e(\lambda , y,\omega )) .

Using \partial \lambda e(\lambda ,x,\omega ) = i\langle x,\omega \rangle ei\lambda \langle x,\omega \rangle + iv(\lambda ,x,\omega ) and the definition of e(\lambda ,x,\omega ) com-
pletes the proof.

Remark. The integral over \theta could be eliminated using Bessel functions. That,
however, introduces factors J0(\lambda | x - y| ) and \langle y,x - y\rangle J1(\lambda | x - y| )/| x - y| and destroys
the product structure which only requires separate integration in x and y. Hence, it
is not numerically advantageous.
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THE SCATTERING PHASE: SEEN AT LAST 255

3. Analytic solution for the disc. In order to validate our numerical scheme,
the scheme was tested against the analytic solution for O given by the unit disk. We
record in this section the formulae for both \sigma (\lambda ) and u(\lambda ,x,\omega ) in this case.

3.1. The scattering phase for the unit disk. To compute the scattering
phase for the disk, we use polar coordinates and separation of variables to find the
scattering matrix. In particular, in polar coordinates (r, \theta ), a solution to ( - \Delta  - \lambda 2)u=
0 with u| \partial B(0,1) with u(r, \theta ) =

\sum 
n e

in\theta un(r) satisfies
\biggl( 
 - \partial 2

r  - 
1

r
\partial ru+

n2

r2
 - \lambda 2

\biggr) 
un(r) = 0, un(1) = 0,

and hence

un(r) =An

\Biggl( 
 - 

H
(2)
| n| (\lambda )

H
(1)
| n| (\lambda )

H
(1)
| n| (\lambda r) +H

(2)
| n| (\lambda r)

\Biggr) 
.(3.1)

Recall [DLMF, section 10.17(i)] that for \lambda , r > 0, n\geq 0, we have

H(1)
n (\lambda r) =

\biggl( 
2

\pi \lambda r

\biggr) 1/2

ei(\lambda r - 
1
2n\pi  - 

1
4\pi ) +O(r - 3/2),

H(2)
n (\lambda r) =

\biggl( 
2

\pi \lambda r

\biggr) 1/2

e - i(\lambda r - 1
2n\pi  - 

1
4\pi ) +O(r - 3/2).

Thus, H
(1)
| n| (\lambda r) is outgoing and H

(2)
| n| (\lambda r) is incoming and hence this implies that

sin(n\theta ) (n \not = 0) and cos(n\theta ) are eigenfunctions of S(\lambda ) with eigenvalue

\mu n := ( - 1)n+1
H

(2)
| n| (\lambda )

H
(1)
| n| (\lambda )

.

In particular, using the Wronskian relation [DLMF, (10.5.5)] in the last line, we obtain

\sigma \prime (\lambda ) =

\biggl( 
1

2\pi i
log detS(\lambda )

\biggr) \prime 

=
1

2\pi i

\infty \sum 

n= - \infty 

(H
(2)
| n| )

\prime (\lambda )

H
(2)
| n| (\lambda )

 - 
(H

(1)
| n| )

\prime (\lambda )

H
(1)
| n| (\lambda )

= - 2

\pi 2\lambda 

\infty \sum 

n= - \infty 

1

H
(1)
| n| (\lambda )H

(2)
| n| (\lambda )

.(3.2)

Remark. Note that we do not write \sigma (\lambda ) directly since this would involve making
a choice of branch for the logarithm. We instead use \sigma (0) = 0 to make this choice
when integrating \sigma \prime (\lambda ).

3.2. The scattering amplitude for the unit disk. The incoming portion of
e(\lambda ) in (2.3) is given by the incoming portion of ei\lambda \langle x,\omega \rangle . Using the Jacobi--Anger
expansion, with x= r(cos\theta , sin\theta ) we have

ei\lambda \langle x,\omega \rangle = ei\lambda r(cos\theta cos\omega +sin\theta sin\omega ) = ei\lambda r cos(\theta  - \omega )

=

\infty \sum 

n=0

\delta ni
n
\bigl( 
H(1)

n (\lambda r) +H(2)
n (\lambda r)

\bigr) 
cos(n(\theta  - \omega )),
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256 J. GALKOWSKI, P. MARCHAND, J. WANG, AND M. ZWORSKI

where \delta 0 =
1
2 and \delta n = 1 for n> 0. Thus, from (3.1) we have

e(\lambda , r\theta ,\omega ) =

\infty \sum 

n=0

\delta ni
n

\Biggl( 
 - H

(2)
n (\lambda )

H
(1)
n (\lambda )

H(1)
n (\lambda r) +H(2)

n (\lambda r)

\Biggr) 
cos(n(\theta  - \omega )),

and hence

u(\lambda , r\theta ,\omega ) =

\infty \sum 

n=0

\delta ni
n

\Biggl( 
1 - H

(2)
n (\lambda )

H
(1)
n (\lambda )

\Biggr) 
H(1)

n (\lambda r) cos (n(\theta  - \omega )) .(3.3)

We can now easily deduce explicit expression for v, \partial \nu u, and \partial \nu v.

4. Numerical scheme. In this section we describe the numerical scheme used
to compute the scattering phase.

4.1. Setup. To compute (2.10) and (2.13), we use the trapezoidal rule to approx-
imate the one-dimensional integrals along the angles \theta and \omega : for N > 0, \omega l = 2\pi l/N
for l= 0 \cdot \cdot \cdot N  - 1. Using 2\pi -periodicity, we thus arrive at the approximation

tr\partial \lambda A\approx 1

4\pi 

2\pi 

N

N - 1\sum 

l=0

\int 

\partial O

e - \lambda \langle \omega l,x\rangle G(\lambda ,x,\omega l)ds(x),

where G is given in (2.11). For the second term we benefit from the factorization in
which we only compute two integrals over the boundary:

trA\ast \partial \lambda A\approx 1

16\pi 2

\biggl( 
2\pi 

N

\biggr) 2 N - 1\sum 

l=0

N - 1\sum 

p=0

H(\lambda ,\omega l, \theta p)F (\lambda ,\omega l, \theta p),

where H and F are given in Lemma 3. It remains to compute the normal derivatives
of u(\lambda , \cdot , \omega ) and v(\lambda , \cdot , \omega ) for \omega \in (\omega l)

N - 1
l=0 .

To approximate u and v, we first need to reformulate both problems on a bounded
domain in \BbbR 2 \setminus O. We use the method of perfectly matched layers (PML) (introduced
in [Be1994] for electromagnetic waves) to do this. More precisely, we use a radial PML
[CoMo98]: considering a disk BR\mathrm{P}\mathrm{M}\mathrm{L}

with RPML >RDOM such that O \subsetneq BR\mathrm{D}\mathrm{O}\mathrm{M}
, (see

Figure 4) we reformulate both (2.1) and (2.11) using polar coordinates (r, \theta ) in BR\mathrm{P}\mathrm{M}\mathrm{L}
,

and we apply a complex scaling \^r= r+ i
\lambda 

\int r

0
\gamma (s)ds where \gamma is an increasing function

defined on [0,RPML) and equal to zero in [0,RDOM). Several choices can be made for
\gamma ; we choose \gamma (r) := 1/(RPML  - r) for r \in [RDOM,RPML) as advocated in [Ber*98].
We denote JPML the Jacobian of the transformation from the Cartesian coordinates
to the complexified Cartesian coordinates.

The equations for u and v, (2.1) and (2.11), are solved with the Galerkin method
using Lagrange finite elements; i.e., we solve these equations in a finite-dimensional
subspace Vh \subset H1(BR\mathrm{P}\mathrm{M}\mathrm{L} \setminus O) formed by piecewise-polynomial functions on a mesh,
and we denote h the mesh element size (see [ErGu22] for more information): we
find uh, vh \in Vh such that uh| \partial O = - \scrI h(ei\lambda \langle x,\omega \rangle )| \partial O , vh| \partial O = - \scrI h(\lambda \langle x,\omega \rangle ei\lambda \langle x,\omega \rangle )| \partial O ,

where \scrI h : C0(BR\mathrm{P}\mathrm{M}\mathrm{L}
\setminus O) \rightarrow Vh is the Lagrange interpolation operator, uh| \partial B\mathrm{P}\mathrm{M}\mathrm{L}

=
vh| \partial B\mathrm{P}\mathrm{M}\mathrm{L}

= 0,

a(uh,wh) = 0 for all wh \in Vh,0, and a(vh,wh) = buh
(wh) for all wh \in Vh,0,

where Vh,0 is the subspace of functions in Vh whose value on \partial O \cup \partial BPML is zero,
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THE SCATTERING PHASE: SEEN AT LAST 257

Fig. 4. Considered geometries with their PML.

a(u,w) =

\int 

BR\mathrm{D}\mathrm{O}\mathrm{M}
\setminus O

(\nabla u \cdot \nabla w - \lambda 2uw)dxdy

+

\int 

BR\mathrm{P}\mathrm{M}\mathrm{L}
\setminus BR\mathrm{D}\mathrm{O}\mathrm{M}

(J - T
PML\nabla u \cdot J - T

PML\nabla w - \lambda 2uw)| detJPML| dxdy,

buh
(w) = - 2i\lambda 

\int 

BR\mathrm{P}\mathrm{M}\mathrm{L}

uhw| detJPML| dxdy.

In our numerical experiments, the approximation space Vh is spanned by \BbbP 2

Lagrange elements, i.e., continuous piecewise quadratic functions. To bound the er-
ror from discretization independently of \lambda when solving (2.1) and (2.11), we need
h2p\lambda 2p+1 = h4\lambda 5 bounded [DuWu15], where h is the mesh size and p is the degree of
the finite element functions. To satisfy this condition, we set the number of points
per wavelength to \mu \times (1 + \lambda 1/4), where \mu is a constant. Differentiating uh and vh to
take the Neumann trace on \partial O, we obtain \BbbP 1 Lagrange elements on the discretization
of \partial O, which can then be used to compute G(\lambda ,x,\omega l), H(\lambda ,\omega l, \theta p), and F (\lambda ,\omega l, \theta p).

Note that these approximations depend on \lambda and the angle wl in the Dirichlet
conditions, and thus require solving (2.1) and (2.11) for N different angles and hence
N different right-hand sides, for a given frequency \lambda . Thus, for a given \lambda , we factorize
the matrix stemming from the discretization (note that it is the same for both uh and
vh), and we use it to solve the discretized problems with several right-hand sides at
the same time to improve efficiency. The numerical computations were carried out
with FreeFEM [He12]. More precisely, we used its interface with PETSc [Ba*19] to
solve linear systems with MUMPS [Am*01, Am*06].

Remark. Since we only need the Neumann traces of u and v to compute the scat-
tering phase, it is quite natural to want to reformulate both problems (2.1) and (2.11)
using boundary integral equations (BIEs). While (2.1) can easily be reformulated with
a standard BIE, the presence of a right-hand side in (2.11) makes it less convenient
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258 J. GALKOWSKI, P. MARCHAND, J. WANG, AND M. ZWORSKI

Table 1
Relative error on \sigma \prime for a disk with R\mathrm{D}\mathrm{O}\mathrm{M} = 2 and N = 100.

\mu Relative error on \sigma \prime 

1 0.1519
5 0.0120

10 0.0038

15 0.0023
20 0.0015

\lambda = 10, R\mathrm{P}\mathrm{M}\mathrm{L}  - R\mathrm{D}\mathrm{O}\mathrm{M} = 0.25

\mu Relative error on \sigma \prime 

1 0.0258

5 0.0097
10 0.0030

15 0.0016

20 0.0008

\lambda = 20, R\mathrm{P}\mathrm{M}\mathrm{L}  - R\mathrm{D}\mathrm{O}\mathrm{M} = 0.25

\mu Relative error on \sigma \prime 

1 0.0779

5 0.0108

10 0.0038
15 0.0021

20 0.0015

\lambda = 10, R\mathrm{P}\mathrm{M}\mathrm{L}  - R\mathrm{D}\mathrm{O}\mathrm{M} = 5h

\mu Relative error on \sigma \prime 

1 0.0334
5 0.0096

10 0.0030
15 0.0015

20 0.0008

\lambda = 20, R\mathrm{P}\mathrm{M}\mathrm{L}  - R\mathrm{D}\mathrm{O}\mathrm{M} = 5h

to usual boundary integral formulations. Nevertheless, it should be possible to rep-
resent v differentiating Green's third identity (which we can use to represent u), but
it would imply nonstandard boundary integral operators. Thus, we preferred to use
more standard tools such as PML.

4.2. Convergence. When O is a disk, we use the analytical expression from
(3.2), with a truncated sum using | n| \leq 5\lambda , to compute the relative error on \sigma \prime . In
Table 1, from left to right, the frequency \lambda is increasing. The tables at the top have
RPML  - RDOM = 0.25, while the tables at the bottom keep a number of mesh cells in
the PML region constant, RPML  - RDOM = 5h.

For a fixed RPML  - RDOM and \lambda increasing (tables at the top in Table 1), the
error is decreasing, which is consistent with [GLS21], which states that the error on u
should decrease in this case. We also observed that keeping a fixed number of mesh
cells in the PML region (tables at the bottom in Table 1) is enough to have the same
level of precision as with a fixed PML region. This is due to the particular choice
of \gamma , and we do not observe this behavior with other usual complex scaling (taking
\gamma as a linear or quadratic function, for example). The advantage is that, in this
case, RPML - RDOM decreases so that the computational cost is reduced compared to
keeping RPML  - RDOM constant.
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THE SCATTERING PHASE: SEEN AT LAST 259

Table 2
Relative error on \sigma \prime for a disk with R\mathrm{D}\mathrm{O}\mathrm{M} = 2 and R\mathrm{P}\mathrm{M}\mathrm{L}  - R\mathrm{D}\mathrm{O}\mathrm{M} = 5h.

\mu N Relative error on \sigma \prime 

20 20 0.0594
20 25 0.0025

20 30 0.0015

20 35 0.0015
20 40 0.0015

20 45 0.0015

20 50 0.0015
20 55 0.0015

20 60 0.0015

\lambda = 10

\mu N Relative error on \sigma \prime 

20 20 0.0618
20 25 0.0310

20 30 0.0309
20 35 0.0311

20 40 0.0307

20 45 0.0031
20 50 0.0008

20 55 0.0008

20 60 0.0008

\lambda = 20

Table 2 gives the relative error on \sigma \prime with N increasing, \mu = 20, RDOM = 2, and
RPML - RDOM = 5h. We observe that we need to take N large enough to converge to
the same level of error as in Table 1, and N needs to be larger for larger \lambda : N = 30
for \lambda = 10 and N = 50 for \lambda = 10. This is consistent with the fact that u and v are
more and more oscillatory when \lambda increases, and we observed numerically that taking
N \sim \lambda is sufficient to keep the error bounded independently of \lambda .

4.3. Main numerical results. The values of \sigma \prime in Figure 1 are obtained for
\lambda \geq 3 with \mu = 30, RPML - RDOM = 5h, andN = 10\lambda . For 0.3\leq \lambda < 3, we computed \sigma \prime ,
but this required the use of significantly larger \mu , usually \mu = 300 for 0.3\leq \lambda \leq 2 and
\mu = 200 for 2 \leq \lambda \leq 3. Figure 2 was produced in the same way, except that we
took \mu = 100 away from an interval of size 0.2 centered on the quasimode frequencies
(which are explicitly computable using the eigenvalues of the Laplacian in the ellipse;
see [MGSS22, section 1.1.3]). On the intervals near quasimode frequences we also
needed to increase \mu significantly, and we took \mu = 300. For every geometry, we
refined the mesh around corners in order to obtain good precision.
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