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Cooperative Scene-Event Modelling for Acoustic
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Abstract—Acoustic scene classification (ASC) can be helpful for
creating context awareness for intelligent robots. Humans natu-
rally use the relations between acoustic scenes (AS) and audio
events (AE) to understand and recognize their surrounding envi-
ronments. However, in most previous works, ASC and audio event
classification (AEC) are treated as independent tasks, with a focus
primarily on audio features shared between scenes and events, but
not their implicit relations. To address this limitation, we propose
a cooperative scene-event modelling (cSEM) framework to auto-
matically model the intricate scene-event relation by an adaptive
coupling matrix to improve ASC. Compared with other scene-event
modelling frameworks, the proposed cSEM offers the following
advantages. First, it reduces the confusion between similar scenes
by aligning the information of coarse-grained AS and fine-grained
AE in the latent space, and reducing the redundant information
between the AS and AE embeddings. Second, it exploits the relation
information between AS and AE to improve ASC, which is shown to
be beneficial, even if the information of AE is derived from unveri-
fied pseudo-labels. Third, it uses a regression-based loss function for
cooperative modelling of scene-event relations, which is shown to be
more effective than classification-based loss functions. Instantiated
from four models based on either Transformer or convolutional
neural networks, cSEM is evaluated on real-life and synthetic
datasets. Experiments show that cSEM-based models work well in
real-life scene-event analysis, offering competitive results on ASC
as compared with other multi-feature or multi-model ensemble
methods. The ASC accuracy achieved on the TUT2018, TAU2019,
and JSSED datasets is 81.0%, 88.9% and 97.2%, respectively.

Index Terms—Acoustic scene classification, audio event
classification, scene-event relation, cooperative modelling.

I. INTRODUCTION

ACOUSTIC scene classification (ASC) aims to tag an audio
recording with predefined semantic labels that depict the
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environment in which the audio was recorded. Audio event
classification (AEC) performs multi-label classification on an
audio clip and aims to identify target events in the audio clip.
ASC and AEC-related systems are used in various applications
such as medical surveillance [1] and video analysis [2].

In previous studies, such as [3], ASC and AEC are often
treated as separate tasks, with models built independently for
each task. However, acoustic scenes (AS) and audio events
(AE) in natural environments usually accompany each other,
and they are often implicitly associated. Certain AE may occur
in a specific acoustic scene, while different AS may contain
their representative events. For example, in the acoustic scene
park, AE of bird flight and dog barking are likely to occur. Such
fine-grained events form the basis of polyphonic AS. Humans
use these fine-grained events together with the overall acoustic
background to understand and recognise their surrounding envi-
ronment [4]. Motivated by the above observation, a few studies
have proposed to analyse AS and AE jointly. For example, in [5],
a simple but intuitive approach is introduced to perform ASC
and AEC simultaneously by training a shared feature encoder
and performing classification on latent embeddings. In addition,
a synthesised dataset [5] is created to evaluate such studies
by mixing foreground events with background scenes. Another
line of studies adopts a different framework, which relies on
shared low-level but separated high-level embedding spaces.
Specifically, in [6], scene-event representations are learned with
three shared convolutional layers based on multi-task learning
(MTL), while the high-level representations are learned with-
out scene-event interaction. Using the MTL paradigm, a scene
conditional-loss model [7] is used to learn the scene-to-event
relation. Given that P (AE|AS) denotes the probability that
AE occurs in AS, P (AE|AS) represents the scene-to-event
relation that can be used to infer AE from AS, but this relation is
one-way, which means that P (AS|AE) cannot be inferred from
P (AE|AS). In relation-guided ASC (RGASC) [8],P (AE|AS)
is exploited on a fixed prior matrix. Unlike the MTL approach of
sharing fixed layers, the cross-stitch method [9] connects fully
connected and pooling layers of dual-task network branches,
by learning improved representations of both tasks, through
modelling shared representations with their linear combinations.

The above scene-event joint learning methods can be sim-
plified to two frameworks: modelling based on the same
one embedding space (MoE) [5], and modelling based on
shared low-level and separated high-level embedding spaces
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(MlhE) [6], [7], [10]. MoE, also named hard parameter shar-
ing [11], tries to obtain the same representations applicable
to both AS and AE. However, AS and AE naturally follow a
hierarchical relationship. As AEs are building blocks of AS, the
coarse-grained scene and fine-grained event information have
their own intrinsic properties. Therefore, MoE has limitations in
capturing the intricate and changeable relation between AS and
AE in real life. Unlike MoE, the MlhE framework, which is simi-
lar to soft parameter sharing [11], exploits the shared scene-event
and separated task-dependent representations for ASC and AEC,
respectively. The joint learning in MlhE reduces the chances
of overfitting, thereby resulting in improved performance for
audio-related analysis tasks [12]. However, the MlhE framework
does not fully utilize the inherent and implicit relation between
AS and AE. Although the model [7] based on MlhE uses the
fixed scene-to-event binary relation (i.e. presence or absence),
such relation is derived from the synthetic dataset [5], and thus
can be difficult to match with the complex scene-event relation
in real life.

Real-world scene-event relations are not simply binary for
presence or absence, but rather a likelihood expressed by proba-
bility. Humans can infer the ongoing AE from AS, and infer AS
from AE. For example, there is a high probability of birds singing
in the park scene, and the sound of whizzing cars often occurs
in the street scene. That is, relations between AS and AE are
typically two-way, instead of the fixed one-way scene-to-event
relations in the conditional-loss model [7] and RGASC [8].
To exploit the two-way scene-event relation for ASC, this
article proposes a cooperative scene-event modelling (cSEM)
framework, where an adaptive coupling matrix is introduced
for modelling the implicit scene-event two-way relations, i.e.
P (AE|AS) and P (AS|AE). The coupling matrix thus acts as
a two-way bridge for the mutual interaction and transformation
between the high-level representations of AS and AE, reducing
the overlap between semantic spaces of AS and AE, thus clas-
sifying AS and AE collaboratively. Different from RGASC [8],
which uses a dataset-specific fixed prior matrix to crudely map
the final predictions of ASC and AEC branches, the cSEM aims
to automatically align the core knowledge extracted from AS
and AE through a two-way scene-event relationship model in an
end-to-end manner.

The main contributions of this work are summarized as fol-
lows: 1) We propose a novel framework cSEM for modelling
the two-way scene-event relation and use it to improve the
ASC performance. We instantiate the cSEM framework with
Transformer-based and CNN-based models. 2) We conduct var-
ious experiments with detailed analysis, and further compare
the cSEM-based models with the state-of-the-art models to
illustrate the benefit of the cSEM framework. 3) To improve the
understanding of the cSEM framework, we use visualization to
provide insights into the capability of the cSEM framework in
aligning the knowledge of AS and AE, and reducing redundant
information between the AS and AE embeddings. Furthermore,
we analyze the differences between real-life scenes from the per-
spective of events using the cSEM-based model for scene-event
joint analysis.

This article is organized as follows. Section II introduces
scene-event joint modelling frameworks in prior studies and
proposes the cSEM framework. Section III presents models
based on the proposed cSEM framework. Section IV describes
datasets and experimental setup. Section V analyses the results.
Section VI draws conclusions.

II. SCENE-EVENT JOINT MODELLING FRAMEWORKS

In this section, we discuss two existing frameworks, namely
MoE and MlhE as introduced in Section I, and compare their
similarities and differences. We then propose the cSEM frame-
work, which has an advantage in exploiting the relation between
scenes and events.

A. MoE: Modelling Using the Same One Embedding Space

As shown in Fig. 1(a), in MoE, the input time-frequency
representations X(t; f) are mapped by the encoder layers and
transformed to the joint modelling space of AS and AE. The
encoder layers can be formed as several types of neural networks,
such as deep neural networks (DNN), convolutional neural net-
works (CNN), and recurrent neural networks (RNN) [13]. Let
X ∈ RT×F denote the time-frequency representations, where
T and F denote the number of time frames and frequency bins.
The encoder f turns X into an internal representation with
dimension d1, namely f(X) = Rse, where Rse ∈ Rd1 1 is the
joint representation of AS and AE. Then, the scene classification
layer maps Rse onto the target scene components through an
adaptive weight matrix W s and outputs the prediction of scenes
ŷs ∈ Rns ,

ŷs = fs(RseW
T
s ) = fs(ẑs) (1)

whereW s ∈ Rns×d1 ,ns is the number of scene classes, fs is the
activation function, and ẑs is the logit [14] of ŷs. Relying on the
predicted ŷs and the ground-truth label of scene ys, the ASC loss
can be defined as Lscene = losss(ŷs, ys). ASC is usually viewed
as a single-label multi-class classification problem, hence the
potential option of fs is Softmax and losss is cross entropy (CE)
loss [15].

The event prediction ŷe ∈ Rne is obtained by projecting the
internal representation onto the event classification layer through
an adaptive weight matrix W e ∈ Rne×d1 , namely:

ŷe = fe(RseW
T
e ) = fe(ẑe) (2)

where ne is the number of event classes, fe is the activation
function, and ẑe is the logit of ŷe. The AEC loss can be
derived from the distance between the predicted ŷe and the
label of the event ye, i.e. Levent = losse(ŷe, ye). AEC performs
multi-label classification on audio clips, so the potential option
for fe is Sigmoid and the corresponding loss function losse is
binary cross entropy (BCE) [16]. Then, the final loss of MoE is
L = λ1Lscene + λ2Levent, where λi (i = 1, 2) adjust the weights
between the loss components, and λi default to 1.

1To simplify expressions, the batch size in the symbolic representation of the
sample is omitted, i.e. Rd1 is R1×d1 in the training.



70 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 32, 2024

Fig. 1. Three frameworks for scene-event joint modelling: (a) MoE: modelling using the same one embedding space; (b) MlhE: modelling using shared low-level
and separated high-level embedding spaces; (c) cSEM: the proposed cooperative scene-event modelling with adaptive coupling matrix.

An advantage of MoE is its simplicity and efficiency of
learning joint representations Rse that are applicable to both
AS and AE. This allows a robust and general feature extractor
to be obtained, which can easily transfer the learned knowledge
to related pattern recognition tasks [16]. However, in practice,
AS and AE are represented in different levels of information
in an audio clip. The AS and AE, which are from the clip
level and frame level, respectively, are not only correlated, but
also different in their characteristics. The models in [17], [18],
[19] focus on the fine-grained AE information, and thus can not
fully capture the coarse-grained AS information. Vice versa, the
models in [20], [21] focus on global AS features, and are limited
in capturing the subtle differences between similar events. In
short, MoE is limited in dealing with the intricate real-world
situation in the presence of varied acoustic scenes and diverse
audio events.

B. MlhE: Modelling Using Shared Low-Level and Separated
High-Level Embedding Spaces

As shown in Fig. 1(b), in MlhE, separate encoding layers are
further used to extract task-dependent acoustic representations
of AS and AE. As found in [22], the low-level basic acoustic
features are transferable to some extent and hence applicable in
ASC and AEC tasks. However, high-level abstract representa-
tions are often difficult to be adapted to different scenarios. With
the subsequent embedding layer, which usually consists of fully
connected layers, the audio representations can be mapped to
the high-level embeddings in the semantic space to be suitable
for the corresponding classification tasks.

Following notations of MoE, the shared encoder turns the
input X into joint scene-event representations Rse. Next, the
separated encoder further extracts the AS representations Rs

and the AE representations Re, respectively. The subsequent
embedding layers transform Rs and Re into the embeddings of
scenesEs∈ Rds and the embeddings of eventsEe∈ Rde . Then,
similar to the operations in MoE, the scene classification layer
of MlhE maps Es onto target scene components by W s and
outputs the prediction of scenes ŷs ∈ Rns ,

ŷs = fs(EsW
T
s ) = fs(ẑs) (3)

where W s ∈ Rns×ds , ds is the dimension of scene embedding
space, and ẑs is the corresponding logit. Similarly, the prediction
ŷe of the event branch is obtained by

ŷe = fe(EeW
T
e ) = fe(ẑe) (4)

where W e ∈ Rne×de , de is the dimension of the event embed-
ding space, ŷe ∈ Rne , and ẑe is the logit. Finally, the losses
of MlhE are the distance between the predicted value and the
corresponding label, i.e. Lscene = losss(ŷs, ys) and Levent =
losse(ŷe, ye). The final loss of MlhE is L = λ1Lscene +
λ2Levent, where λi (i = 1, 2) is set typically to 1.

MlhE learns high-level task-goal-oriented representations
based on low-level scene-event representations. Compared with
MoE, MlhE has the advantage of utilizing richer information of
shared and individual representations of coarse-grained AS and
fine-grained AE. However, as MlhE does not explicitly coordi-
nate the interaction between representations of AS and AE, the
discriminative ambiguity remains for some similar audio clips.
Intuitively, real-life audio clips may contain AS with overall
similar sound, but they can be distinguished using implicit AE
information specific to a scene class. For example, when the
scene branch is uncertain about the scene label of an audio
clip being clamorous streets or noisy parks, if the event branch
indicates that the clip contains the audio event features of birds
singing and dogs barking, then the scene branch can be more
confident about the audio clip being from a park scene. Likewise,
some audio clips may have similar sound events. In this case,
the scene information implied in the contextual background can
be used to clarify ambiguities caused by similar sound events.
For example, when the event branch is uncertain about a clip
whether it contains cat meowing or baby crying, but if the scene
branch indicates that the audio clip is more likely to occur in
a nursery room, then the clue from the scene branch can help
the event branch to reduce its confidence on the prediction of
the less likely event cat meowing. In short, MlhE neglects the
implicit and intricate relation between scenes and events.

C. cSEM: Proposed Cooperative Scene-Event Modelling

Different from MoE and MlhE, we present a novel cSEM
framework, as shown in Fig. 1(c).
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In cSEM, a coupling matrix W se is constructed to capture
the bidirectional relation between AS and AE based on the
core knowledge of AS and AE learned by the model, i.e. the
weight matrices from the classification layers W s and W e.
This coupling matrix is used to map AS embeddings Es to
the event space to infer the corresponding event ỹe. Then, the
loss between the inferred event ỹe and the actual output of the
AEC branch is calculated, which is back propagated to update
the relevant weights used in the coupling matrix. Similarly, AE
embeddings Ee are first mapped into the scene space to infer
the corresponding scene output ỹs, and then the loss between
the inferred scene ỹs and the actual output of the ASC branch
is measured to correct the learnable weights. In this process,
W se will model the implicit two-way scene-event relation, with
which the ASC and AEC branches will collaborate to estimate
each other’s output and classify their targets.

Algorithm 1 shows the pseudo-code of cSEM. To model
the bidirectional scene-event relations, inspired by self-
attention [23], the dimensions of embedding spaces in Fig. 1 are
set equal, i.e. de = ds and W se ∈ Rns×ne . The role of coupling
matrix W se is to serve as a two-way scene-event bridge for the
coordination and collaboration of the AS knowledgeW s and the
AE knowledge W e learned by the model, and to further reduce
the extent of overlap between the ASC and the AEC branches
in latent semantic space, resulting in a reduction of redundancy
in the core information of AS and the core information of AE.
The reduction of redundant information facilitates both branches
to learn their target representations as much as possible while
modelling their cooperative relations.

Lines 9 to 12 in Algorithm 1. To explore the possibility
of inferring AS using AE embeddings, the weights in W se,
which indicate the distribution of all AEs in each scene, are
first calculated by row-wise Softmax [23] to obtain the attention
factor of events Ae ∈ Rns×ne that assigns a weight to each
event in the corresponding scene. Using Ae, the learned event
knowledge W e is transformed into the scene space to obtain
the event-to-scene knowledge transformation matrix Ke2s ∈
Rns×de . Finally, based on Ke2s, the corresponding inferred
scene by event, ỹs ∈ Rns , can be derived from AE embeddings
Ee via the adaptive W se. The loss Ls_by_e between the inferred
scene ỹs and the actual output ŷs of ASC branch can be fed back
to the AEC branch to update relevant weights, which further
improves the quality of W se and better captures the implicit
and intricate scene-event relation.

!– \hphantom{1 in}–> Lines 13 to 16 in
Algorithm 1. The process of inferring AE from AS embeddings
Es is similar to inferring scenes from events described above.
First, the attention factor of scenes As ∈ Rne×ns is computed
where the weights are assigned to each scene for a given event.
Then, the learned scene knowledge W s is transformed into the
event space by multiplying As resulting in the scene-to-event
knowledge transformation matrix Ks2e ∈ Rne×ds . Finally, us-
ing Ks2e, the corresponding inferred event by scene, ỹe ∈ Rne ,
can be derived from Es. The loss Le_by_s between the inferred
event ỹe and the actual output ŷe of the AEC branch is fed back
to the ASC branch to update the relevant weights. The coupling

Algorithm 1: PyTorch Pseudo-Code of the cSEM Fram-
work.Mixing Two Samples

matrix-related code, shown from 8 to 16 lines in Algorithm 1,
is the only extra part of cSEM, compared to MlhE.

In the cSEM framework, the loss functions losss_by_e and
losse_by_s model the scene-event relation and similarity between
the derived results and the actual outputs. That is, they aim
to match another branch’s output. Hence, mean squared error
(MSE), which performs well in regression tasks [24], is chosen
for these loss functions. If the inferred scene by event, ỹs, is
regarded as the predicted scene vector in the semantic space.
The output of the ASC branch, ŷs, is viewed as the actual scene
vector in the semantic space. The goal of MSE is to measure the
absolute distance between the two vectors in the latent space,
while the classification loss, like CE, is used to measure the
difference between classification results of each class in the
two vectors. Meanwhile, to improve the classification accuracy,
CE tends to expand the distance between the target output and
other non-target outputs, that is, to enlarge the distance between
different classes [25]. Thus, the regression loss such as MSE is
apt to consider the whole output derived from embeddings as the
target to optimize, while the classification loss such as CE opti-
mizes the class-wise loss to improve the classification accuracy
and enlarge the gap between the target class and the non-target
class. Comparison of the model performance achieved using
several options for losss_by_e and losse_by_s can be found in
Section V-D.

Combining the loss of the ASC, the AEC, the inferred
scene by event, and the inferred event by scene, the loss
of the cSEM read as L = λ1Lscene + λ2Levent + λ3Ls_by_e +
λ4Le_by_s, where λi (i = 1, 2, 3, 4) is the scale factor of each
loss, set empirically to 1. Compared with MlhE, cSEM has
an advantage in that it learns the coupling matrix W se,
which has the potential to capture the implicit relation be-
tween the real-life varied scenes and diverse events. With
the two-way collaborative scene-event interaction, the cSEM
framework can further facilitate the downstream classification
tasks.
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Fig. 2. Models based on the proposed cSEM framework.

III. INSTANTIATIONS OF THE PROPOSED CSEM

In ASC and AEC tasks, the most commonly used network
before is CNN [26], but now Transformer [23] is gradually taking
over. This section will show four instantiations of cSEM based
on Transformer and CNN models.

A. cSEM-AST: CSEM-Based Audio Spectrogram Transformer

Audio Spectrogram Transformer (AST) [27] has recently
achieved competitive results on audio classification tasks on
AudioSet [28]. To alleviate the tendency of overfitting in Trans-
former models [29], the AST with 10 encoder layers is used in
this article, instead of the default 12 encoder layers. Fig. 2(a)
illustrates the proposed cSEM-based AST (cSEM-AST).

1) Shared Parts: First, the audio waveform is converted into
a spectrogram. The spectrogram is then split into a sequence
of patches, and each patch is flattened to an embedding using
a linear projection layer. The patch sequence does not keep the
temporal order, and Transformer does not capture the input order
information. Thus, a trainable positional embedding is added
to each patch embedding to allow the model to preserve the
temporal order of patches. The total number of encoder layers
used here in AST is 10. Assuming that n shared encoder layers
are in Fig. 2(a), the remaining m = 10− n layers will learn the
individual task-dependent representations separately.

2) Separated Parts: To extract the individual high-level task-
dependent representations for ASC and AEC, the scene-event
representations are fed into the encoder layers of the ASC and
AEC branches, respectively. The learned representations are
then fed into the embedding layer to learn improved mappings in
the latent semantic space that will be later used for classification.
The weights W s and W e, which contain highly condensed
information about similarities and differences between different
targets, will be used to infer each other’s outputs under the
guidance of the scene-event relation module, and to refine their
respective estimations.

3) Modelling of Scene-Event Relation: The role of the rela-
tion module is to align AS embeddings Es with AE embeddings
Ee, and then map the core knowledge W s and W e about
the targets learned by the classification layers from different
semantic spaces into the scene-event joint space W se, which
is dedicated to modelling the implicit relation between AS and

AE without any prior knowledge. The process for learning the
coupling matrix in cSEM is driven by the losses between the
derived results ỹe and ỹs and the actual predictions ŷe and ŷs. The
process for joint modelling of the scene-event relation enables
explicit interaction between the high-level representations from
ASC and AEC branches. With such joint modelling, the latent
semantic spaces of AS and AE will be gradually aligned with
each other.

B. cSEM-PANN: cSEM-Based Pretrained Audio Neural
Networks

To show the flexibility of the cSEM framework, we also
propose cSEM based on the Pretrained Audio Neural Networks
(cSEM-PANN), as shown in Fig. 2(b). Before the release of
Transformer-based AST, CNN-based PANN [16] achieved the
best results of audio classification on AudioSet.

The main differences between cSEM-PANN and cSEM-AST
are that: 1) the spectrogram will be fed directly into cSEM-
PANN, instead of slicing the spectrogram into patches as in
cSEM-AST. The inputs of PANN are clip-level features, not
patch-level features. Thus, cSEM-PANN does not require the
linear projection layer, the position embedding layer and the
additional token as in AST; 2) Both the shared and branched
layers in cSEM-PANN consist of typical convolutional blocks,
which are based on stacked convolutional layers; 3) The total
number of convolutional blocks in PANN is 6 [16], assuming
that there are n shared blocks in Fig. 2(b), the remaining m =
6− n blocks will learn separate representations. Except for the
input, the composition, and the number of layers, the remaining
components of cSEM-PANN are the same as those of cSEM-
AST.

C. cSEM-CNNT: CSEM-Based CNN-Transformer

Transformer-based AST and convolution-based PANN have
achieved excellent audio classification performance, so this ar-
ticle tries to combine convolution and Transformer to exploit
CNN’s local feature extraction capabilities and Transformer’s
long-term context capture capabilities. To this end, a simple
CNN-Transformer (CNNT) is proposed and instantiated based
on the cSEM, as shown in Fig. 2(c). Specifically, CNNT contains
3 convolutional blocks from PANN, a Transformer encoder
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layer from AST, an embedding layer and a classification layer.
The features captured from the Transformer encoder layer are
passed to the embedding layer. The default output size of the
Transformer encoder layer is 512, so the number of units in the
embedding layer in CNNT is also 512 by default.

D. cSEM-TinyCNN: cSEM-based TinyCNN

To further evaluate the cSEM, we propose TinyCNN with only
2 convolutional layers and 2 multi-layer perceptrons (MLP),
and instantiate it based on cSEM. The convolutional layers
in TinyCNN contain 32 and 64 filters with a kernel (7 × 7),
respectively. The first MLP acts as an embedding layer with
only 100 units, and the second MLP acts as a classification
layer. The lightweight cSEM-TinyCNN explores the benefits
of cSEM on ASC tasks for small models. The cSEM-TinyCNN
has a similar but simpler structure to the cSEM-CNNT. Due to
space constraints, cSEM-TinyCNN is not shown in Fig. 2.

IV. DATASETS AND EXPERIMENTAL SETUP

This article uses two real-life datasets and one synthetic
dataset to evaluate the proposed framework.

1) Real-life datasets: The TUT Urban Acoustic Scenes 2018
(TUT2018) dataset [15] contains 8640 10-second segments,
in total, 24 hours of audio of 10-class scenes. The TAU Ur-
ban Acoustic Scenes 2019 (TAU2019) dataset [30] contains
14400 10-second audio segments, totalling 40 hours of audio
of 10-class scenes. There are no event labels in scene datasets
TUT2018 and TAU2019. Thus, pretrained models (AST and
PANN) are used to tag each audio clip with pseudo labels to
indicate the probabilities of the corresponding AE. AST and
PANN are trained on AudioSet [28] with 527 classes of AE,
which cover a wide range of human and environmental sounds.

2) Synthetic dataset: The joint sound scene and event dataset
(JSSED) [5] has 3000 30-second segments. The JSSED consists
of synthesized audio clips with 32-class AE and 10-class AS,
where the events present in an audio clip are related to the
scene of the clip. For each of the 10-class AS, there are 10
unique locations for each class, with a total of 100 background
recordings. The AE to background AS signal-to-noise ratio is
randomly assigned in the range −15 to 15 dB [5].

Pretraining: Most systems used as references in later ex-
periments are from DCASE2018/2019 challenges [15] which
allow the use of AudioSet and other audio scene datasets.
AST and PANN perform excellently after they are trained on
AudioSet [28]. Previous work shows that a large and deep
model like AST performs poorly when trained on small datasets
alone [31]. Therefore, this article uses pretrained weights of
PANN. As the AST used here has only 10 layers, the first 10-
layer weights of the pretrained AST are used. For the proposed
CNNT, its convolution part refers to the corresponding part of
PANN. Hence, the first 3 convolutional blocks of CNNT are
initialized with the weights of the corresponding convolutional
blocks from the pretrained PANN, while the remaining encoder
layer, embedding layer, and classification layer are randomly
initialized without pretraining. For the proposed TinyCNN, there

is no reference to a similar model trained on AudioSet. The
TinyCNN is pretrained for 10 epochs in the balanced subset
of 22 K audio clips of AudioSet. A batch size of 64, and an
Adam [32] optimizer with a learning rate of 0.001 are used. To
further explore the performance of the four models with (w/)
and without (w/o) cSEM, Section V-B presents comprehensive
results for each model w/ and w/o pretraining and w/ and w/o
the proposed cSEM framework.

Experimental setup: The log Mel filterbank (fbank) is used
as the acoustic feature [16]. The inputs to cSEM-AST differ
slightly from those to cSEM-(PANN, CNNT, TinyCNN). For
cSEM-AST, the audio clip is converted into a sequence of
128-dimensional fbank computed with the 25 ms Hamming
window and a hop size of 10 ms, then the spectrogram is split into
a sequence of patches following the settings of [27]. For cSEM-
(PANN, CNNT, TinyCNN), the number of mel filter banks is
64 [16]. Then the 64-dimensional fbank is extracted by STFT
with Hamming window length of 46 ms and overlap of 1/3 be-
tween windows following the settings of [33]. The cSEM-based
models are trained for a maximum of 100 epochs. Gradient ac-
cumulation with a batch size of 64, and an Adam optimizer [32]
with initial learning rates of 1e-6 [27] and 1e-3 [33] are used
to minimize losses in cSEM-AST and cSEM-(PANN, CNNT,
TinyCNN), respectively. To prevent over-fitting, dropout [34],
and normalization are used. The systems are trained on GPU
cards Tesla V100 without a fixed seed. To facilitate the compar-
ison of results with other systems, the training/testing split of the
TUT2018 and TAU2019 datasets follow the default split of the
DCASE2018 Task1A2 and DCASE2019 Task1A.3 In training,
20% of the training samples are randomly selected to form the
validation set. For JSSED, as in [7], 2400 30-second audio clips
are used for training, 300 for validation and 300 for testing.
There is no overlap between the training, validation, and testing
sets. Each system is run 10 times. The accuracy (Acc.) [33] is
used as the metric. A larger Acc. indicates a better performance.

V. RESULTS AND ANALYSIS

Although the synthetic JSSED has ground-truth labels of AS
and AE, the diversity of AE, the complexity of AS, and the
intrinsic logical relationships between AE and AS are inferior
to those of the real-life TUT2018 and TAU2019. Hence, most
of the experiments will be performed on real-life datasets. This
section analyzes the performance of cSEM by following the
research questions (RQs). RQ1-4 explore the performance of
the proposed cSEM-based models from different perspectives,
and compare the differences between the cSEM framework and
other scene-event joint modelling frameworks. RQ5-6 provide
intuitive insights into cSEM’s capability in aligning the core
knowledge of AS and AE, and applying the cSEM-based model
to real-life scene-event analysis. RQ7 compares the cSEM with
other scene-event joint analysis methods.

2http://dcase.community/challenge2018/task-acoustic-scene-classification
3https://dcase.community/challenge2019/task-acoustic-scene-classification

http://dcase.community/challenge2018/task-acoustic-scene-classification
https://dcase.community/challenge2019/task-acoustic-scene-classification
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TABLE I
ASC ACCURACY (%) OF MODELS WITH DIFFERENT NUMBERS (n) OF SHARED

LAYERS/BLOCKS ON THE TUT2018 VALIDATION SET

A. RQ1: Does More Information Shared in the Proposed
cSEM Framework Lead to Better Model Performance?

The first step is to explore the ratio between the number of
shared and separated layers of branches in the cSEM framework
to determine the model structure for experiments. In other words,
how much of the separated task-oriented individual representa-
tions of AS and AE in different latent semantic spaces should be
retained? The impact of the number of shared layers/blocks on
cSEM-AST/PANN is explored in Table I, shown as the average
of results ± the maximum error.

As shown in Table I, the number of shared layers/blocks does
not have a monotonous effect on the results of either cSEM-AST
or cSEM-PANN. At first, the classification accuracy of models
increases with the number of shared layers/blocks, but after
reaching the peak, it starts to decrease with the increase in the
number of shared layers/blocks. cSEM-AST achieves the best
result when the first 4 layers are shared, while cSEM-PANN
obtains the best result when the first 2 blocks are shared. In
Table I, especially for cSEM-AST, the difference in the number
of shared layers leads to a slight difference in the results. The
reason may be that the multi-head attention and feed-forward
layers in Transformer encoder [23] in the AST both contain
residual connections. During the forward propagation of the
network, the residual structure can enable the input signal to be
propagated directly from any lower layer to the upper layer to
prevent the problem of network degradation [35]. With residual
connections, cSEM-AST becomes insensitive to the effect of the
changing number of shared layers. In contrast, PANN does not
have the residual structure. As a result, changes in the number of
shared blocks have a larger impact on cSEM-PANN. The first 4
and 2 shared layers/blocks are used as the default configuration
structures for cSEM-AST and cSEM-PANN, respectively. The
results from cSEM-CNNT and cSEM-TinyCNN have similar
trends to those from cSEM-PANN, and are not listed in detail due
to space constraints. The best-shared layers for cSEM-CNNT
and cSEM-TinyCNN are the first 2 and 1 layers. Subsequent
experiments will be conducted on these structures.

B. RQ2: Does Pretraining Improve the Performance of
Models? How Do the Scene-Event Joint Frameworks MoE,
MlhE, and the Proposed cSEM Perform on the Same Base
Model?

Table II shows the impact of pretraining and cSEM on
Transformer-based and CNN-based models. Without pretrain-
ing, CNN-based PANN, CNNT, and TinyCNN outperform the
Transformer-based AST for ASC on the real-life dataset. This

TABLE II
ACC. (%) FOR ABLATION STUDY OF THE EFFECT OF CSEM FRAMEWORK AND

PRETRAIN ON ASC ON TUT2018 TEST SET

TABLE III
ACC. (%) OF ASC AND AUC OF AEC RESULTS OF THREE FRAMEWORKS

BASED ON THE SAME BACKBONE MODEL AST ON TEST SET

is consistent with the results reported in a previous article [31],
which shows that Transformer-based models perform poorly on
small datasets. Transformer-based models usually have more
layers, which tend to overfit severely on small datasets [29] due
to the large number of parameters involved in the model. After
the AST is pretrained with the large-scale AudioSet, its perfor-
mance is significantly improved. Among the 3 CNN-based mod-
els in Table II, TinyCNN has the smallest number of layers and
the simplest structure, resulting in the worst scene classification
performance. The convolutional blocks of CNNT are the same as
those of PANN. However, CNNT with one Transformer encoder
is slightly better than PANN results w/ or w/o pretraining, which
implies that adding a Transformer encoder with attention to a
pure convolutional model is beneficial in capturing the global
context for ASC.The results of w/ and w/o cSEM framework in
Table II show that cSEM, which aims to fuse fine-grained event
with coarse-grained scene information, can help improve the
accuracy of the corresponding model in ASC. The ASC results in
Table II demonstrate the effectiveness of the cSEM framework in
improving ASC performance via the analysis of scenes from the
perspective of scene-event cooperative modelling.Inspired by
the good performance of AST in Table II, AST is used as the base
model to evaluate the performance of scene-event joint analysis
frameworks. Table III shows the ASC and AEC results of the
frameworks. The performance of MoE, which can efficiently
train one model to perform ASC and AEC simultaneously [5],
is inferior to the performance of MlhE, where low-level basic
joint representations and high-level task-dependent individual
representations are learned to improve adaptability and reduce
potential overfitting of the model [12]. From another perspective,
the underlying assumption of MoE is that the latent target
semantic spaces of AS and AE are entirely consistent. The under-
lying assumption of MlhE is that, given the natural connections
between AS and AE, the latent semantic spaces of AS and AE
partially overlap, while the specific characteristics of these two
targets should be different. Compared to MoE, the underlying
assumption of MlhE tends to resemble the actual real-world sit-
uation more closely, thereby leading to better results in Table III.

The assumption of cSEM is that joint representations can
be shared, and individual task-oriented representations can be
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TABLE IV
ACC. (%) OF ASC RESULTS OF DIFFERENT FRAMEWORKS BASED ON THE

SAME BACKBONE MODEL AST ON JSSED TEST SET

TABLE V
PARAM. AND ENERGY-COSTLY MACS OF PRIMARY MODELS

associated to jointly model the implicit relation between AS and
AE by the shared coupling matrix. The ASC and AEC branches
in cSEM learn the similarities and differences between them by
modelling the two-way scene-event relation. Hence, cSEM has
a better capability of distinguishing similar scenes. Even though
some results in Table III are close, the statistics of results of 10
runs of MlhE and cSEM in Table III on TUT2018 reveal that the
cSEM provides a statistically significant improvement in ASC
accuracy compared to MlhE.

The AEC results are also listed in Table III. To comprehen-
sively measure the performance of models for discriminating
between events, the threshold-free AUC [36] is used. It can be
observed that almost all models achieved excellent performance
on the AEC of the used datasets, and the difference in the AEC
results by various frameworks is relatively small. This is also
consistent with the results in DCASE challenges [3], where most
deep learning-based models achieved good AEC results. As the
research goal of this article is to exploit the implicit scene-event
relation to improve ASC, subsequent experiments will focus
on ASC.Table III uses pseudo labels of AE on TUT2018 and
ground-truth (GT) labels of AE on JSSED. To examine whether
pseudo labels similar to target augmentation offer additional
benefits compared to real labels, Table IV uses GT labels from
JSSED and pseudo labels from a pretrained model (both labels
with 80% AEC accuracy on JSSED) to replace the AE labels of
the training set in JSSED in Table III. AST-based frameworks are
retrained to evaluate the impact of using pseudo and GT labels of
AE on the ASC task. Table IV shows that the models using GT
labels outperform models with pseudo labels, no matter what
the framework is. That means, GT labels are more powerful for
ASC than pseudo labels from the pretrained models.Table V
presents the number of parameters (Param. in Millions) and the
multiply-accumulate operations (MACs in Gigas) that reflect the
computational overhead. Compared with MlhE, cSEM, which
models two-way scene-event relations by the coupling matrix,
does not introduce new parameters. Thus, the number of param-
eters of MlhE-AST and cSEM-AST are equal. Under the same
task and backbone model, cSEM-AST only increases MACs
by 0.034 G over MlhE-AST. Similar results are also shown in
Table VI for PANN-based MlhE and cSEM. Table VI presents
MlhE-plus, which adds another embedding layer on the ASC
and AEC branches of M1hE, to explore whether deepening
the M1hE can improve its performance. The MlhE-plus-PANN

TABLE VI
ASC ACC. OF DIFFERENT FRAMEWORKS ON TUT2018 TEST SET

TABLE VII
THE EFFECT OF DIFFERENT VALUES OF λ IN CSEM-AST ON ACOUSTIC SCENE

CLASSIFICATION ON THE VALIDATION SET OF TUT2018

results show that the newly added parameters in MlhE-plus
increase the computational overhead of the model, but do not
improve its performance.

To gain deeper and more intuitive insights into the classi-
fication ability of frameworks on the real-life TUT2018, we
visualize predictions of AS. In Fig. 3(a), it can be seen that
samples from street pedestrian (pedes.) are easily confused with
those from shopping mall (mall) and public square (squa.).
Samples from tram are mixed with samples from bus and metro.
In Fig. 3(b), samples of tram are easily compounded with
samples of metro. Even for the human auditory system, it is
challenging to distinguish these similar scenes by relying on
audio only. The 10 classes of scenes are more clearly visible in
Fig. 3(c). The scenes, which can be easily confused in Fig. 3(a)
and 3(b), are distinguishable in Fig. 3(c). In particular, bus can
be clearly distinguished from tram and metro. Moreover, the
obscure samples of airport (airp.) shown in (a) and (b) are
clustered into a distinct subclass in (c). The confusion matrices
shown in Fig. 3 illustrate a similar but more pronounced boosting
effect by the proposed cSEM.

C. RQ3: What Effect Do Different Values of λ Have on the
Performance of cSEM-Based Models?

The loss weight λ represents the importance of its target in
the overall model’s performance. The proposed cSEM contains
two types of losses: classification losses (Lscene, Levent) and
regression losses (Ls_by_e, Le_by_s). If the weights of classifi-
cation losses are increased, the model will pay more attention
to exploring ASC and AEC separately. If the weights of the
regression losses are increased, the model will be driven towards
improved modelling of the scene-event relation in the joint
space and the alignment of the AS embedding space with the
AE embedding space. With various weight combinations, we
can adjust the importance ratio between the two-way relation
modelling and the classification tasks in training. To identify
the optimal weight combination, Table VII shows the effect of
various values of λ in cSEM-AST.

Table VII first investigates the impact of losses on ASC (#1-
#9), then the optimal ratio of fusing different losses (#10-#14).
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Fig. 3. Visualization of the learned representations using t-SNE [37]. Subplots (a), (b), and (c) are the output of the scene classification layer in MoE-AST,
MlhE-AST, and cSEM-AST on TUT2018 test set, respectively. Subplots (d), (e), and (f) are the corresponding confusion matrix of (a), (b), and (c), respectively.

The λ1, λ2, λ3, and λ4 correspond to Lscene, Levent, Ls_by_e,
and Le_by_s, respectively. The AS information alone is exploited
in #1, which can be regarded as a pure ASC model based on
AST without the aid of additional information. #2 is effectively
trained only for the AEC branch in cSEM-AST, so the output
of its untrained ASC branch is random, resulting in poor per-
formance. #3, #4 and #5 use Ls_by_e, Le_by_s, and both of them
as supervised loss for the dual-branch model in training. The
labels in Ls_by_e and Le_by_s come from the output of ASC and
AEC branches, respectively, that is, their labels are pseudo labels
from the model’s own outputs instead of real labels. Therefore,
the cases #3, #4 and #5 correspond to self-supervised learning. In
#6, there are ASC and AEC branches, but no learning about the
scene-event relation. #7 and #8 introduceLs_by_e andLe_by_s re-
spectively, where Le_by_s facilitates the training of ASC branch,
whileLs_by_e is beneficial to AEC branch. The loss combination
of #7 focuses on capturing global AS information, while #8
focuses more on AE representations. The performance of #7
is slightly better than that of #8, indicating that the information
related to AS is more beneficial to ASC. #9 is a default coefficient
combination, and is also used in RQ1 and RQ2. The results
(#1-#9) indicate that in this task, the information represented by
Lscene is crucial for cSEM-AST. The learning based on Ls_by_e,
Levent, andLe_by_s can complement the learning based onLscene

to further improve the accuracy of scene classification. Next,
#10-#14 focus on exploring how to more effectively fuse these
losses and maximize the benefits of using the information from
events with noisy pseudo labels. It can be seen that giving a maxi-
mum weight toLscene and a second-large weight toLevent, while
incorporating the scene-event relation information (Ls_by_e and

TABLE VIII
THE EFFECT OF DIFFERENT VALUES OF λ IN CSEM-PANN ON ACOUSTIC

SCENE CLASSIFICATION ON THE VALIDATION SET OF TUT2018

Le_by_s) with smaller weights, leads to the best result as shown
in #13. The ASC accuracy of #13 on the TUT2018 test set is
80.95%±0.97%. Compared to AST in #3 of Table II, the best
ASC accuracy of cSEM-AST on the test set is increased by
3.97%.

Table VIII shows the effect of different values of λ in cSEM-
PANN. It shows a similar trend to the results of cSEM-AST in
Table VII. #1-#9 in Table VIII show that the more the model
pays attention to AS-related information, the better its perfor-
mance. The best coefficient combination for cSEM-PANN is
#14, and the corresponding accuracy on the TUT2018 test set is
78.50%±0.76%, giving a 4.15% increase, as compared to PANN
in #3 of Table II. Overall, cSEM-AST outperforms cSEM-
PANN in the same framework, which implies that Transformer-
based AST is more powerful than CNN-based PANN for audio
classification-related tasks when large-scale data are used for
training the models.

With the results of cSEM-AST and cSEM-PANN in
Tables VII and VIII, we can draw the following observations: 1)
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TABLE IX
ACC. (%) OF ASC WITH DIFFERENT LOSS FUNCTIONS IN MODELLING

SCENE-EVENT RELATION ON TUT2018 VALIDATION SET

The cSEM-based joint classification model outperforms the pure
scene classification model for the ASC task. That is, event in-
formation is helpful for improving scene classification. 2) Mod-
elling the two-way scene-event relation and aligning the AS and
AE embedding spaces benefit the scene-event classification. 3)
The proposed cSEM framework effectively models and exploits
the scene-event relation for ASC, even using the information
of events with unverified pseudo labels. 4) The weights of the
classification losses (Lscene, Levent) and the regression losses
(Ls_by_e, Le_by_s) in cSEM can be further adjusted to achieve
improved accuracy of ASC.

D. RQ4: How Do Different Loss Functions Perform on Losses
Related to the Cooperative Modelling of Scene-Event Relation?

In the cSEM framework, the losss in Lscene defaults to the CE
loss, the losse in Levent defaults to the BCE loss. The regression
loss MSE [24] is adopted in cSEM to minimize the two-way
relation-related losses, which is expected to fit the outputs of
both branches further to align the knowledge of AS and AE.
As described in Section II-C, the regression loss is utilized for
the cooperative modelling of scene-event relations as it helps
enhance the encoding of the whole output of embeddings, to
improve the training of the coupling matrix. Based on such theo-
retical reasoning, MSE loss is used in preceding RQs. To confirm
this reasoning, we also evaluate the performance achieved by
other loss functions. Table IX shows the performance of using
different loss functions for modelling the scene-event relation
under the model structure with optimal weights of losses. Fol-
lowing the notations of Section II, ẑs and ẑe denote the logit [14]
of ŷs and ŷe, respectively.

In Table IX, #1 and #2 employ CE and BEC, respectively, to
measure the distance between the predictions derived from the
implicit scene-event relation and the actual outputs of the corre-
sponding branch. Since AE in AEC tasks is typically considered
independent of each other, BCE is applied for Le_by_s. The input
and target in BCE generally default to a probability distribution,
so the input of BCE uses Sigmoid as an activation function.
Regarding CE related to the inferred scene, two types of CE are
available: CE and soft CE [38], respectively. The targets of CE
in classification usually consist of hard labels of 0 and 1, hence
the probability distribution ŷs is mapped to the one-hot vector
by Max function to supervise the training process. For soft CE,
the value of probability ŷs is used as the soft target to preserve
rich inter-class relation information. When using high-entropy
soft targets, each training sample can be provided with more

information than using hard targets, and the gradient between
training samples has smaller variances [39]. Compared with CE,
soft CE in #2 allows the non-target classes to be more prominent
in training, leading to more reliable training and better results.
In Table IX, #3, #4 and #5 employ MSE to estimate inferred
predictions. #3 directly calculates the distance between the logit
vectors before activation functions. A previous study [40] about
the gradient of CE shows that when the logit values are relatively
small, the optimization effect of CE and MSE is equivalent. A
comparison [24] of entropy-based loss and MSE reveals that
MSE has better calibration abilities to correct the errors. It can
be seen that #4 outperforms #3, probably because the activation
functions such as Softmax and Sigmoid restrict the values of ỹs
and ỹe to [0, 1], thus prune the target space to a smaller range.
This leads to the comparison of the original logits ẑs and ẑe
as targets with ỹs and ỹe which are more likely to guide the
model to find the optimal local solution in the target space. A
drawback of Softmax in ŷs is that by normalizing an exponential
function, the largest value is highlighted, and the other values are
suppressed significantly [41], resulting in larger gaps between
similar values. Using log Softmax can alleviate this issue, and
bring additional advantages [42], such as numerical stability
and gradient additivity in training. More importantly, after log
mapping, the ŷs as targets can result in an effect of model
regularization, similar to label-smoothing regularization [43].
Log Softmax helps prevent the maximum value from becoming
significantly larger than the remaining values. Therefore, log
Softmax is used in #5 to make the target smoother and increase
the entropy it implies, which achieves better results than #4. It
may be because some scenes are similar, such as buses and trams
during rush hours, clamorous streets and noisy parks. There are
both similarities and subtle differences between these scenes.
Using log Softmax, the difference between AS is less likely
over-magnified [42], and thus reflects better the relation between
similar scenes.

E. RQ5: Does the Cooperative Modelling of the Implicit
Scene-Event Relations Align the Knowledge of as and AE?
Does It Help Reduce the Overlap Between Their Semantic
Spaces?

To provide intuitive insight into the implicit and intricate
relation between AS knowledge W s and AE knowledge W e,
Fig. 4 shows the distribution of W s belonging to the scene
space and W e belonging to the event space in the same latent
space. In Fig. 4, AS and the unique AE contained in them
are clustered together, for example, the park scene, and the
events in this scene, such as goose, crow, and bird song. Events
such as music and buzz often occur in the shopping mall. The
tram is accompanied by events such as scratch, conversation,
and alarm. On the contrary, AEs are not unique to one AS,
such as Baby cry is more in between AS, indicating a lesser
alignment between core knowledge in that area. The distribu-
tion in Fig. 4 reveals that (public square, street pedestrian)
and (metro, tram) are closer AS pairs in the latent space, and
these AS pairs are indeed similar in real life. Various events in



78 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 32, 2024

Fig. 4. Visualization of the core AS knowledge W s and the core AE knowledge W e learned by the proposed cSEM-AST using t-SNE [37].

TABLE X
AVERAGE RESULTS OF PCC AND MI BETWEEN Es AND Ee ON TUT2018

Fig. 4 are clustered around the corresponding scenes orderly,
demonstrating that the cSEM can align the semantic spaces of
AS and AE by the two-way scene-event bridge via the coupling
matrix.

Table X shows the correlation and overlap of AS and AE
embeddings of the same audio sample in different frameworks,
using Pearson Correlation Coefficient (PCC) [44] and e-based
Mutual Information (MI) with the unit of nat [45]. Since the AS
and AE embeddings used in MoE-AST are the same, its PCC is
equal to 1, and MI is the largest in Table X. The notable result in
Table X is the difference between MlhE-AST and cSEM-AST,
where cSEM-AST has only one more module than MlhE-AST,
that is, the proposed cooperative two-way scene-event relation
modelling corresponding to lines 8 to 16 in Algorithm 1. Com-
pared to MlhE-AST, the PCC between AS and AE embeddings
in cSEM-AST is reduced, and the corresponding MI is less.
The reduction in PCC and MI between the learned AS and
AE embeddings clarifies that the similarity between AS and
AE representations learned by the cSEM-AST is less, while
the redundant information between AS and AE embeddings is
reduced. The logical alignment of the core knowledge of AS
and AE shown in Fig. 4 and the reduction of the redundant
information of the ASC and AEC branches in cSEM-AST allow
the model to represent AS and AE for the classification tasks
collaboratively.

F. RQ6: What are the Differences Among the Ten Classes of
Scenes? Which Events Contribute Most to These Differences?

This part analyses the distribution differences of AEs across
scenes, and the overall differences between scenes when all AEs
are considered together. AE classes are identified by 527 pseudo
labels from AudioSet, that are used in training.

To analyse differences between AS in terms of individual
AE, first, we obtain the probabilities of 527 classes of AE in
all audio clips from the AEC branch of cSEM-AST. Then, the
probabilities of 527 types of AE in audio clips classified in
each scene class are summed and averaged. These averages are
regarded as the overall probability of the corresponding event
occurring in the scene. Finally, the mean of AE probabilities in
different scenes is subtracted from each other to measure the
difference of this event across scenes. Following this procedure,
a probability difference matrix between scenes is obtained for
each AE. Fig. 5(a) and 5(b) illustrate these results for the AE
speech and vehicle. In Fig. 5(a), the probability of speech varies
the most between two scenes: street pedestrian (pedes.) and
street traffic (traff.). Fig. 5(b) shows that the probability of
vehicle differs the most between the shopping mall (mall) and
traff. scenes. Thus, the presence of specific AE can clearly help
to differentiate between scenes.

To explore whether all event classes taken together can help
differentiate between scenes, the absolute values of the differ-
ences of all events are added to get the overall difference between
the 10 classes of scenes. The result is shown in Fig. 5(c). Since
absolute values are used, the matrix in Fig. 5(c) is symmetric.
Hence, the AE contributing to the largest difference is shown
in the upper-triangle part to indicate what events are mainly
responsible for these differences. Fig. 5(c) illustrates that among
scenes, mall and park have the largest differences, with the
main event causing such difference being music. The pair of
scenes park and bus, and park and metro have the second-largest
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Fig. 5. Differences between acoustic scenes on the development set of TUT2018, where subplots (a) and (b) take the audio event Speech and Vehicle as examples,
while subplot (c) shows the overall differences between scenes.

TABLE XI
COMPARISON OF THE ASC RESULTS ON TUT2018 TEST SET

differences, and the main events causing these differences are
vehicles and music, respectively. The difference between bus
and tram is relatively small, and the audio event causing the
difference is mainly car.

One can notice the resemblance between this probability dif-
ference matrix in Fig. 5(c) and the confusion matrix in Fig. 3(f).
As expected, the proposed cSEM-AST shows lower confusion
between AS classes where AE probabilities differ most. Based
on Fig. 5(c), it is easy to identify the main events contributing to
these differences. That means, the proposed cSEM-AST works
well for joint scene-event analysis.

G. RQ7: How Do cSEM-Based Methods Compare to Others?

Table XI shows the ASC results of different methods on the
real-life dataset. The CNN-based ensemble of two multi-inputs
CNN networks trained with 11 types of acoustic features has
achieved 1st place in the data challenge of DCASE2018 task 1
subtask A (T1A) [46]. Also in T1A, the system in 2nd place [47]
uses a depth-wise separable CNN trained with 3 multi-scale
features. The system in 3rd place [48] is an ensemble of 6 big
and deep models trained with 4 types of acoustic features. The
ensemble method was performed on up to 24 models in total. In
contrast, the proposed cSEM-AST and cSEM-PANN only use
one type of feature with one model and do not involve data
augmentations. A simple PANN-based hierarchical baseline

TABLE XII
COMPARISON OF THE ASC RESULTS ON TAU2019 TEST SET

with an upper-lower relationship between AE and AS prediction
layers is proposed to estimate AE and AS with an explicitly
formed hierarchy. To explore the performance of the linear
combination of activation maps-based cross-stitch [9], we show
the CNN-based cross-stitch-PANN in Table XI. Furthermore,
several AE embeddings are used as nodes to build the AS
graph representations in the event relational graph representation
learning [49]. Note that external event and scene datasets are
allowed in T1A, so most of the above methods have used mod-
els trained or pretrained on these external datasets. Compared
with the above methods, the proposed cSEM, which aims to
exploit the implicit two-way scene-event relation to improve
the discriminative power between similar AS, achieves a better
result. This demonstrates that scene-event relation modelling
helps improve scene classification, even if the event information
is derived from unverified noisy pseudo labels.

TAU2019 from DCASE2019 T1A [50] is an expanded acous-
tic scene dataset based on TUT2018 [30]. Given the good
performance of cSEM-AST in previous RQs, Table XII presents
the results of cSEM-AST on TAU2019. DCASE2019 T1A al-
lows the use of external datasets to train models. Therefore,
in Table XII, cSEM-AST is pretrained on AudioSet, and the
public and private scene datasets of DCASE2013 [51]. The
parameters used in pretraining are consistent with those used
in Section IV. SpecAugment [52] and Mixup [53] are used
for data augmentation. Since some labels of DCASE2013 and
TAU2019 datasets are different, we manually map busy street
and quiet street in DCASE2013 to street traffic in TAU2019,
open air market and supermarket to shopping mall, tube to
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TABLE XIII
COMPARISON OF ASC RESULTS FOR SCENE-EVENT ANALYSIS METHODS

metro, and tube station to metro station. Labels that are the
same in these two datasets are retained. Given the advantages
of the multi-channel methods [54], [55] in DCASE2019 T1A,
cSEM-AST also uses log mel features on the left channel, the
right channel, and the difference between the two channels.
Finally, the cSEM-AST achieves competitive results compared
to other multi-model fusion or ensemble methods in Table XII.In
addition, Table XIII compares cSEM with other scene-event
joint analysis methods. Since AS and AE in the synthesized
dataset are not as complex as those in real life, the models
in Table XIII usually offer better results on JSSED. Among
them, the joint scene and event recognition [5] by the same
embedding space gives the lowest accuracy. This is probably
because real-life coarse-grained scenes and fine-grained events
have their own characteristics and attributes. The performance
of jointly analyses AS and AE based on one-way scene-to-event
conditional loss [7] is better than that of [6], due to the use of
the scene-conditioned loss. Overall, the proposed cSEM-based
model provides the best scores out of the discussed methods for
joint analysis of AS and AE.

VI. CONCLUSION

This article has presented a new method for modelling the
intrinsic relations between audio scenes and events using auto-
matically learned coupling matrices, and using such relations
to improve ASC. The proposed cSEM framework facilitates
the alignment of the information from coarse-grained AS and
fine-grained AE, and helps to reduce the confusion between
similar AS, thus further improving ASC performance. Exper-
iments show that: 1) sharing some layers in cSEM-based mod-
els will improve their performance; 2) The cSEM improves
the accuracy of Transformer-based, CNN-based, and CNN-
Transformer-based models on ASC. Compared with MoE and
MlhE frameworks, the cSEM framework further reduces the
confusion between similar scenes; 3) The cSEM improves ASC
performance by associating the information of AS and AE, even
if the information of AE is derived from unverified pseudo-
labels. Specifically, cSEM improves the accuracy of cSEM-AST
and cSEM-PANN on ASC by 3.97% and 4.15%, respectively.
4) In cSEM, the regression loss is more effective than the
classification loss for the cooperative modelling of scene-event
relations; 5) The cSEM can help align the knowledge of AS
and AE through the coupling matrix, and reduce redundant
information between AS and AE embeddings; 6) The cSEM-
based model works well in capturing the differences between
scenes from the perspective of events in real-life scene-event

analysis; 7) Compared with other multi-feature or multi-model
ensemble methods, the cSEM-based model achieves competitive
results on ASC. The Acc. of ASC on TUT2018, TAU2019 and
JSSED datasets are 81.0%, 88.9% and 97.2%, respectively. The
proposed cSEM contains four loss functions, and future work
will explore how to automatically adjust the weights of loss
functions to adapt to cSEM with different structures.
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