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Abstract— Large volumes of annotated training data are
often required for data-driven image analysis methods. We
consider two techniques for identifying brain fibre bundles from
diffusion MRI scans, tractfinder and TractSeg, and compare
performances using different amounts of training data. Our
results show that tractfinder, an atlas-based method, shows
no improvement in performance beyond a relatively small
number of training samples. This is an advantage in a field
where generating and maintaining high quality reference data
is difficult and time-consuming.
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I. INTRODUCTION

In segmentation methods relying on seen data from which
to “learn” patterns to recognise in unseen data, the volume
and range of training data influences the prediction accuracy
and generalisability. Deep learning models, which have many
thousands of network parameters to learn, can require im-
mense amounts of training data, posing a particular barrier
to the use of such models in applications where suitably
annotated data is scarce.

One such area is the problem of segmenting white mat-
ter fibre tracts, structures which form the communication
pathways between different centres of the brain, from dif-
fusion weighted magnetic resonance imaging (dMRI) data
[1]. There remains no means for obtaining ground truth
information for this task: the complex arrangement of fibres
can only be indirectly probed through dMRI on a millimetre
scale. The global anatomies of tracts are only inferred from a
combination of post-mortem dissections, functional observa-
tions and lesion studies, methods which are themselves far
from definitive [2]. New pathways are regularly proposed
and existing known connections continually revisited [2].
The effort involved in creating accurate reference annotations
for the task of segmenting fibre tracts in dMR images is
substantial [1], and one at risk of requiring duplication due
to the evolving nature of the problem. Atlas-based methods
could provide less data-intensive solutions with comparable
results, while one-shot or few-shot learning has also been
explored for generalising pre-trained deep learning models
to new tracts using only few additional training samples [3].
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We set out to consider the volume of training data required
by two different proposed tract segmentation techniques: a
deep learning and an atlas-based approach.

II. DESCRIPTION OF SEGMENTATION METHODS

A. Tractfinder

Tractfinder [4] is an atlas-based method for identifying
tracts in dMRI brain scans. It relies on a tract orientation
distribution (TOD) atlas to encode the expected spatial dis-
tribution and expected local orientations of the bundle. Dif-
fusion MRI data of the target image is preprocessed and the
local fibre orientation distributions (FODs) estimated using
constrained spherical deconvolution (CSD) [5]. The atlas is
then registered to and compared with the target data by taking
the inner product of the two spherical distributions. The
number of subjects used to construct each tract atlas affects
the amount of inter-subject anatomical variation reflected in
the spatial and orientational expectations. We expect that
the additional information to be gained from adding more
training subjects would reach a point of saturation.

B. TractSeg

TractSeg [6] is a deep learning tract segmentation model
which produces volumetric segmentations for 72 tracts di-
rectly from FOD peak directions. The default model was
trained on streamline tractography bundle reconstructions as
described in [6]. 105 subjects in total were used for cross-
validation training, with the final trained model having seen
63 unique subjects. The effective volume of training data was
also increased with various data augmentation techniques
(see [6] for details). In [3], the TractSeg architecture was
expanded to one-shot learning of novel tracts.

III. EXPERIMENTS

We investigated the effect of training data volume on
tractfinder segmentation performance by varying the number
of subjects used to construct the atlases. To enable a direct
comparison between the two methods, we used the same
datasets and reference bundles used in the cross-validation
of TractSeg, which are publicly available [7]. Using the
same train–test data split as described in [7], subsets of 1,
3, 5, 10, 15, 30 and 63 training subjects were randomly
selected, from which separate tractfinder TOD atlases where
constructed. Tract segmentations were then obtained in the
42 test subjects using each of the different subset atlases
and compared with the reference segmentations using the
Dice similarity score (DSC). TractSeg segmentations were
also generated for the same 42 test subjects. We limited this



Fig. 1. Segmentation performance by number of atlas / model training
subjects and tract. Individual subject data-points (mean across hemispheres)
are represented by pale dots, mean across all subjects is indicated by dots
with black borders. Relevant results from [3] are plotted as squares. AF =
arcuate fasciculus; CST = corticospinal tract; IFO = inferior fronto-occipital
fasciculus; OR = optic radiation.

analysis to the four tracts most commonly segmented for
clinical purposes (e.g. for neurosurgical planning): arcuate
fasciculus (AF), corticospinal tract (CST), inferior fronto-
occipital fasciculus (IFO) and optic radiation (OR). The
described methods involving de-identified human dMRI data
were approved by the institutional research ethics committee.

IV. RESULTS

When using only a single subject’s normalised TOD map
as an “atlas”, mean DSC ranged from 0.65 to 0.71 for
the IFOF and CST respectively. The maximum increase in
mean DSC between the 15 and 63 subjects atlases was
only 0.00835, for the CST, representing a 1% increase from
the lower score of 0.759. Across all tracts, differences in
performance became negligible beyond around 10 training
subjects (Fig. 1). Overall, these results support the original
use of 16 training subjects for tractfinder, as described in [4].

Scores for TractSeg were higher than tractfinder, but only
appreciably so for the OR and IFO. The difference in mean
DSC between TractSeg and the best tractfinder result was
highest for the OR at 0.051 points (7% increase) and lowest
for the AF at 0.016 points (2% increase). For the OR,
tractfinder with one training subject performed better than
the best one-shot learning model presented in [3] (Fig. 1).

V. DISCUSSION

Increasing the number of atlas subjects beyond a mini-
mum of around 10 to 15 does little to nothing to improve
tractfinder results. Further training subjects offer minimal
additional information on inter-subject variability, much of
which is already smoothed out due to affine co-registration
of training subjects into template space. While a perceived
general attitude of “the more data the better” prevails in the
machine learning space, we note that this doesn’t necessarily
hold for all data-driven image analysis techniques. This

is of particular advantage in clinical applications, where
novel tracts of interest to neurosurgeons are emerging, and
where there is little capacity for generating large volumes of
training data [3].

Training a new TractSeg model with each subset of the
training data was not feasible for this study, so TractSeg
results are only available for the full set of 63 training
subjects. No motivation for the number of training samples
is indicated in [6], and given the difficulty of creating
reference annotations, we will assume that the creators of
TractSeg considered this to be around the minimum required
to achieve the desired accuracy. Nevertheless, the lack of
direct comparison with TractSeg trained on fewer samples is
a limitation of this study.

Deep learning and other data-heavy techniques are set to
bring great advances to medical imaging. There is no deny-
ing the impressive accuracy achievable with deep learning
segmentation as demonstrated by the TractSeg model, which
our results show is not only more accurate but also more
consistent, based on the reduced spread across all subjects.
This strong performance, however, comes at the cost of
producing a high number of high quality training data.

The need for large volumes of accurately annotated data
may be easily fulfilled when the annotation process is
straightforwards, or when resources are abundant. If not
easy, the upfront effort is certainly justified if the applica-
tion is a well-defined problem unlikely to need revisiting.
Tract segmentation is none of those things: producing the
ground truth reference annotated data is burdensome, and
the likelihood that the effort may need duplicating as our
understanding of white matter anatomy evolves is high. It
is therefore worth asking whether marginal improvements in
segmentation accuracy, as measured by the Dice score, are
always worth the cost of producing the necessary volume of
training data, und subsequent inflexibility of trained models.
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