SeeQ: A Programming Model for Portable Data-driven Building
Applications

Dimitris Mavrokapnidis
d.mavrokapnidis@ucl.ac.uk
University College London

London, UK

Gabe Fierro
gtflerro@mines.edu
Colorado School of Mines
National Renewable Energy

Maria Husmann
maria.husmann@siemens.com
Siemens AG
Zug, Switzerland

Laboratory
Golden, Colorado, US.A.

Ivan Korolija
i.korolija@ucl.ac.uk
University College London
London, UK

ABSTRACT

This paper introduces SeeQ, a programming model and an abstrac-
tion framework that facilitates the development of portable data-
driven building applications. Data-driven approaches can provide
insights into building operations and guide decision-making to
achieve operational objectives. Yet the configuration of such appli-
cations per building requires extensive effort and tacit knowledge.

In SeeQ, we propose a portable programming model and build
a software system that enables self-configuration and execution
across diverse buildings. The configuration of each building is cap-
tured in a unified data model — in this paper, we work with the
Brick ontology without loss of generality. SeeQ focuses on the dis-
tinction between the application logic and the configuration of
an application against building-specific data inputs and systems.
We test the proposed approach by configuring and deploying a
diverse range of applications across five heterogeneous real-world
buildings. The analysis shows the potential of SeeQ to significantly
reduce the efforts associated with the delivery of building analytics.

CCS CONCEPTS

- Software and its engineering — Abstraction, modeling and
modularity; « Information systems — Graph-based database
models.

KEYWORDS

Programming, Analytics, Portability, Scalability, Brick, RDF, SHACL,
Metadata, Semantic Web, Ontologies

ACM Reference Format:

Dimitris Mavrokapnidis, Gabe Fierro, Maria Husmann, Ivan Korolija, and Dim-
itrios Rovas. 2023. SeeQ: A Programming Model for Portable Data-driven
Building Applications . In The 10th ACM International Conference on Sys-
tems for Energy-Efficient Buildings, Cities, and Transportation (BuildSys °23),

This work is licensed under a Creative Commons Attribution International
4.0 License.

BuildSys "23, November 15-16, 2023, Istanbul, Turkey
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0230-3/23/11.
https://doi.org/10.1145/3600100.3623744

159

Dimitrios Rovas
d.rovas@ucl.ac.uk
University College London
London, UK

November 15-16, 2023, Istanbul, Turkey. ACM, New York, NY, USA, 10 pages.
https://doi.org/lo.l145/3600100.3623744

1 INTRODUCTION

The potential for data-driven services to provide insights is increas-
ingly being understood in the built environment context. When
considering buildings in particular, a range of data-driven building
applications — covering broad domains in Fault Detection and Di-
agnostics (FDD), Predictive Controls, and Building-to-Grid, — have
supported outcomes like improved operation, better environmental
comfort, more sustainable and cost-effective operation [12]. This is
particularly true in commercial buildings with more sophisticated
sensing and control infrastructure and ownership structures.

Commercial building floor area is projected to rise from 24 to 57
bn m?, with an annual cooling and heating energy demand rising
to more than 1050 TWh by 2050 [30]. Understanding operational
inefficiencies and improving how buildings are operated and main-
tained is critical to ensuring economical energy use and creating
spaces that meet end users’ needs and well-being. Data-driven ap-
plications can help manage the complexity associated with building
operations, and provide data-driven insights, to support building
oversight and management. While technological infrastructure is
available, adopting such approaches at scale is lagging due to the
repetitive efforts and tacit knowledge to re-configure and deploy
them across heterogeneous buildings and sites.

Configuring data-driven applications requires a good under-
standing of the building set-up, including the building heating,
cooling and refrigeration systems, ventilation and electrical sys-
tems, and building automation and control systems. In many cases,
the required information is sparse, out-of-date, or distributed in
multiple locations; this requires discovering and accessing data
from diverse data sources [16] including as-designed information
like Building Information Models (BIM) [27], handover informa-
tion like COBie drops, and operational information extracted from
the Building Management Systems (BMS) [23]. The challenge of
discovering building information, combined with the poor (or non-
existent) state of documentation of many BMS systems, results in
challenging deployments of such approaches in most buildings [25].
The result is that many applications are still developed on an ad-hoc
basis and are hardly reusable across buildings [12, 25].

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3600100.3623744
https://doi.org/10.1145/3600100.3623744
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3600100.3623744&domain=pdf&date_stamp=2023-11-15

BuildSys ’23, November 15-16, 2023, Istanbul, Turkey

The ability to capture information about physical, logical and
virtual building assets and their relationships has been the subject
of extensive research. As a result, several metadata models such as
Brick [7], Project Haystack [5], Real Estate Core [20], and ASHRAE
223P [13] have been proposed to make data easily discoverable
and accessible through uniform machine-readable representations.
Recent work demonstrates that leveraging such representations
can make intelligent building software wholly or partially self-
configuring [17, 21]. Still, the learning curve is quite steep, requir-
ing developers to be familiar with several technologies: RDF[3],
OWL[1], SPARQLI[2], and so on. Nevertheless, despite the potential
of those advancements in expressing building heterogeneity, we
still lack a universal paradigm for developing applications and en-
capsulating information requirements so that they can be developed
once and executed across multiple buildings.

This paper introduces SeeQ, a portable programming model as-
piring to shift the configuration burden from the deployment stage
to the application authoring phase. In particular, we separate the ex-
pression and execution of data-driven applications from how those
are configured for specific buildings. Core to SeeQ is the notion of
computational quantities (CQs). These are reusable logical identi-
fiers for real-world quantities that abstract away a set of possible
configurations. They allow applications to be expressed clearly in
terms of familiar quantities (e.g. “mixed air temperature”) while hid-
ing the complexity of delivering those quantities across buildings.
We show that CQs enhance the reusability of building software,
making it portable and thus cheaper to develop and deploy.

We summarise the contributions of this work as follows:

(1) We identify four main application portability challenges, as
discovered within the existing industrial and research efforts,

(2) formally define a programming model for the development
of portable building applications,

(3) architect a software system adopting the principles of the
proposed programming model,

(4) demonstrate how a portable application is authored and
reused across heterogeneous buildings, and

(5) evaluate SeeQ, drawing insights from the development of a
broad family of data-driven building applications and their
deployment across 76,100 m? of commercial building space.

2 BACKGROUND AND PRIOR WORK

Portability refers to a building application’s ability to adapt its
execution to a given environment without manual intervention
or configuration [15]. We address three areas of existing work in
enabling building application portability: (1) building metadata
models, (2) application platforms, and (3) portability mechanisms.

2.1 Building Metadata Models

Past work has established the difficulty of writing data-driven build-
ing applications due to a lack of standard digital representations
that facilitate data discovery [10, 11]. Contemporary research de-
velops standardized representations that address this lack of intro-
spection and discoverability, including Project Haystack [5], Brick
Schema (7], RealEstateCore [20], and others [13, 28, 29].

160

Mavrokapnidis, Fierro et al.

In these models, information about physical assets like HVAC,
lighting, electrical and plumbing systems and their interconnec-
tion is represented by directed graph structures. These graphs also
encode the identity of data sources, building assets, and their rela-
tionships, providing a unified representation of the smart building
as a cyber-physical system of systems. Applications query these
graphs to configure their operation; this involves retrieving the
composition and topology of building systems and identifying data
sources or control inputs for the application.

Despite the success of these representations, accessing the re-
quired data for specific applications remains challenging, mainly
because developers must be familiar with the structure and content
of the graph as well as the query language required to retrieve
metadata [9]. For example, Bhattacharya et al. reported an inability
to run three simple diagnostics applications in a portfolio of 10
buildings due to a lack of the required semantic richness [10].

2.2 Application Platforms

Deploying building analytics relies on the availability of applica-
tion middleware platforms. These platforms support data storage
and management, access control, and provide uniform APIs for
applications. Recent building middleware platforms recognise the
challenge of managing the lifecycle of hundreds or thousands of
instances of such applications and offer several methods to en-
able the mass-configuration of applications, often through semantic
metadata models or tagging schemes [7].

Building Application Stack (BAS) [24] and the later BOSS [14]
work provide a fuzzy query interface over a graph of building com-
ponents and control interfaces, enabling application authors to
instantiate a graph of system-agnostic objects which describes the
various building entities and their relationships. However, the lack
of a formal data model limits the representation of various building
system configurations. BuildingDepot [32] adopts a template-based
approach which restricts user applications to those that can be ex-
pressed using pre-defined sets of building entities and data sources.
These templates simplify development but their construction re-
quires manual mapping of building data sources.

Recent application platforms build on structured semantic meta-
data to simplify configuration. Mortar [17] uses queries over Brick
models to capture flexibility, offloading the burden of portability
onto the developer. Capturing this variability is difficult: the simple
set of Measurement & Verification (M&V), FDD, and sensing applica-
tions deployed over the Mortar data set only ran on between 2—65%
of the buildings considered. Sky Foundry [6] and Energon [21] use
non-standard and purpose-built programming and query languages
to reduce lines of code and development complexity but still re-
quire developer-driven reconfiguration between deployment sites.
Bennani et al. proposed a query relaxation algorithm to improve
the retrieval of building data through SPARQL results, increasing
query portability across different building configurations.

These approaches often address only the relationship between
descriptions of the building and the actual telemetry, leaving the im-
plementation of application portability to the developer. Mavrokap-
nidis et al. propose a portable programming model that simplifies
the development of these applications but focuses only on fault
detection rules. Our work significantly enhances and generalizes
this approach to a broader family of portable building applications.

SeeQ: A Programming Model for Portable Data-driven Building Applications

2.3 Portability Mechanisms

Portability mechanisms promise to enhance data discoverability
and therefore increase the ability of one application to be reused
across multiple buildings. Energon [21] introduced a new SQL-like
querying language that allows the expression of graph queries
without the need to know the internal structure of Brick models.
Though Energon promises to reduce the lines of code required to
retrieve metadata, developers must become familiar with a new
querying language, i.e. EnergonQL.

Nevertheless, "porting" a building application requires ensuring
sufficient data quality. For this reason, Fierro et al. introduced Build-
ingMOTTF [18], a feedback mechanism that enables the creation of
“semantically sufficient” models to meet the data requirements for
a particular application. By normalizing the structure of metadata
models, BuildingMOTIF can help reduce the degree of portability
required for an application by bounding the set of configurations
that the application must understand.

Many pieces of portable application solutions for smart buildings
have been established in the literature. However, these components
have yet to be bound into a single solution that properly addresses
key application portability challenges while providing a familiar
and accessible abstraction to the developer.

3 APPLICATION PORTABILITY CHALLENGES

We identify four main challenges currently hindering the devel-
opment of portable applications, and illustrate them throughout
the paper, using the following running examples from two widely
adopted open-source building analytics libraries:

Running Example 1: Rule R; from the Air-Handling Unit
(AHU) Performance Assessment Rules (APAR) [31] is a typical
example of a rule-based Fault Detection analytic that identifies
abnormal operation of a single-duct AHU during heating mode
(i.e., Heating Coil Valve: Hcpos > 0). According to APAR’s docu-
mentation, R; verifies that AHU’s supply air temperature (T,) is
greater than the mixed air temperature (Typa) plus the temperature
drop over the supply fan AT minus a threshold ¢. The following
inequality expresses R;:

Ry : Tsa < Tia + ATp — &, while Hepos > 0.

1

Running Example 2: Dmpje, from ASHRAE’s Guideline-36
is an application that detects a leaking damper in VAV units with
reheat. In particular, the application generates an alarm when the
damper position (Pospmp) is 0%, and the airflow sensor (Fsa) reading
is above the larger of either 10% of the cooling maximum airflow
setpoint (F SPclg) or 50 cfm for 10 minutes while the fan (Fangtat)
serving the zone is "ON". We can express this application as:

Pospmp =0,

Dmpieaic ¢ { Fsa > max(0.1 - Fspeyg, 50) v, for 10 minutes. (2)

Fangga: = "ON"

3.1 Model expressivity (C1)

Accessing the required data points from a graph is an expert-
dependent task that requires familiarity with the query language
and the content of a graph model to extract the required infor-
mation. Configuring and executing our running example R; as

161

BuildSys ’23, November 15-16, 2023, Istanbul, Turkey

expressed by Eq. (1) over a Brick model requires the presence
of a brick:Mixed_Air_Temperature_Sensor point (i.e. Try,) and
abrick:Supply_Air_Temperature_Sensor point (i.e. Tsy) across
every AHU in a building. A point may be modelled in a few differ-
ent ways. For example, a mixed air temperature sensor is usually
associated with an AHU directly but may also be modelled on a
component of the AHU.

3.2 Data Availability (C2)

The lack of available building data is a major barrier to reproduc-
ing a building application across different buildings. For example,
running Ry requires the Mixed Air Temperature (i.e. Tma) across
different AHUs. Yet, Tin, is not always available as a sensor point. In-
stead, if a sensor is missing, developers can possibly use other data
points to estimate this quantity. For example, it may be estimated
as: Tma = Toa * Doa + Tra * Dra where Tya/Tra & Doa/Dra stand for
the outside/return air temperature & damper position respectively.

3.3 System applicability (C3)

To configure and execute our Ry and Dmpje,i examples, the devel-
oper must respectively determine not only the available AHUs and
dampers in a building but also their system configuration. In particu-
lar, Ry can only be implemented in single-duct AHUs while Dmpjeax
requires the presence of VAV units with reheating capability. Ex-
tracting this information from a Brick model requires expertise and
familiarity with a query language to write and execute multiple
and often complex queries across different buildings.

3.4 Temporal Configuration (C4)

Even if all the required data points are available, most implemen-
tations of building applications are not portable due to a lack of
descriptions of their temporal requirements. In our running exam-
ple, Dmpjeqi raises an alarm when all three clauses of eq. 2 is true
for 10 minutes continuously, suggesting a 5-min rolling average
window with a 1-min sampling period for every point value [19].
Even if all point values are available, the developer must manually
fetch, clean, process and aggregate data to meet these requirements.
This manual temporal configuration process presents an additional
burden in porting a building application.

4 PORTABLE PROGRAMMING MODEL

In this section, we present the formal design of our programming
model for expressing portable building applications which can self-
customize their operation based on properties of the building in
which they are deployed. Portable applications are constructed
using logical identifiers (termed computational quantities or CQs),
which abstract away the identification and computation of quan-
tities used in the application’s logic. These logical identifiers are
resolved to numerical values before execution of an application by
a special compilation step which performs the necessary porting of
the application to a particular building.

We first formalize the definition of CQs and detail three types
of CQs used to build portable applications: GraphCQs, VirtualCQs,
and DefaultCQs. We then formally define portable applications
in terms of CQs and explain the resolution process by which an
application is “ported” to execute on a given building described by

BuildSys ’23, November 15-16, 2023, Istanbul, Turkey

Outside Air
Damper Position

O

Return Air
Damper Position

)

Return Air
‘ Temperature Sensor

® (Femmar]

Mixed Air Region

o G

[Supply Air
Temperature Sensor

Outside Air
Temperature Sensor‘

®
-
Mixed Air 7_@

Temperature Sensor

Figure 1: Simplified air handling unit (AHU) showing the pos-
sible data sources that can be used to directly or indirectly ob-
serve the temperature of the mixed air region (highlighted).

a metadata graph. Finally, we show how each feature addresses the
core portability challenges described in §3.

4.1 Semantic Metadata Background

We briefly cover a few semantic metadata concepts used in defining
computational quantities. Our application portability mechanism
depends on an RDF-based [3] graph representing a building built
with the Brick ontology. This graph is called the semantic metadata
model of a building.

An RDF graph consists of a set of node-edge-node tuples called
triples. The labels of the nodes and edges refer to entities (physical,
virtual or logical “things”) present in the building and concepts and
relationships defined in the Brick ontology [7]. This data structure
makes it possible for tools to reason about the availability and con-
figuration of data sources and other entities in a building. The Brick
ontology encodes additional contextual information that makes it
possible to identify entities by their behavior and properties rather
than by name. This abstraction is key for application portability.

Our proposed mechanism also uses the SHACL constraint lan-
guage [4]. We elide a full description of SHACL due to space con-
straints. SHACL permits the definition of shapes, which are groups
of constraints and conditions over graphs. Shapes contain a spec-
ification (target) of which parts of a metadata graph they apply
to. A SHACL validation engine interprets shapes with respect to
a metadata graph. It reports whether or not all of the constraints
and conditions in a shape were satisfied on each part of the graph
where the shape applies.

4.2 Computational Quantities

A computational quantity (CQ) is a portable definition of a phys-
ical quantity that can be used in portable applications. In their
implementation, applications refer to CQs using logical identifiers
(e.g. Tma for mixed air temperature). CQs are portable because they
encode multiple ways that a quantity may be found or derived in
a building. Quantities may be (a) observed directly by sensors or
exposed directly by digital registers, (b) observed indirectly through
computation or extrapolation from other observations, or (c) as-
sumed to be a default value.

4.2.1 Motivating Example. We first present an intuitive explana-
tion of how CQs work before formally defining their operation
below. Consider a CQ representing the mixed air temperature for

162

Mavrokapnidis, Fierro et al.

our running example of performing fault detection (§3) on an air
handling unit (Figure 1). A portable definition of mixed air temper-
ature (Trpa) must be able to handle any subset of the data sources
(indicated by circles) being present in the building. Tyn, might be ob-
served directly (via the Mixed Air Temperature Sensor); however, if
this is not available, then it is possible to estimate the mixed temper-
ature using the average of the outside and return air temperatures
(observed by their respective sensors), possibly weighted by the
outside and return damper positions if available. In our proposed
portable programming model, an application developer only needs
to refer to the mixed air temperature CQ (Tna); the definition of
the CQ handles the complexity of determining which data sources
to use in delivering the mixed air temperature to the application
when it is executed.

4.2.2 Formal Definition. Formally, a CQ is a list of n functions
(meaning n different ways to deliver the quantity), where each
function takes a metadata graph G as an argument and returns
either a vector of real numbers (R9) or a null value (2):

CQi = (ﬁ,l:ﬁ,zs o ’ﬁ,l’l):
where f; j : G — {Rd,z} Vjeo,...,n

®)
4)

Each function f; represents a possible implementation of the
CQ; executing this function retrieves data corresponding to the
logical value represented by the CQ. A CQ’s defining functions are
ordered by how accurate or otherwise how desirable the imple-
mentations are. In our example of the Ty, CQ, finding a mixed air
temperature sensor would be more desirable than estimating mixed
air temperature from damper positions and upstream temperature
sensors since it observes the quantity directly. Therefore, the func-
tion representing an implementation with a mixed air temperature
sensor would be higher in order than the function performing an
estimation.

The viability of an implementation must be determined with re-
spect to a given metadata graph G. Specifically, an implementation
is viable if both the metadata requirements and the data require-
ments (specified by the application — see §4.4) can be satisfied by
the graph content. The process of finding a viable implementation
of a CQ is called resolution and it is discussed in §4.4.

The two viability properties can be determined in different ways.
We have developed three types of CQ implementations that capture
common and expressive strategies for discovering data in a portable
manner: Graph CQs, Virtual CQs, and Default CQs.

4.3 CQ Implementations

A CQ implementation can be viable on multiple parts of a metadata
graph. In our running Tiy, example, if there are multiple AHUs in a
building, then the portable programming model should attempt to
find a viable implementation for each of them.

4.3.1 Graph CQs. A Graph CQis defined by a SHACL shape which
encodes constraints on the graph. Graph CQs search the metadata
graph G for data sources with the desired properties and semantics
for the CQ, as encoded in the SHACL shape. These shapes must
define exactly one target and exactly one point. A shape’s target
specifies what kinds of entities in the graph should be subject to the
shape’s constraints (e.g. “all AHUs in the building”). §4.4 explains

SeeQ: A Programming Model for Portable Data-driven Building Applications

1 @prefix brick: <https://brickschema.org/schema/Brick#> .

2 @prefix sh: <http://www.w3.org/ns/shacl#> .

3 <urn:Tma_direct_observation> a sh:NodeShape ;

4 sh:targetClass brick:Air_Handling_Unit ;

sh:property [sh:path brick:hasPoint ;
sh:qualifiedValueShape [sh:class brick:Mixed_Air_Temperature_Sensor] ;
sh:qualifiedMinCount 1 ; sh:qualifiedMaxCount 1 ;

5
6
7
8 sh:name "point"] .

Figure 2: Sample SHACL shape for a Graph CQ implementa-
tion seeking a mixed air temperature sensor associated with
an air handling unit.

how the number of entities matching a shape’s target influences
the execution of the portable application.

A shape’s point specifies the CQ’s data source and how it should
be related to the target. Consider defining a Graph CQ implemen-
tation for our running Tpaexample. To encode an implementation
that identifies a sensor directly observing the mixed air temper-
ature region of an AHU, one would create a SHACL shape with
a target of the brick:Air_Handling_Unit class and a point of
the brick:Mixed_Air_Temperature_Sensor class. See Figure 2
for the full SHACL shape definition. A shape can also encode other
constraints that ensure that the target is appropriate. In Figure 2,
we might add an additional clause that only matches single zone
air handling units with no downstream terminal units.

4.3.2 Virtual CQs. A Virtual CQ is defined by a scalar function over
other CQs. This allows CQs to be constructed from other CQs. Like
all CQs, a Virtual CQ takes a metadata graph G as an argument; it
passes the graph to all of its constituent CQs when required during
the resolution process (§4.4).

Consider defining a Virtual CQ implementation for our running
Tma example. To encode an implementation which estimates the
mixed air temperature from the outside and return air temperature
sensors and corresponding damper positions, one could compute
the following expression inside a Virtual CQ:

Tma = Tra * Dra + Toa * Doa

Above, T{ma ra0a} Tepresents CQs for the temperature of mixed,
return and outside air; and Dy, 4} Tepresents the position of the
return and outside air dampers.

Virtual CQs allow developers to reuse other CQs in their own
applications. By giving developers the means to construct their
own representations of building data, we can help abstract away
the complexity of data discovery.

4.3.3 Default CQs. A Default CQ is a constant expression that
returns a single (possibly multi-dimensional) value. This serves two
purposes. First, it can act as a fallback definition for CQs that might
be hard to calculate. In our running Tpn, example, we use a common
estimation of 1.1 °C for the temperature drop across the supply
fan [31] as a backup value for when direct sensing of that quantity
is not possible. Second, Default CQs can act as aliases for common
values and scientific constants.

4.4 CQ Resolution

We can now describe the portable programming model and the
resolve method central to its implementation. The resolve method
allows the developer-facing implementation of portable applica-
tions to remain straightforward and mostly about the application

163

BuildSys ’23, November 15-16, 2023, Istanbul, Turkey

logic itself. It does this by finding the implementations of each CQ
in an application that are most appropriate for a given metadata
graph. The output of the resolve method is a set of functions;
each function corresponds to an specialized implementation of the
original application for a particular part of the building.

Formally, we can represent a portable application A as a function
over one or more CQs. Below, T represents a desired temporal
configuration, which encodes requirements on the necessary extent,
sample rate, and aggregation of the CQ-defined data:

AT . £(CQ1,CQs, -+ ,CQy) — user-defined output ~ (5)

Resolve is a function which takes an portable application A7,
a metadata graph G and a timeseries database DB as arguments
and returns a set of ported functions. A ported function is a copy
of the application where each CQ has been bound to actual values
corresponding to the temporal specification T for a particular target
in the building. Resolve returns multiple functions because an
application may be able to run in multiple contexts. In our running
example of an AHU fault detection rule, the application A would
represent the generic (i.e., portable) logic of checking the fault
condition. If multiple AHUs exist in a building, then resolve would
return a function for each AHU. Each function is a copy of the
original application but with the CQs substituted for the actual
sensor values for a specific AHU.

Formally, we define resolve as the function:

resolve : (AT, G,DB) — {AT|Vt € {Targ[i]|Vi € CQ[AT]} (6)

Targ|i] returns the set of entities in the graph G where a CQ;
has a viable implementation. CQ[AT] returns the set of CQs used
within A. The expression in Equation 6 above finds the set of targets
t which have a viable implementation for each CQ used by the
application A. This means finding data for each logical quantity
in the application is possible. AtT represents a transformed copy of
AT in which each CQ has been substituted with the corresponding
data value found by an implementation of that CQ.

resolve works by finding the best implementation of each CQ
for each target ¢ of the application. The “best” implementation of
a CQ is the one that (a) appears earliest (left-most) in its defining
list (Equation 3), and (b) points to data in the timeseries source
DB that fulfills the application’s temporal specification T. A ported
function is a copy of AT with each constituent CQ replaced by
one of its implementation functions. resolve ensures that each
implementation relates to the same target, i.e. entity within the
building model.

Figure 3 illustrates a single application specification being trans-
formed into multiple functions which implement the application
logic. Their execution produces the application results. Section 5
illustrates an example of resolve porting our FDD example 1.

4.5 Addressing Portability Challenges

Computational Quantities and the resolve method allow applica-
tions to be defined in a portable manner. We detail here how our
proposed approach handles each major portability challenge:

4.5.1 Model Expressivity (C1). There are two ways that our pro-
posed approach handles model expressivity. First, graph CQs embed
SHACL shapes that are expressive enough to capture multiple ways

BuildSys ’23, November 15-16, 2023, Istanbul, Turkey

Application
Authoring

Results

#n Inplementation: [CQs]

Results

Figure 3: Deploying a portable application across multiple
buildings through resolution and execution processes

data sources can be found inside metadata models. Second, the list
of implementations in a CQ definition can capture many differ-
ent system configurations, modeling choices, and other sources of
variance within a metadata model.

4.5.2 Data Availability (C2). Graph CQs can identify and find rele-
vant data sources for applications, but only when those data sources
are present in the metadata graph. Virtual CQs are a natural way
to express how otherwise unavailable data can be computed or
estimated from alternate sources. CQs, interpreted through the
resolve method, provide applications with the abstraction of hav-
ing exactly the data they need.

4.5.3 System Applicability (C3). The SHACL shapes embedded
inside graph CQs not only define the relationship between the target
and the data source, but can also capture additional requirements
about either the target or data source. We get this feature for “free”
because we use the SHACL standard directly.

4.5.4 Temporal Configuration (C4). Many building applications
define temporal requirements for the data they use. For exam-
ple, ASHRAE’s Guideline 36 specification of high-performance
sequences of operation requires all data sources for fault detection
rules to use “five-minute rolling averages with 1-minute sampling
time“[19]. Our proposed portability mechanism captures the tem-
poral requirements T and passes them to the resolve function.
Temporal requirements exist on the application; CQs only handle
how data can be found in the model. resolve incorporates the
temporal requirements (e.g. temporal extent, sampling rate) of the
application when determing the suitability of a CQ implementation.
Future work will examine more nuanced tradeoffs between the
accuracy of a CQ’s implementation and the availbility of data.

5 LIFECYCLE OF A PORTABLE APPLICATION

Our portable programming model enables writing applications once
and deploying them across many heterogeneous buildings with lit-
tle or no manual reconfiguration and with minimal complexity
to the application developer. We accomplish this by shifting the
burden of configuring an application to the definition of CQs. De-
velopers straightforwardly express application logic using CQs as
placeholders for building data and common quantities. While CQs
must be constructed with an awareness of the portability challenges

164

Mavrokapnidis, Fierro et al.

— N\ |Application #2| ..
(APAR Rule #1: | e

| Tma < Tsa + aTsf - ¢ |
[N NN

Reusing CQs

=
4 -
a =

h optio

3rd optiol ut
S~ — —
- k- -T
()
‘ | \®)
" \ Y,

€Q Specification

Figure 4: Illustration of SeeQ abstraction in the context of
our Running Example 1. CQs can be reused across different
applications. The figure lists CQ T, implementations from
the most to the least preferable.

(C1 - C4), the upshot is that actual application development can
remain agnostic to the complexity of porting applications.

In this section, we architect a software system upon the prin-
ciples of the proposed programming model and demonstrate the
entire lifecycle of a portable application in four phases: (1) speci-
fying CQs, (2) expressing the application logic using pre-specified
CQs, (3) resolving the application over a graph to produce a site-
specific implementation, which can then (4) be executed over a
time series database to extract results. Finally, we show how our
CQ-based mechanism integrates with existing tools for creating
and maintaining building metadata models.

5.1 CQ Specification

Recall that a CQ is formally defined (section 4.2.2) as a list of possible
implementations of the CQ inside a graph model (i.e. building)
listed from the most to the least desirable. In other words, a CQ
specification encapsulates all the possible ways of discovering a
specific quantity within a building, enabling its self-configuration
in the next steps.

Figure 4 illustrates how applications can be constructed from
an existing library of CQs. CQs themselves can have multiple pos-
sible implementations: the bottom of Figure 4 illustrates the four
possible implementations of the Ty,a, ordered from most to least
preferable. CQs are defined in Python; the entirety of the Ty, def-
inition is given by Figure 5. GraphCQs can be defined either by
(1) referring to an externally-defined shape (line 9), or (2) inline
(lines 11-15) using shorthand for common SHACL constructions.
The GraphCQ on lines 11-15 also captures contextual information
about the AHU (requiring a mixed air damper) that must be true
for that implementation to be considered.

Figure 2 displays the definition of the shape referred to on line 9
of Figure 5. Referring to externally-defined shapes eases integration
with emerging metadata authoring frameworks like [18].

5.2 Authoring Portable Applications using CQs

We can now address how developers use CQs to express portable
building applications. Recall from the definition in Equation 5 that
an application is a function over a set of CQs. In our Python-based
framework, the CQs used by an application must be expressed as

SeeQ: A Programming Model for Portable Data-driven Building Applications

1 import SeeQ

2 from APAR.CQs import Toa, Tra, Fra, Foa

3

4 AHU_Tma = CQ(description="Mixed Air Temperature in the AHU",
5 unit=UNIT.DEG_C,

6 implementations=[

7 # defined by the shape in Figure 2

8 GraphCQ(URIRef ("urn:Tma_direct_observation")),

9 # using shorthand to define a SHACL shape
10 GraphCQ(1, [BRICK.AHU,

11 BRICK.hasPart,

12 BRICK.Mixed_Damper,

13 BRICK.hasPoint,

14 BRICK.Mixed_Air_Temp_Sensor]),
15 VirtualCQ(Tra*Fra+Toa*Foa),

16 VirtualCQ(Tra*@.5+Toa*0.5)])

Figure 5: Example CQ Tp,, specification. CQs are specified in
the back-end and can be reused by application developers

1 from SeeQ import *

2 from pandas import DataFrame

3 from G36.CQs import Dmp_Pos, Fsa, Fsp_clg, Fan_s

4 from APAR.CQs import Tsa, Tma, DelTsf, Hc_pos, Epsilon_t

5

6 def APAR_R1(sup: Tsa, mix: Tma, drop: DelTsf, heat_coil: Hc_pos, e: Epsilon_t):
7 is_heating: DataFrame = heating_coil.df > 0

8 supply_air_low: DataFrame = sup.df < (mix.df + drop.df - error.df)

9 violating_records = is_heating & supply_air_low

10 # returns fault if more than 10 violiating samples

11 if len(violating_records) > 10:

12 return "fault detected"

13

14 def G36_Dmp_Leaking(pos: Dmp_Pos, sup_flow: Fsa, cool_sp: Fsp_clg, fan: Fan_s):
15 if ((pos.df == @) and (sup_flow.df > max([0.1xcool_sp.df, 50]) \

16 and (fan.df == "ON")).for_time(600):

17 return "Level 4 alarm"

Figure 6: Expressing the application logic of our two running
examples using a set of pre-specified CQs

parameters in the function signature. We leverage type annotations
in Python to indicate the CQ for each parameter. This serves two
purposes. First, it allows developers to bind CQs to different names
in the application which can aid in readability. Second, it allows
our framework to generate the ported “copies” of the application;
specifically, we use Python’s functools.partial function to re-
turn the application function with the resolved CQs pre-bound to
their implementations. Applications can take non-CQ parameters;
these are simply ignored by our framework.

Figure 6 contains the portable implementations of both of our
running examples. The temporal requirements of the application
are captured by calling certain functions on the CQs. For running
example 2 we use the function for_time() to express the extent
of data that must be available for the application to run. Line 18
indicates that there must be 10 minutes of data in this example.

5.3 Resolving and Executing Applications

Running a portable application on a new deployment site requires
two steps: (1) resolving it over a graph model to produce a building-
specific implementation which is then (2) executed to perform com-
putation and generate results. The resolve function (§4.4) takes as
input an application A, a metadata graph G representing a building,
and a source of timeseries data DB. Resolving the application pro-
duces a list of ported functions each corresponding to an execution
of the application on some entity in the model (Figure 3).

Figure 7 shows how to port an application in our Python frame-
work. The APAR_R1 function defined in Figure 6 is passed into the

165

BuildSys ’23, November 15-16, 2023, Istanbul, Turkey

from APAR import APAR_R1
from rdflib import Graph

Import the graph model for the building
g = Graph().parse("my_building.ttl","ttl")
influxdb_client = InfluxDB("http://...")
resolve the application
APAR_R1_impls = resolve(APAR_R1, g, influxdb_client)
loop over the ported copies of the app to run them
for impl in APAR_R1_impls:

print(f"{impl.target} FDD result is {impl()}")

o . NIV BTV C R

Figure 7: Resolving and Executing our two running examples

S >
Aspern D5b, Austria Mol Docks, UK
Student Accommodation Museum of London
52 controlled spaces
10,400m?

T
Zug TH1, Switzerland Aspern TZ2, Austria
Office Buildings Office Building
250 controlled rooms 80 controlled rooms
35,000m? 8

MoL MWH, UK
Museum of London
45 controlled spaces
11,200m?

300 controlled rooms
11,500m2

Figure 8: Deployment sites

framework’s resolve function along with the Brick model of the
building (in the graph object g) and a timeseries database client. The
resulting value, APAR_R1_impls, is a list of functions in which the
function parameters have been bound to dataframes of timeseries
data pulled from the database. We annotate each ported function
with the name of the entity it corresponds to (the target attribute).
Executing the ported function delivers the results for that entity.

5.4 Brick Model Creation

Creating metadata models that support portable applications can be
a challenge due to the complexity of buildings and the resulting com-
plexity of the semantic metadata standards developed to represent
them. BuildingMOTIF [18] is a recent tool for using SHACL-based
descriptions of application metadata requirements (“manifests”) to
drive the creation and validation of building metadata models. This
process is guided by the principle of semantic sufficiency, which
states that a building model is “complete” when it contains sufficient
metadata to support a specified suite of applications.

Because our CQ portability mechanism is built on SHACL, we
can use the set of CQs in an application to automatically create the
SHACL-based manifest required by BuildingMOTTIF. This is signifi-
cant because application developers do not need to go through the
trouble of defining the metadata requirements for their application
— these can be derived automatically from the application’s defini-
tion. This also allows users of portable applications to test whether
or not an application will run on a model, as well as check what
metadata might be missing from their model.

6 EVALUATION

We evaluate the proposed programming model in three ways: (1) ex-
ercising the ability of SeeQ to author and run five categories of data-
driven building applications, (2) testing self-configuration across
diverse deployment sites, where existing approaches would oth-
erwise fail, (3) comparing the development effort required among
existing application portability mechanisms (i.e., Mortar, Energon).

6.1 Demonstration of Use

To evaluate the efficacy of the proposed abstraction, we have au-
thored, resolved and executed 5 diverse data-driven applications
across 76,100 sq. meters (Figure 8).

BuildSys ’23, November 15-16, 2023, Istanbul, Turkey

CQ Distribution

8

&

4

2

o
R E T EE T RS FIE:
T pul g8 = ;E.‘E-E

C0s specified for 28 APAR Rules

Figure 9: Distribution histogram of how APAR CQs are used
to express the entire APAR set of 28 rules.

Detecting Abnormal Operation using APAR Rule 1

—— Supply Air Temp [7} 100
4 |~ Mixed Air Temp i
f— He\a}ing C\oi'I,Pos ! Lo =
S 5
v Feo =
2 &
m =
= [=}
g0 . tap O
£ . g
v l, §
10 ! v/ - F20 €
1 v L,’ i
1 1
I 1
0] ==mmmmmmmm——— S ettt Fo
o 5 10 15 20
Time (hours}

Figure 10: Fault Detection using APAR R;. Faulty Operation
detected during heating mode (and highlighted in red).

6.1.1 APAR for FDD on AHUs. APAR is a fault detection tool that
uses a set of 28 expert rules, relying only upon sensor data and
control signals that are commonly available in commercial automa-
tion and control systems. We specify and express the logic of the
entire APAR rule set, defining and reusing 21 different CQs. Figure
9 displays the distribution of CQs across 28 APAR rules, demon-
strating their ability to be reused across the entire rule set, thus
reducing repetitive efforts during application authoring. Resolving
and executing APAR Rules across AHUs can identify periods of
abnormal operation: APAR R; is being violated in Figure 10.

6.1.2 G36 Sequences for VAVs with Reheat. ASHRAFE’s G36 specifi-
cation provides a set of uniform sequences of operation intended to
provide control stability of air-side HVAC systems. Here, we adopt
G36’s Section 5.6.6 to describe a set of alarms raised in VAV units
with reheating capability when control sequences are not running
properly. Including our running example 2 of leaking damper, this
application suite is also able to detect (1) low airflow, (2) low dis-
charge air temperature, (3) poorly calibrated air flow sensors as
well as (4) leaking valves. We authored the application using 8 CQs,
and resolved it over our 5 deployment sites to produce executable
implementations for 36 VAV units with reheating coils.

6.1.3 KPI-driven Occupancy Density. Understanding occupancy
patterns in a group of buildings is an essential task, supporting from
simple maintenance scheduling tasks to more advanced operational
tuning of building systems. Here, we employ SeeQ to author a
portable KPI-driven application for measuring occupancy density

166

Mavrokapnidis, Fierro et al.

1 from pandas import DataFrame

2 from KPIs.CQs import occupancy, max_occupancy, opening, closure

3

4 def avg_OD(occ:occupancy, occ_max:max_occupancy, o_t:opening, c_t:closure):
5 od:DataFrame = mean(occ.df/occ_max.value).for_time(o_t.value, c_t.value)
6 return "Fully Used" if od > 0.75 else "Normal" \

7 if 0.4 < od <= 0.75 else "Underused"

Figure 11: Authoring data-driven Occupancy Density KPI
using Equation 7 in §6.1.3

1 import SeeQ
2 """in the absense of return air temperature sensors in VAV, we

3 approximate them to the zone temperature measured by the thermostat"""
4 VAV_Tma = CQ(description="Mixed Air Temperature in the AHU",

5 unit=UNIT.DEG_C,

6 implementations=[

7 GraphCQ(@, [BRICK.VAV, BRICK.hasPoint, BRICK.Return_Air_Temp_Sensor]),
8 GraphCQ(1, [BRICK.AHU, BRICK.hasPart, BRICK.Mixed_Damper, \

9 BRICK.hasPoint, BRICK.Mixed_Air_Temp_Sensor])])

10

11 """If the VAVs lack a supply air temperature sensor, they are

12 approximated by the supply air temperature of the corresponding AHU"""
13 VAV_Tsa = CQ(description="Supply Air Temperature in the AHU",

14 unit=UNIT.DEG_C,

15 implementations=[

16 GraphCQ(@, [BRICK.VAV, BRICK.hasPoint, BRICK.Supply_Air_Temp_Sensorl),
17 GraphCQ(1, [BRICK.AHU, BRICK.hasPart, BRICK.Mixed_Damper, \

18 BRICK.hasPoint, BRICK.Mixed_Air_Temp_Sensor])])

Figure 12: CQ Specification for ZonePAC: The example
demonstrates the ability of CQs to capture and abstract away
the complexity of alternative implementations.

over a specific period of time. We categorise the average occupant
density over the opening hours of a building into three groups and
estimate it using three CQs: the opening, and closing time of the
building and the maximum capacity of each room (i.e., implemented
as DefaultCQs), and a CQ representing the number of occupants.
We express this application in eq.7, author it using only few lines of
code in Figure 11, resolve it across our 5 Brick models and execute
it in 152 applicable zones.

9a = 75% — High use

closed o
occk 40% < 8, < 75% — Normal

Ga = —_— =

Omax,k * 2k @)

k=open 9q < 40% — Low use

6.1.4 ZonePAC for Virtual Sensing. To evaluate SeeQ on portable
virtual sensing applications, we developed a partial portable imple-
mentation of ZonePAC [8, 22], a HVAC metering application that
employs a heat transfer equation and a linear regression model to
estimate the cooling thermal power of VAV boxes. In Figure 12, we
are quoting two portability challenges faced by Koh et al., while
trying to implement this application at scale. CQs allow users to
incorporate alternative implementations, that can then enable the
resolution of the application in many possible ways.

6.1.5 Random Forest for Zone Air Temperature Prediction. Despite
the growing advances of Machine Learning (ML) applications, it
remains challenging to rapidly deploy ML models in a group of
buildings. In Figure 13, we demonstrate how SeeQ can interface
with a popular ML library (e.g. scikit-learn) to author and implement
a portable version of a Random Forest algorithm for the prediction
of zone air temperature, enabling users to reuse CQs as features for
the development of ML models.

SeeQ: A Programming Model for Portable Data-driven Building Applications

from pandas import DataFrame

1

2 from S.CQs import Tsa, Fsa, CCpos, Ztemp

3 from sklearn.ensemble import RandomForestRegressor

4

5 def ZoneTemp_RandomForest(sat: Tsa, fan: Fsa, coil: CCpos, zone: Ztemp):
6 rf = RandomForestRegressor(n_estimators = 1000, random_state = 42)
7 # arrange resolved dataframes into a matrix

8 X = assemble_dataset(sat, fan, coil)

9 X_train, X_test, y_train, y_test = train_test_split(X, zone)

10 # Train and test the model to predict Zone temp

11 rf.fit(X_train, y_train)

12 predictions = rf.predict(X_test)

13 # return model and test MSE

14 return rf, mean_squared_error(y_test, predictions)

Figure 13: SeeQ can easily integrate with Scikit-learn and
other ML python libraries

AHUs Implementations:[CQ:type(#no_impl.)]
AHUO07 Tma: GraphCQ (#1)

(bldgB) Tsa: GraphCQ (#1)

AHU(02 Tma: VirtualCQ (#3) = :Tra*Dra+Toa*Doa)
(bldgA) Tsa: GraphCQ(#2)

AHU15 Tma: VirtualCQ(#4)=Tra*0.5+Toa*0.5
(bldgD) Tsa: VirtualCQ (#2) = Tdp+((Rh-Tdp)/3)

All DelTsf: DefaultCQ (#1),

AHUs Epsilon_t: DefaultCQ (#1)

Hhc: GraphCQ (#1)

Table 1: Implementation Description of Portable APAR R;.
Table demonstrates the ability of R; to self-configure across
three different AHUs from 3 different buildings

6.2 Self-Configurability

One major contribution of authoring building applications with
SeeQ is their ability to self-configure, or in other words, to produce
different implementations of the same application across a variety
of given graph models. Table 1 displays three specific resolution
outputs (i.e. implementations) of our running example, APAR Ry
across three different AHUs of our dataset. Each implementation
provides a description of how CQs of R; are resolved, either as
GraphCQ, VirtualCQ, or DefaultCQ.

Across the three examples provided, Ty, and T, have been re-
solved in different ways. For AHUO07, all CQs are resolved through
the first and most preferable implementation — the number in
parenthesis denotes the place of the solution in the specification;
number #1 always informs the user that the application is running
the most preferred implementation. For AHU15, the best implemen-
tations for Ty, and Tg, are both VirtualCQs listed as the 4th and
2nd preferred implementation during their specification.

When a CQ is resolved as VirtualCQ, other CQs are resolved
and produce specific implementations. For example, Ty, in AHU02
of Table 1 is resolved as Virtual CQ(#3) and specifically using the
equation: Try-Dra+Toa-Doa)where each CQ included has also been
resolved successfully. Similarly, if one of those CQs is resolved as
VirtualCQ, another set of CQs is included in the implementation.
Hence, when a building application is resolved over the graph, it
traverses throughout the possible implementations and identifies
successful implementations in various self-configured formations.

167

BuildSys ’23, November 15-16, 2023, Istanbul, Turkey

Application Mortar Energon SeeQ
Building Integrated Control 42 11 2
Energy Consumption Prediction 54 13 2
AHU Fault Detection 73 11 2
Chiller Profiling 52 10 2

Table 2: Lines of Code required: Mortar vs Energon vs SeeQ.
Table updated from [21]

1 PREFIX brick: <https://brickschema.org/schema/Brick#> .
2 SELECT ?Tma ?Tsa WHERE {
3 {?Tma a brick:Mixed_Air_Temperature_Sensor .

4 ?Tsa a brick:Supply_Air_Temperature_Sensor .
5 ?ahu a brick:AHU .}

6 UNION # multiple unions statements required
7 { {?ahu brick:hasPoint ?Tma .}

8 UNION

9 {?dmp a brick:Mixed_Damper .

10 ?dmp brick:hasPoint ?Tma .3}}

11 UNION

12 { {?ahu brick:hasPoint ?Tma .3}

13 UNION

14 {?fan a brick:Supply_Fan .

15 ?fan brick:hasPoint ?Tsa .}}

16 }. # ... more unions required to capture multiple configurations

Figure 14: Part of a SPARQL Query attempting to extract Tma
and Tsa for our Running Example of APAR R;

6.3 Development Effort

SeeQ provides a framework for expressing application require-
ments and logic, without considering a specific deployment site.
Instead, existing approaches like Mortar [17] and Energon [21] fa-
cilitate the retrieval of building metadata, leaving users to configure
applications across different buildings. To achieve that, we encapsu-
late the burden of configuration inside CQs. This abstraction layer
allows developers to express their application logic, by reusing CQs
(Figure 9). Thus, unlike in prior systems, they do not need to write
any queries or handle the portability of applications themselves.

As illustrated throughout this section, our programming model
can retrieve relevant metadata and express applications in 2 lines of
code; this might take from 50-100 lines of code in Mortar [17] to 5-
10 lines of code in Energon [21]. In Table 2, we compare how SeeQ
further reduces costs of metadata retrieval compared to Mortar
and Energon, while, in addition, incorporates applications’ require-
ments and logic. Hence, SeeQ not only reduces the effort to retrieve
metadata, omitting the familiarity with querying language and
graph structures, but also allows developers to author portable
applications with a few lines of code.

Developing portable building applications using Mortar [17] and
Energon [21] depends on the ability of developers to write success-
ful queries, using SPARQL or EnergonQL, respectively. However,
writing a query to capture various ways of discovering the required
application metadata can be cumbersome, ineffective and exponen-
tially complex as the number of application variables increases.
We demonstrate this complexity through Figure 14 that displays a
part of a SPARQL Query, written to retrieve Tin, and Ts, from our
APAR R1 running example. Capturing the various possible imple-
mentations for only two data points, required multiple and complex
"UNION" statements, demonstrating the inability of this approach
to scale. This example underlines the potential of SeeQ to address
portability challenges and simplify application development.

BuildSys ’23, November 15-16, 2023, Istanbul, Turkey

7 CONCLUSIONS

In this paper we have introduced SeeQ, a programming model for
portable building applications built on semantic metadata mod-
els like Brick. The programming model is built on a proposed ab-
straction of computational quantities (CQs), which are reusable
self-configuring identifiers. CQs reduce and simplify development
effort by abstracting away the difficulty of finding data in heteroge-
neous buildings. The resulting applications are orders of magnitude
smaller than in prior programming models while also providing
portable execution.

This work marks a significant step towards turnkey applications
for building stakeholders. Reducing development and deployment
costs through portable applications helps to democratize adoption
of state-of-the-art analytics including occupant-comfort and energy-
saving approaches.

ACKNOWLEDGMENTS

This research has been co-funded by the European Union’s Horizon
research and innovation programmes; CBIM-ETN under Marie
Sklodowska-Curie grant agreement No 860555, and DigiBUILD
under agreement No 101069658.

REFERENCES

2012. Web Ontology Language (OWL). https://www.w3.org/OWL/

2013. SPARQL Query Language for RDF. https://www.w3.org/TR/rdf-sparql-
query/

2014. Resource Description Framework (RDF). https://www.w3.org/RDF/
2017. Shapes Constraint Language (SHACL). https://www.w3.org/TR/shacl/
2023. Home - Project Haystack. https://project-haystack.org/

2023. Home — SkyFoundry. https://skyfoundry.com/

Bharathan Balaji, Arka Bhattacharya, Gabriel Fierro, Jingkun Gao, Joshua Gluck,
Dezhi Hong, Aslak Johansen, Jason Koh, Joern Ploennigs, Yuvraj Agarwal, Mario
Bergés, David Culler, Rajesh K. Gupta, Mikkel Baun Kjeergaard, Mani Srivastava,
and Kamin Whitehouse. 2018. Brick : Metadata schema for portable smart building
applications. Applied Energy 226 (2018), 1273-1292. https://doi.org/10.1016/j.
apenergy.2018.02.091

Bharathan Balaji, Hidetoshi Teraoka, Rajesh Gupta, and Yuvraj Agarwal. 2013.
ZonePAC: Zonal Power Estimation and Control via HVAC Metering and Occupant
Feedback. In Proceedings of the 5th ACM Workshop on Embedded Systems For
Energy-Efficient Buildings (Roma, Italy) (BuildSys’13). Association for Computing
Machinery, New York, NY, USA, 1-8. https://doi.org/10.1145/2528282.2528304
Imane Lahmam Bennani, Anand Krishnan Prakash, Marina Zafiris, Lazlo Paul,
Carlos Duarte Roa, Paul Raftery, Marco Pritoni, and Gabe Fierro. 2021. Query
Relaxation for Portable Brick-Based Applications. In Proceedings of the 8th ACM
International Conference on Systems for Energy-Efficient Buildings, Cities, and
Transportation (Coimbra, Portugal) (BuildSys "21). Association for Computing Ma-
chinery, New York, NY, USA, 150-159. https://doi.org/10.1145/3486611.3486671
Arka Bhattacharya, David Culler, Dezhi Hong, Kamin Whitehouse, and Jorge
Ortiz. 2014. Writing Scalable Building Efficiency Applications Using Normal-
ized Metadata: Demo Abstract. In Proceedings of the 1st ACM Conference on
Embedded Systems for Energy-Efficient Buildings (Memphis, Tennessee) (BuildSys
’14). Association for Computing Machinery, New York, NY, USA, 196-197.
https://doi.org/10.1145/2674061.2675031

Arka Bhattacharya, Joern Ploennigs, and David Culler. 2015. Short paper: An-
alyzing metadata schemas for buildings: The good, the bad, and the ugly. In
Proceedings of the 2nd ACM International Conference on Embedded Systems for
Energy-Efficient Built Environments. 33-34.

H. Burak Gunay, Weiming Shen, and Guy Newsham. 2019. Data analytics to
improve building performance: A critical review. Automation in Construction 97
(Jan. 2019), 96-109. https://doi.org/10.1016/j.autcon.2018.10.020

ASHRAE’s BACnet Committee. 2018. https://www.ashrae.org/about/
news/2018/ashrae-s-bacnet-committee-project-haystack-and-brick-schema-
collaborating-to-provide-unified- data- semantic-modeling-solution

Stephen Dawson-Haggerty, Andrew Krioukov, Jay Taneja, Sagar Karandikar,
Gabe Fierro, Nikita Kitaev, and David Culler. 2013. BOSS: Building Op-
erating System Services. In 10th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 13). USENIX Association, Lombard,
IL, 443-457. https://www.usenix.org/conference/nsdi13/technical-sessions/

[10

[11]

168

[15]

[16]

(17]

(18]

[19

[20]

)
=

[22

(23]

S
=)

[25

[26

&
=

[28

[29]

(30]

(31]

(32]

Mavrokapnidis, Fierro et al.

presentation/dawson-haggerty

Gabe Fierro. 2021. Self-Adapting Software for Cyberphysical Systems. Ph.D.
Dissertation. EECS Department, University of California, Berkeley. http://www2.
eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-159.html

Gabe Fierro, Anand Krishnan Prakash, Cory Mosiman, Marco Pritoni, Paul
Raftery, Michael Wetter, and David E Culler. 2020. Shepherding metadata through
the building lifecycle. In Proceedings of the 7th ACM International Conference on
Systems for Energy-Efficient Buildings, Cities, and Transportation. 70-79.

Gabe Fierro, Marco Pritoni, Moustafa Abdelbaky, Daniel Lengyel, John Leyden,
Anand Prakash, Pranav Gupta, Paul Raftery, Therese Peffer, Greg Thomson,
and David E. Culler. 2019. Mortar: An Open Testbed for Portable Building
Analytics. ACM Trans. Sen. Netw. 16, 1, Article 7 (dec 2019), 31 pages. https:
//doi.org/10.1145/3366375

Gabe Fierro, Avijit Saha, Tobias Shapinsky, Matthew Steen, and Hannah Es-
linger. 2022. Application-Driven Creation of Building Metadata Models with
Semantic Sufficiency. In Proceedings of the 9th ACM International Conference on
Systems for Energy-Efficient Buildings, Cities, and Transportation (Boston, Mas-
sachusetts) (BuildSys *22). Association for Computing Machinery, New York, NY,
USA, 228-237. https://doi.org/10.1145/3563357.3564083

GUIDELINE 36-2021 2021. High-Performance Sequences Of Operation For
HVAC Systems. Standard. American Society of Heating, Refrigerating and Air-
Conditioning Engineers.

Karl Hammar, Erik Oskar Wallin, Per Karlberg, and David Hélleberg. 2019. The
realestatecore ontology. In The Semantic Web—ISWC 2019: 18th International Se-
mantic Web Conference, Auckland, New Zealand, October 26-30, 2019, Proceedings,
Part II 18. Springer, 130-145.

Fang He, Yang Deng, Yanhui Xu, Cheng Xu, Dezhi Hong, and Dan Wang. 2021.
Energon: A Data Acquisition System for Portable Building Analytics. In Pro-
ceedings of the Twelfth ACM International Conference on Future Energy Systems
(Virtual Event, Italy) (e-Energy °21). Association for Computing Machinery, New
York, NY, USA, 15-26. https://doi.org/10.1145/3447555.3464850

Jason Koh, Bharathan Balaji, Rajesh Gupta, and Yuvraj Agarwal. 2015. HVACMe-
ter: Apportionment of HVAC power to thermal zones and air handler units. arXiv
preprint arXiv:1509.05421 (2015).

Jason Koh, Dezhi Hong, Rajesh Gupta, Kamin Whitehouse, Hongning Wang,
and Yuvraj Agarwal. 2018. Plaster: An Integration, Benchmark, and Develop-
ment Framework for Metadata Normalization Methods. In Proceedings of the
5th Conference on Systems for Built Environments (Shenzen, China) (BuildSys
’18). Association for Computing Machinery, New York, NY, USA, 1-10. https:
//doi.org/10.1145/3276774.3276794

Andrew Krioukov, Gabe Fierro, Nikita Kitaev, and David Culler. 2012. Building
application stack (BAS). In Proceedings of the Fourth ACM Workshop on Embedded
Sensing Systems for Energy-Efficiency in Buildings (BuildSys 12). Association for
Computing Machinery, New York, NY, USA, 72-79. https://doi.org/10.1145/
2422531.2422546

Guanjing Lin, Hannah Kramer, Valerie Nibler, Eliot Crowe, and Jessica Grander-
son. 2022. Building Analytics Tool Deployment at Scale: Benefits, Costs, and
Deployment Practices. Energies 15, 13 (2022). https://doi.org/10.3390/en15134858
Dimitris Mavrokapnidis, Gabe Fierro, Ivan Korolija, and Dimitrios Rovas. 2023. A
Programming Model for Portable Fault Detection and Diagnosis. In Proceedings
of the 14th ACM International Conference on Future Energy Systems (Orlando, FL,
USA) (e-Energy "23). Association for Computing Machinery, New York, NY, USA,
127-131. https://doi.org/10.1145/3575813.3595190

Dimitris Mavrokapnidis, Kyriakos Katsigarakis, Pieter Pauwels, Ekaterina
Petrova, Ivan Korolija, and Dimitrios Rovas. 2021. A Linked-Data Paradigm
for the Integration of Static and Dynamic Building Data in Digital Twins. In
Proceedings of the 8th ACM International Conference on Systems for Energy-
Efficient Buildings, Cities, and Transportation (Coimbra, Portugal) (BuildSys °21).
Association for Computing Machinery, New York, NY, USA, 369-372. https:
//doi.org/10.1145/3486611.3491125

Marco Pritoni, Drew Paine, Gabriel Fierro, Cory Mosiman, Michael Poplawski,
Avijit Saha, Joel Bender, and Jessica Granderson. 2021. Metadata Schemas and
Ontologies for Building Energy Applications: A Critical Review and Use Case
Analysis. Energies 14, 7 (2021). https://www.mdpi.com/1996-1073/14/7/2024
Mads Holten Rasmussen, Maxime Lefrancois, Georg Ferdinand Schneider, and
Pieter Pauwels. 2021. BOT: The building topology ontology of the W3C linked
building data group. Semantic Web 12, 1 (2021), 143-161.

Mat Santamouris. 2016. Cooling the buildings—past, present and future. Energy
and Buildings 128 (2016), 617-638.

Jeffrey Schein, Steven T. Bushby, Natascha S. Castro, and John M. House. 2006. A
rule-based fault detection method for air handling units. Energy and Buildings
38, 12 (2006), 1485-1492. https://doi.org/10.1016/j.enbuild.2006.04.014

Thomas Weng, Anthony Nwokafor, and Yuvraj Agarwal. 2013. BuildingDepot
2.0: An Integrated Management System for Building Analysis and Control. In
Proceedings of the 5th ACM Workshop on Embedded Systems For Energy-Efficient
Buildings (BuildSys’13). Association for Computing Machinery, New York, NY,
USA, 1-8. https://doi.org/10.1145/2528282.2528285

https://www.w3.org/OWL/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/RDF/
https://www.w3.org/TR/shacl/
https://project-haystack.org/
https://skyfoundry.com/
https://doi.org/10.1016/j.apenergy.2018.02.091
https://doi.org/10.1016/j.apenergy.2018.02.091
https://doi.org/10.1145/2528282.2528304
https://doi.org/10.1145/3486611.3486671
https://doi.org/10.1145/2674061.2675031
https://doi.org/10.1016/j.autcon.2018.10.020
https://www.ashrae.org/about/news/2018/ashrae-s-bacnet-committee-project-haystack-and-brick-schema-collaborating-to-provide-unified-data-semantic-modeling-solution
https://www.ashrae.org/about/news/2018/ashrae-s-bacnet-committee-project-haystack-and-brick-schema-collaborating-to-provide-unified-data-semantic-modeling-solution
https://www.ashrae.org/about/news/2018/ashrae-s-bacnet-committee-project-haystack-and-brick-schema-collaborating-to-provide-unified-data-semantic-modeling-solution
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/dawson-haggerty
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/dawson-haggerty
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-159.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2021/EECS-2021-159.html
https://doi.org/10.1145/3366375
https://doi.org/10.1145/3366375
https://doi.org/10.1145/3563357.3564083
https://doi.org/10.1145/3447555.3464850
https://doi.org/10.1145/3276774.3276794
https://doi.org/10.1145/3276774.3276794
https://doi.org/10.1145/2422531.2422546
https://doi.org/10.1145/2422531.2422546
https://doi.org/10.3390/en15134858
https://doi.org/10.1145/3575813.3595190
https://doi.org/10.1145/3486611.3491125
https://doi.org/10.1145/3486611.3491125
https://www.mdpi.com/1996-1073/14/7/2024
https://doi.org/10.1016/j.enbuild.2006.04.014
https://doi.org/10.1145/2528282.2528285

	Abstract
	1 Introduction
	2 Background and prior work
	2.1 Building Metadata Models
	2.2 Application Platforms
	2.3 Portability Mechanisms

	3 Application Portability Challenges
	3.1 Model expressivity (C1)
	3.2 Data Availability (C2)
	3.3 System applicability (C3)
	3.4 Temporal Configuration (C4)

	4 Portable Programming Model
	4.1 Semantic Metadata Background
	4.2 Computational Quantities
	4.3 CQ Implementations
	4.4 CQ Resolution
	4.5 Addressing Portability Challenges

	5 Lifecycle of a Portable Application
	5.1 CQ Specification
	5.2 Authoring Portable Applications using CQs
	5.3 Resolving and Executing Applications
	5.4 Brick Model Creation

	6 Evaluation
	6.1 Demonstration of Use
	6.2 Self-Configurability
	6.3 Development Effort

	7 Conclusions
	Acknowledgments
	References

