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Abstract The specialised regional functionality of the mature human cortex partly emerges 
through experience- dependent specialisation during early development. Our existing understanding 
of functional specialisation in the infant brain is based on evidence from unitary imaging modalities 
and has thus focused on isolated estimates of spatial or temporal selectivity of neural or haemo-
dynamic activation, giving an incomplete picture. We speculate that functional specialisation will 
be underpinned by better coordinated haemodynamic and metabolic changes in a broadly orches-
trated physiological response. To enable researchers to track this process through development, we 
develop new tools that allow the simultaneous measurement of coordinated neural activity (EEG), 
metabolic rate, and oxygenated blood supply (broadband near- infrared spectroscopy) in the awake 
infant. In 4- to 7- month- old infants, we use these new tools to show that social processing is accom-
panied by spatially and temporally specific increases in coupled activation in the temporal- parietal 
junction, a core hub region of the adult social brain. During non- social processing, coupled activa-
tion decreased in the same region, indicating specificity to social processing. Coupling was strongest 
with high- frequency brain activity (beta and gamma), consistent with the greater energetic require-
ments and more localised action of high- frequency brain activity. The development of simultaneous 
multimodal neural measures will enable future researchers to open new vistas in understanding func-
tional specialisation of the brain.

Editor's evaluation
This important study provides a state- of- the- art framework to explore the coupling of complemen-
tary cerebral measures (neural, hemodynamic and metabolic) during development by providing an 
interesting roadmap for multimodal neuroimaging in infants. The methodological contribution is 
compelling with an original setup for simultaneous EEG and NIRS recording and analyses. Results 
on the role of activation changes in the temporal- parietal junction on the development of social 
processing are convincing. This work will be of interest to a broad audience of scientists interested in 
multimodal neuroimaging and cognitive development.
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Introduction
The adult brain is highly specialised, with core networks coordinating to subserve complex behaviours. 
This specialised functioning emerges across development through a combination of genetically influ-
enced brain architecture and experience- expectant learning processes (generalised neural develop-
ment that occurs as a result of common experiences) and experience- dependent (variation in the 
environment contributing to individual differences in neural response) (Johnson, 2001). During early 
development, infants undergo significant neural, physiological, and socio- cognitive changes that are 
accompanied by large- scale changes in social communication and interaction. Currently, we have rela-
tively few tools that allow us to comprehensively capture the emergence of functional specialisation in 
the infant social brain. Developing new approaches is critical for advancing our understanding of early 
brain physiology and cognitive function.

Identifying appropriate metrics to index functional specialisation in the infant brain should be 
informed by theoretical perspectives on how functional specialisation develops. Interactive special-
isation is a theory of brain development that posits that functional specialisation emerges through 
competition between brain regions (Johnson, 2011). Thus, functional specialisation can be indexed 
as a smaller spatial extent of neural responses to a particular stimulus category and concomitant selec-
tivity in responsive regions (Jones et al., 2015). Typically, the extent and selectivity of brain activation 
is measured through indirect indices of oxygenated blood flow (e.g. functional near- infrared spectros-
copy [fNIRS] [Bale et al., 2016] or functional magnetic resonance imaging [fMRI] [Attwell and Iade-
cola, 2002]) or of coordinated neural activity (e.g. electroencephalography [EEG] [Buzsáki, 2006]). 
However, one mechanism that may contribute to competition between brain regions is the limited 
energetic resources available to the infant brain. The brain is an energetically costly organ, consuming 
20–25% of the body’s energy in adulthood while representing only 2% of the body’s mass (Raichle 
and Mintun, 2006; Sokoloff, 1999). There are also substantial developmental changes in the brain’s 
energy consumption; in the first year of life, up to 60% of available energy is used by the brain (Steiner, 
2019). When brain regions become functionally active (e.g. during stimulus processing) neurons fire 
more rapidly, requiring greater supplies of adenosine triphosphate (ATP) (energy stores). Producing 
ATP requires oxygen, and this is supplied through a localised increase in oxygenated haemoglobin in 
the blood. Increases in oxygenated haemoglobin do not happen concurrently in all brain areas, and 
there are spatial dependencies between activated and deactivated regions in the adult brain (Leech 
et al., 2014). Energy supplies are important to synaptic plasticity, memory, and learning (Vaynman 
et al., 2006), and the mechanism through which energy supplies are coupled to activation (neurovas-
cular coupling, see ) also develops through experience- dependent specialisation in the infant brain 
(Kozberg and Hillman, 2016). Thus, energy supply constraints may be one factor that contributes to 
the emergence of brain specialisation. If this is the case, detecting functional specialisation in infancy 
requires not only examining measures of neural activity and oxygenated haemoglobin, but also iden-
tifying whether particular regions show stronger coupling between neuronal demand and energetic 
supply.

As a first step, testing such frameworks requires the availability of methods that can measure the 
spatial extent and stimulus selectivity of neuroenergetics coupling in infancy. Previous studies have 
typically used single modalities sensitive to distinct aspects of brain function. For example, studies with 
fMRI indicate that core regions of the social brain (particular the fusiform face area) show increases 
in oxygenated haemoglobin delivery in response to faces by 4–9 months (Kosakowski et al., 2022). 
Further, fNIRS studies show that oxygenated haemoglobin delivery in response to naturalistic social 
videos in a broad region of temporal cortex emerges over the first hours of life (Farroni et al., 2013). 
Work with EEG indicates developmental increases in differentiated theta power responses to social 
versus non- social stimuli between 6 and 12 months (Jones et al., 2015). Thus, work with single modal-
ities indicates development in functional specialisation across the first year of life.

Broadband near- infrared spectroscopy (bNIRS) is a new technique that uses a broad range of 
optical wavelengths which allows the measurement of the oxidation state of mitochondrial respiratory 
chain enzyme cytochrome c oxidase (CCO), thereby providing a direct measure of cellular energy 
metabolism (Bale et al., 2016). CCO is located in the inner mitochondrial membrane and serves as 
the terminal electron acceptor in the electron transport chain (ETC). It therefore accounts for 95% of 
cellular oxygen metabolism. In this way, bNIRS allows non- invasive measurement of cellular energy 
metabolism alongside haemodynamics/oxygenation in awake infants.

https://doi.org/10.7554/eLife.84122
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Work with single modalities has demonstrated that social selectivity in core regions of the adult 
‘social brain’ can be robustly detected by 4–7 months of age (Grossmann et al., 2010; Lloyd- Fox 
et al., 2012; Lloyd- Fox et al., 2013; Lloyd‐Fox et al., 2018). We recently showed the feasibility of 
using bNIRS in 4- to 7- month- old typically developing infants (Siddiqui et  al., 2021) and demon-
strated the presence of unique task- relevant, regionally specific functional networks where high levels 
of haemodynamic and metabolic coupling were observed. Here, we integrate this methodology with 
EEG to examine whether specific brain regions show coordinated energetic coupling and neural 
activity. We develop a novel analysis pipeline to identify localised coupling responses that are modu-
lated by naturalistic social content. We aimed specifically to investigate the relationship between 
low- and high- frequency neural activity with haemodynamics and metabolism. For EEG, we expected 
an increase in neural activity in response to the social condition and a decrease in neural activity in 
response to the non- social condition. Based on previous work, this was expected to be strongest in 
the theta frequency band (Jones et al., 2015). Moreover, for the combined bNIRS- EEG analyses, we 
hypothesised differentiated haemodynamic/metabolic coupling with neural activity for the social and 
non- social stimulus conditions. We performed two types of statistical tests: (a) individual comparisons 
of the social and non- social conditions and (b) comparison of the social condition versus the non- 
social condition. The individual condition tests were performed to show the scale and spatial location/
sensitivity of the coupling between haemodynamics/metabolism and neural activity for each condi-
tion. Meanwhile, the social versus non- social comparison was performed to show where there was a 
significant difference in the coupling between the two conditions. With comparison (a) we aimed to 
identify regions involved in the processing of social and non- social stimuli by identifying the regions 
where the coupling was significant. With comparison (b) we aimed to identify regions where coupling 
was significantly different between conditions. We predicted that for the individual comparison of 
the social condition, we would observe positive associations between bNIRS and EEG measures, 
that is a simultaneous increase in haemodynamics/metabolism and neural oscillatory activity in the 
beta and gamma frequency bands (based on previous combined EEG- fMRI studies Scheeringa et al., 
2011; Scheeringa et al., 2009; Goldman et al., 2002; Yuan et al., 2010; Niessing et al., 2005; 
Logothetis et al., 2001; Koch et al., 2009) which would be localised to core social brain regions. 
We hypothesised that for the non- social condition, over the same brain regions, positive associations 
would be observed between bNIRS and EEG measures, but they would be a simultaneous decrease 
in haemodynamics/metabolism and oscillatory activity. We also expected simultaneous increases in 
haemodynamics/metabolism and oscillatory activity to be localised to the parietal brain region. These 
predictions are based on our previous work (Siddiqui et  al., 2021) where we demonstrated that 
stronger coupling between haemodynamics and metabolism was observed in the temporo- parietal 
regions for the social condition and in parietal region for the non- social condition which is known to 
play an important role in object processing (Wilcox et al., 2010; Dekker et al., 2011). For the social 
versus the non- social contrast, we predicted that haemodynamic activity and metabolism would be 
coupled with neuronal oscillatory activity more strongly for the social stimuli in comparison to the non- 
social stimuli, with significant differences being observed in the temporo- parietal regions.

Results
Naturalistic social stimuli elicit expected increases in broadband EEG 
activity
Five- month- old infants (n=42) viewed naturalistic social and non- social stimuli (Figure  1a) while 
we concurrently measured EEG and broadband NIRS. Fourier transform of continuously recorded 
EEG data from 32 channels (n=35) in 1 s segments across the time course of stimulus presentation 
confirmed robust broadband increases in neural activity in response to social versus non- social stimuli 
(Figure 1b, replicating [Jones et al., 2015]).

Haemodynamic and metabolic coupling and oscillatory activity spatially 
overlap
We used a method that we have previously validated to integrate haemodynamic and metabolic 
signals from the bNIRS data (n=25) to investigate the relationship between the two signals (Siddiqui 
et  al., 2021; Pinti et  al., 2021). Using this method, we obtained indices that indicated whether 

https://doi.org/10.7554/eLife.84122
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specific brain regions either had a high level of coordinated coupling between haemodynamics and 
metabolism (i.e. coupled increases in metabolic function and oxygenated blood flow) or a mismatched 
coupling (i.e. an increase in metabolic function and a concurrent decrease in oxygenated blood flow). 
This revealed distinct locations sensitive to social (Figure 2b) and non- social (Figure 2d) processing; 
the topography of these locations is similar to the topography of differentiated broadband EEG 
activity (Figure 2a and c), particularly for haemodynamic and metabolic coupling at channels 12 and 
14 and EEG theta band activity.

Coupled signals highlight specialised activation in the temporal parietal 
junction
We then convolved the time course of the block- averaged within- hemisphere EEG time- series 
responses with an infant- specific haemodynamic response function (HRF) (n=14; Figure 3). A general 
linear model (GLM) approach was then used to identify false discovery rate (FDR)- corrected associ-
ations between all EEG locations and the bNIRS channels that showed significant coupling between 
the metabolic and haemodynamic response (Figure  2b and d). In line with the results shown in 
Figure 2b and Figure 2d, we expected the spatial coupling between bNIRS and EEG to differ for 
the social and non- social conditions. We predicted that for the social condition, we would observe 
coordinated increases in haemodynamic/metabolic activity (HbO2 and oxCCO) and neural oscillatory 
activity (positive associations between bNIRS and EEG) in the beta and gamma frequency bands over 
the temporo- parietal region. Meanwhile, we expected that for the non- social condition, we would 

Figure 1. Order of stimulus presentation and EEG scalp topography. (a) Illustration of the paradigm. (b) Scalp topographies of the grand average root 
mean square (RMS) power for theta, alpha, beta, and gamma frequency bands (averaged across participants, averaged across the stimulus period) for 
the social minus non- social condition. The orange stars indicate statistically significant electroencephalography (EEG) electrodes where an increase in 
activity was observed (e.g. increase in response to the social condition compared to the non- social condition); a double line indicates significance after 
false discovery rate (FDR) correction.

https://doi.org/10.7554/eLife.84122
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Figure 2. Scalp topographies of the grand average root mean square (RMS) power for theta, alpha, beta, and gamma frequency bands averaged 
across participants, averaged across the stimulus period for (a) social and (c) non- social conditions. The black dots show the locations of the 
electroencephalography (EEG) electrodes while the orange circles represent the broadband near- infrared spectroscopy (bNIRS) channels. Locations of 
high haemodynamic and metabolic coupling for (b) social and (d) non- social condition. (b and d) are reproduced from Figure 7 in Siddiqui et al., 2021.

https://doi.org/10.7554/eLife.84122
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observe coordinated decreases in haemodynamic/metabolic (HbO2 and oxCCO) activity and neural 
oscillatory activity (also resulting in positive associations between bNIRS and EEG) over the temporo- 
parietal region and coordinated increases over the parietal region. We expected negative associations 
between HHb and oxCCO for both conditions. We predicted that the comparison of social versus 
non- social would show associations between bNIRS and EEG were stronger for the social condition.

Figure  3—figure supplement 1 shows the individual statistical comparisons of the social (red 
colour scale) and non- social (blue colour scale) conditions. For both conditions, bNIRS- EEG coupling 
was consistently observed between bNIRS channel 14 and various EEG channels, which were posi-
tioned over the parietal and superior temporal sulcus- temporal parietal junction regions, respectively. 
For the social condition, a coupled increase in haemodynamic/metabolic activity and neural oscillatory 
activity was observed in the beta, gamma, and high- gamma frequency bands, which was primarily 
concentrated in the temporo- parietal region (e.g. bNIRS channel 14 and EEG electrodes Pz, PO4). 
A consistent pattern of coupling with neuronal activity was observed across chromophores particu-
larly for the beta band. For the non- social condition, no coupling was observed between haemody-
namics and neural activity (i.e. HbO2 and HHb) for the low- frequency theta and alpha frequency bands. 
Meanwhile, a coupled increase in metabolic activity and neural activity was observed between bNIRS 
channel 14 and occipital and parietal EEG locations (O2, PO8, P10, P4 for the theta band and P10 
for the alpha band). Moreover, in the high- frequency beta, gamma and high- gamma bands, coupling 
was observed primarily for HHb and oxCCO between bNIRS channel 14 and occipital, and parietal 
EEG locations (Oz, O2, and PO8). A consistent pattern of coupling was observed between HHb and 
oxCCO. Several long- range associations were also observed such as those in the beta frequency 
bands between bNIRS channels 12 and 13 and EEG locations TP8 and T8 respectively for the social 
condition for HbO2 and between bNIRS channel 14 and EEG locations C2 and Cz for the non- social 
condition for HHb and oxCCO.

Figure 3. Summary of the procedure for obtaining the associations between broadband near- infrared spectroscopy (bNIRS) signals and 
electroencephalography (EEG) root mean square (RMS) power at each bNIRS combination, for each frequency band.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. False discovery rate (FDR)- corrected significant connections between broadband near- infrared spectroscopy (bNIRS) channels 
(squares) and electroencephalography (EEG) electrodes (circles) for the (i) theta, (ii) alpha, (iii) beta, (iv) gamma, and (v) high gamma bands for the social 
condition (red colour bar) and the non- social condition (blue colour bar) for HbO2, HHb, and oxCCO.

Figure supplement 2. False discovery rate (FDR)- corrected significant connections between broadband near- infrared spectroscopy (bNIRS) channels 
and electroencephalography (EEG) electrodes for the (i) theta, (ii) alpha, (iii) beta, (iv) gamma, and (v) high gamma bands for the social condition versus 
the non- social condition for HbO2, HHb, and oxCCO.

https://doi.org/10.7554/eLife.84122
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Figure 3—figure supplement 2 shows the statistical comparison of the social versus the non- social 
condition. Not many significant differences were observed between bNIRS and EEG associations for 
the two conditions. Significant differences were observed between bNIRS channel 14 and Pz (with 
stronger association for the social condition) in the gamma frequency band for HbO2. Meanwhile, 
significant differences were observed between bNIRS channel 14 and O2 (with stronger association 
for the non- social condition) in the high- gamma band for oxCCO. This suggests differential coupling 
between haemodynamic/metabolic activity and neural activity for each condition.

Using image reconstruction on the bNIRS data, the spatial sensitivity of the bNIRS location that 
showed the clearest differences in coupling (channel 14) are shown in Figure 4. The method for image 
reconstruction has been described in detail in the Methods section. The results indicate that the 
bNIRS- EEG coupling was most consistent with the spatial extent changes in metabolic activity (CCO).

Discussion
We develop a tool that enabled multimodal imaging analysis of coordinated neural activation, meta-
bolic demand, and oxygenated haemoglobin delivery in the infant brain. As a proof of principle, we 
examined the relationship between these measures to identify regional selectivity to social versus non- 
social stimuli. To first demonstrate the scale and spatial sensitivity of the coupling between haemo-
dynamic/metabolic activity and neuronal oscillatory activity, comparisons were performed individually 
for the social and non- social conditions. For this, we predicted a simultaneous increase in haemody-
namics/metabolism and neural activity in the beta and gamma frequency band. We predicted that for 
the social condition this would be localised to the core social brain regions (temporo- parietal region) 
while for the non- social condition, we expected the coupling to be localised to parietal regions, 
known to be involved in object processing (Wilcox et al., 2010; Dekker et al., 2011). We additionally 
expected a simultaneous decrease in haemodynamic/metabolic activity and neural activity over the 
temporo- parietal region for the non- social condition, in accordance with our previous work (Siddiqui 
et al., 2021). Next, to demonstrate differential coupling for social and non- social stimuli, we performed 
a comparison of the social condition versus the non- social condition. For this, we hypothesised that in 
the beta and gamma frequency bands, there would be stronger coupling between haemodynamics/
metabolism and neural activity for the social condition over the temporo- parietal region.

Figure 4. Grand average image reconstruction at 18 s post- stimulus onset for the social condition (a–c) and the non- social condition (d–f) at a single 
time point of 18 s post- stimulus onset. The concentration changes for HbO2 and HHb were normalised to the maximum concentration change of HbO2 
while ΔoxCCO was normalised to its own maximum change in concentration. Channel 14 has been indicated.

https://doi.org/10.7554/eLife.84122
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Confirming previous work, naturalistic social and non- social stimuli produce broad haemodynamic 
changes, with smaller spatial extent of locations with coupled haemodynamic and metabolic activity 
(Siddiqui et al., 2021). We also replicated previously observed greater EEG responses to social versus 
non- social stimuli (Jones et al., 2015). However, examining coupling between these two phenomena 
uncovered a precise pattern in which specific locations in the parietal and temporo- parietal regions 
showed differential coupling between bNIRS- EEG for social and non- social stimuli, particularly for 
the beta and gamma band frequency bands, as we predicted. We contend that this approach iden-
tifies a more localised regional area with selective coordination of neural, haemodynamic, and meta-
bolic activity. The increased localisation observed in our coupling analysis may indicate our approach 
provides a more rigorous measure of functional specialisation. Widespread use of this technique will 
accelerate our understanding of both the typically and atypically developing brain. Unexpectedly, 
while most associations between haemodynamic/metabolic activity and oscillatory activity were local-
ised, we observed several long- range connections between haemodynamic/metabolic and neural 
signals. It has been hypothesised that long- range functional connectivity patterns are vital for the 
organisation of human brain structure and function (Wang et al., 2021). The strongest coupling was 
observed between temporo- parietal bNIRS channel 14 with parietal EEG locations Pz and PO4 for 
the social condition (for beta and gamma frequency bands). Meanwhile, for the non- social condition, 
coupling was observed between temporo- parietal bNIRS channel 14 with occipital and parietal EEG 
locations Oz, O2, PO8, and P10 (for theta and beta frequency bands). While an overall consistent 
pattern of associations across chromophores and conditions was observed, some variability was also 
seen, particularly across frequency bands. This was expected and in line with previous EEG- fMRI 
studies that have demonstrated task- dependent variation in coupling between neural and haemody-
namic activity across frequency bands (Scheeringa et al., 2011; Scheeringa et al., 2009; Goldman 
et al., 2002; Yuan et al., 2010; Niessing et al., 2005; Logothetis et al., 2001; Koch et al., 2009). 
For example, for resting- state simultaneous fMRI and EEG, stronger coupling between the BOLD 
response and neural activity has been observed for the alpha band (Scheeringa et al., 2012). Mean-
while, for cognitive tasks, stronger coupling has been observed in the gamma frequency band (Kuce-
wicz et al., 2014). Scheeringa et al., 2011, investigated trial- by- trial coupling of EEG and BOLD 
activity and found that low- and high- frequency bands independently contribute to explaining BOLD 
variance. We therefore expected the frequency band showing the strongest coupling between bNIRS 
and EEG for each of the stimuli to vary. Further, while we did expect and observe significant overlap 
in associations between chromophores within each frequency band, some variability was seen. For 
example, for the social condition, no associations were observed in the low- frequency bands for any 
of the chromophores. Moreover, in the beta frequency bands, all chromophores displayed significant 
associations between bNIRS channel 14 and Pz for the social condition and both HHb and oxCCO 
displayed significant associations between bNIRS channel 14 and O2, PO8, and C2. Similarly, in the 
gamma frequency bands, both HbO2 and oxCCO displayed significant associations between bNIRS 
channel 14 and PO4. The variability that was observed between chromophores was limited mostly to 
the non- social condition. For example, only oxCCO displayed significant associations between bNIRS 
and EEG for the low- frequency theta and alpha frequency bands. It is well known that various compo-
nents involved in neurovascular coupling undergo development postnatally, see the review by Harris 
et al., 2011, for a full discussion. Briefly, there is an extensive structural change within cerebral micro-
vasculature including growth, extension, and proliferation of new blood vessels (Rowan and Maxwell, 
1981; Norman and O’Kusky, 1986). Further, studies have also demonstrated gradual development 
of vascular reactivity (i.e. change in vascular tone, vasoconstriction, and vasodilation) (Scheeringa 
et al., 2011; Scheeringa et al., 2009) which is necessary for the propagation of the NVC response 
(Chen et al., 2014). Lastly, pericytes and astrocytes which are key components of NVC are also known 
to undergo development in size, number, connectivity, and branching (Kozberg and Hillman, 2016; 
Fujimoto, 1995; Seregi et al., 1987; Stichel et al., 1991). From the metabolic perspective, infant 
positron emission tomography (PET) studies demonstrate regional- specific, progressive increase in 
the cerebral metabolic rate of oxygen consumption (CMRO2) (Chugani et  al., 1987) while others 
evidence a developmental maturational change in oxidative metabolism (Kozberg and Hillman, 
2016). In adults, previous research has also suggested that oxygen consumption is more spatially 
localised in comparison to changes in cerebral blood flow (Malonek and Grinvald, 1996) and that 
oxCCO has distinct spatial distributions in the brain (Phan et al., 2016; Wong- Riley et al., 1993; 

https://doi.org/10.7554/eLife.84122
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Hevner et al., 1995), indicating that energy metabolism may be more spatially specific. The spatial 
distribution of oxCCO in different brain regions currently remains unmapped in the developing infant 
brain, however. Therefore, taken together, given that during early development there are extensive 
changes in cerebral vasculature as well as the metabolic environment and potential variability in the 
spatial distribution of oxCCO, it is expected that there will be some variability observed in the asso-
ciations between the haemodynamics and metabolism with neural activity. In our study, we observed 
more consistent oxCCO- EEG associations across frequency bands and stimuli with more localised 
(fewer long- range) associations. Further studies with a larger sample size and longitudinal follow- up 
can provide a clearer view on how NVC develops in infancy which will help explain some of the 
observed variability. Moreover, future studies with high- density bNIRS arrays will provide clarification 
on the spatial distribution of oxCCO in the infant brain.

EEG profiles observed in the present study are consistent with previous studies in identifying 
increased gamma band activity over temporal and parieto- occipital brain regions during face 
processing (Uono et al., 2017; Ghuman et al., 2014; Bayer et al., 2018; Müller- Bardorff et al., 
2018; Nguyen and Cunnington, 2014; Nguyen et al., 2014; Engell and McCarthy, 2011; Bossi 
et al., 2020; Anaki et al., 2007; Ishai et al., 2000; Pelphrey et al., 2005; Sato et al., 2014; Zion- 
Golumbic et al., 2008; Gao et al., 2013). High- frequency neural firing is associated with localised 
processing (von Stein and Sarnthein, 2000) whilst lower- frequency activity is associated with larger- 
scale network changes and transfer of information across systems (Canolty and Knight, 2010). The 
increase in lower- frequency activity during social attention also observed here and in other work 
(Jones et al., 2015; van der Velde et al., 2021) may support larger- scale connectivity and communi-
cation of information through cross- frequency coupling (Ghuman et al., 2014). Our work further indi-
cates that measures of metabolic load may provide important additional information in understanding 
localisation of brain function. Localised high- frequency activity exerts strong metabolic demand 
(Smith et al., 2002; Kann, 2011) and subsequent increases in oxygenated haemoglobin (Logothetis 
et al., 2001; Niessing et al., 2005; Goense and Logothetis, 2008). These increases in metabolic 
rate are supported by increased activity in the mitochondrial ETC, resulting in the changes in CCO 
we detected with broadband NIRS. Nitric oxide (which competes with oxygen to bind to CCO) and 
carbon dioxide (produced as a by- product in the ETC) are key signalling molecule in controlling neuro-
vascular coupling and thus subsequent oxygen delivery (Hosford and Gourine, 2019; Hosford et al., 
2022). Finally, reactive oxygen species produced by the ETC are a key signal in inducing synaptic 
plasticity (Oswald et al., 2018). Thus, our work is consistent with a model in which social attention 
induces localised high- frequency brain activity in the temporal parietal junction, which increases local 
metabolic rates, triggering synaptic plasticity and subsequent oxygen delivery to a broader region.

Our work particularly highlights the temporal- parietal junction is showing strong coupling and 
social selectivity. Previous studies measuring haemodynamic activity have identified early sensitivity 
of this region to social stimuli from at least 4 months (Lloyd- Fox et al., 2017), alongside a broader 
network of other regions. Here, we pinpoint this specific location as having coupled neuronal, meta-
bolic, and haemodynamic activity that is modulated in opposite directions by complex social and non- 
social content. In the adult brain, the temporal- parietal junction has received considerable attention 
and there are several competing models of its function. It has been linked to mentalising (Schurz 
et al., 2014; Schurz et al., 2017) and reorienting attention to behaviourally relevant stimuli (Corbetta 
and Shulman, 2002); it can be viewed as a nexus area where the convergence of attention, language, 
memory, and social processing supports a social context for behaviour (Carter and Huettel, 2013) 
or as a region that is active when awareness of a prediction permits attentional control (Wilterson 
et al., 2021). Intriguingly, recent formulations within the predictive coding framework link the right 
temporal- parietal junction to a domain- general role in prediction, perhaps representing the precision 
of priors (Masina et al., 2022). Predictability has been linked to energy efficiency, with some compu-
tational models showing that energy limitations are the only requirement for driving the emergence 
of predictive coding (Ali et al., 2021). Increases in beta/gamma have also been linked to unexpected 
reward processing (HajiHosseini et al., 2012). Taken together, our results may indicate the early pres-
ence of priors for social interaction that are being actively updated (in contrast to the dynamic toys, 
which may already be more predictable).

The methods we developed could be broadly applied to study both neurotypical and atypical 
brain function. Assessing coupling over developmental time may reveal the mechanisms underpinning 
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neural specialisation and constrain theoretical frameworks seeking to explain specialisation in the 
adult brain. The mechanisms of neurovascular coupling remain unclear in the adult brain (Hosford and 
Gourine, 2019), and are developing in infancy (Kozberg and Hillman, 2016), and novel multimodal 
and non- invasive approaches to their identification could yield significant progress. Computational 
models could test the role of constraints in energy supply on developing localisation of function. 
Further, the region identified here also shows atypical haemodynamic responsiveness in infants with 
later symptoms of autism (Lloyd‐Fox et al., 2018); since mitochondrial dysfunction has become an 
increasing focus in autism (Siddiqui et al., 2016) the possibility that atypical coupling may impact 
specialisation in autism is an important hypothesis to test. Further, our methods have applicability in 
determining the impacts of early brain injury. Recent work (Bale et al., 2019) measured both cere-
bral oxygenation and energy metabolism in neonates with brain injury (hypoxic- ischaemic encepha-
lopathy) and demonstrated that the relationship between metabolism and oxygenation was able to 
predict injury severity. This therefore provided a clinical, non- invasive biomarker of neonatal brain 
injury. Indicating applicability across the lifespan (Vezyroglou et al., 2022) simultaneous measure-
ments of cerebral oxygenation, metabolism, and neural activity in epilepsy revealed unique metabolic 
profiles for healthy brain regions in comparison to those with the regions of the epileptic focus. The 
work in epilepsy demonstrates the strength of combining measurements from multiple modalities to 
investigate brain states, particularly in clinical populations.

Our work has several limitations. We used naturalistic stimuli to maximise ecological validity; 
however, this reduces our ability to probe the function of the temporal- parietal junction across specific 
stimulus dimensions and this is an important target for future work. Limitations of current technology 
meant we recorded from the right hemisphere only and thus cannot determine the specificity of our 
findings to left temporal- parietal junction; engineering advances are required to produce whole- head 
bNIRS devices. Moreover, we only studied one age group of infants between 4 and 7 months; there-
fore, we could not investigate developmental change.

Conclusion
Energy metabolism and neural activity are known to be tightly coupled in order to meet the high 
energetic demands of the brain, both during a task (Jeong et al., 2006; Lundgaard et al., 2015) 
and at rest (Rocher et al., 2003). It has been hypothesised that the level of correspondence between 
energy metabolism and neuronal activity may be an indicator for brain specialisation (Jeong et al., 
2006; Shokri- Kojori et al., 2019; Vaishnavi et al., 2010). Here, we developed a system to simultane-
ously measure multichannel broadband NIRS with EEG in 4- to 7- month- old infants to investigate the 
neurovascular and neurometabolic coupling. We presented a novel study combining bNIRS and EEG 
and show stimulus- dependent coupling between haemodynamic, metabolic, and neural activity in the 
temporal- parietal junction. The results highlight the importance of investigating the energetic basis 
of brain functional specialisation and opens a new avenue of research which may show high utility for 
studying neurodevelopmental disorders and in clinical populations where these basic mechanisms are 
altered.

Methods
Participants
The study protocol was approved by the Birkbeck Ethics Committee, ethics approval number 
161,747. Participants were forty- two 4- to 7- month- old infants (mean age: 179±16 days; 22 males and 
20 females); parents provided written informed consent to participate in the study, for the publication 
of the research and additionally for the publication and use of any photographs taken during the study 
of the infant wearing the NIRS- EEG headgear. Inclusion criteria included term birth (37–40 weeks); 
exclusion criteria included known presence or family history of developmental disorders. The sample 
size was determined by performing a power analysis of existing data using G*Power.

Experimental procedure
The experimental stimuli were designed using Psychtoolbox in Matlab (Mathworks, USA) and consisted 
of social and non- social videos. The social videos consisted of a variety of full- colour video clips of 
actors performing nursery rhymes such as ‘pat- a- cake’ and ‘wheels on the bus’. The non- social videos 
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consisted of dynamic video clips of moving mechanical toys. The visual and auditory components of 
both social and non- social videos were matched. These videos have been used extensively in prior 
infant studies in both EEG (Jones et al., 2015) and NIRS studies (Lloyd- Fox et al., 2009; Lloyd- Fox 
et al., 2014). Both social and non- social experimental conditions were presented alternatingly for a 
varying duration between 8 and 12 s. The baseline condition consisted of static transport images, for 
example cars and helicopters, which were presented for a pseudorandom duration of 1–3 s each for a 
total of 8 s. Following the presentation of the baseline condition, a fixation cross in the shape of a ball 
or a flower appeared in the centre of the screen to draw the infant’s attention back to the screen in 
case the infant had become bored during the baseline period. The following experimental condition 
was then presented once the infant’s attention was on the fixation cross. Figure 1a depicts the order 
of stimulus presentation. All infants sat in their parent’s lap at an approximate distance of 65 cm from a 
35- in screen which was used to display the experimental stimuli. The study began with a minimum 10 s 
rest period to draw the infant’s attention towards the screen during which the infant was presented 
with various shapes in the four corners of the screen. Following this, the baseline and experimental 
stimuli were presented alternatingly until the infant became bored or fussy.

Data acquisition and array placement
bNIRS and EEG data was acquired simultaneously and the bNIRS optodes and EEG electrodes were 
positioned on the head using custom- built, 3D printed arrays which were embedded within a soft 

Figure 5. Schematic representation of broadband near- infrared spectroscopy (bNIRS) and electroencephalography (EEG) channel locations. 
(a) Locations of bNIRS channels (grey circles) over the occipital cortex and the right hemisphere and locations of the bNIRS sources (orange circles) and 
detectors (green circles) relative to EEG 10/20 locations. Channels shown in blue (3, 6, 8, and 10) were excluded from the analysis (b) Locations of the 32 
EEG electrodes.
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neoprene cap (Neuroelectrics, Spain). Figure 5a and b shows the locations of bNIRS optodes and 
EEG electrodes on the head. Figure 1b shows the combined bNIRS- EEG headgear positioned on an 
infant. The array was designed to allow measurement from several cortical regions which included 
occipital, parietal, temporal, and central regions to allow investigation of neurovascular coupling in 
different cortical regions that are expected to be activated by dynamic stimuli.

Broadband NIRS
Brain haemodynamic (Δ[HbO2], Δ[HHb]) and metabolic changes (Δ[oxCCO]) were measured using 
an in- house broadband NIRS system developed at University College London (Phan et al., 2016). 
The bNIRS system consisted of two light sources that consisting of halogen light bulbs (Phillips) that 
emitted light in the near- infrared range (504–1068 nm). The light was directed to the infant’s head 
through customised bifurcated optical fibres (Loptek, Germany), allowing each light source to split into 
two pairs of light sources. This formed a total of four light sources at the participant- end and each pair 
of light sources were controlled by a time multiplexing mechanism whereby one pair of light sources 
was on every 1.4  s. The system also consisted of 14 detector fibres at the participant- end which 
were connected to two spectrometers, 7 for each spectrometer (in- house developed lens spectro-
graphs and PIXIS512f CCD cameras; Princeton Instruments). The configuration of 4 light sources and 
14 detectors formed a total of 19 measurement channels. These were positioned over the occipital 
cortex and the right hemisphere as shown in Figure 5a. The source detector separation was 2.5 cm.

Data were analysed in Matlab (Mathworks, USA) using in- house scripts. First, for each participant, 
across all wavelengths, wavelet- based motion correction (Molavi and Dumont, 2012) was applied 
to the attenuation change signal to correct for motion artifacts. The tuning parameter α = 0.8 was 
used. Following this, the UCLn algorithm (Bale et al., 2016) was used with a wavelength- dependent, 
age- appropriate fixed differential path- length factor value of 5.13 (Duncan et al., 1995). While the 
light sources emitted light between 504 and 1068 nm, the changes in concentration of HbO2, HHb, 
and oxCCO were calculated using 120 wavelengths between 780 and 900 nm. A fourth- order band-
pass Butterworth filter from 0.01 to 0.4 Hz was used to filter the data. For each infant, channels were 
assessed for signal quality and any channels with poor signal quality were rejected. Following this, 
the HbO2, HHb, and oxCCO time- series were entered into a GLM to correlate bNIRS and EEG data.

For each infant, intensity counts (or photon counts) from each of the 14 detectors were used to 
assess the signal- to- noise ratio (SNR) at each channel and the channels with intensity counts lower 
than 2000 or higher than 40,000 were excluded (Phan et al., 2016). If an infant had more than 60% 
of channels excluded, they were excluded from the study. At the group level, five channels over the 
occipital cortex were excluded due to poor SNR in majority of infants (channel 3 excluded in 64% 
of infants, channel 6 excluded in 83% of infants, channel 7 excluded in 64% of infants, channel 8 
excluded in 79% of infants) and one channel over the right hemisphere was excluded in 100% of 
infants due to a damaged optical fibre. The average number of blocks included at each channel was 6.

EEG
EEG was used to measure neural activity simultaneously to haemodynamic and metabolic activity 
using the Enobio EEG system (Neuroelectrics, Spain) which is a wireless gel- based system. The system 
consisted of 32 electrodes, the locations of which are shown in Figure 5b. The sampling rate of the 
system was 500 Hz. The experimental protocol in Psychtoolbox sent event markers to both bNIRS and 
EEG systems using serial port communication which was then used to synchronise the bNIRS and EEG.

All data were analysed using the EEGlab Toolbox (Schwartz Centre for Computation Neuroscience, 
UC San Diego, USA) and in- house scripts in Matlab (Mathworks, USA). The raw EEG signal was band- 
pass filtered between 0.1 and 100 Hz and a notch filter (48–52 Hz) was applied to remove artefacts 
due to line noise. Following this, blocks of the data were created such that they consisted of the base-
line period prior to the stimulus presentation and the entire following stimulus period. These blocks 
were then segmented into 1 s segments such that for both the baseline and the stimulus, each 8–12 s 
presentation of the baseline condition or the stimulus condition yielded 8–12 × 1 s segments. These 
1 s segments consisted of 200 ms of the previous 1 s segment and 800 ms of the current segment and 
the 200 ms was used for baseline correction of each 1 s segment. This will be referred to as ‘within- 
segment baseline correction’ from here. Segments where the infants were not visually attending to 
the stimulus were removed. An average of 30 × 1 s segments were included per infant. Artefacts 
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were detected using automatic artifact detection in EEGlab and through manual identification. EEG 
segments were rejected if the signal amplitude exceeded 200 μV, or if electro- ocular, movement, or 
muscular artefacts occurred. Channels with noisy data were interpolated by an algorithm incorporated 
within EEGlab. Data were then re- referenced to the average reference.

Within each block (consisting of the baseline period and the stimulus period), each artefact- free 1 s 
segment was subjected to a power analysis to calculate the average root mean square (RMS) power 
for both low- and high- frequency bands – theta (3–6 Hz), alpha (8–12 Hz), beta (13–30 Hz), gamma 
(20–60 Hz), and high gamma (60–80 Hz), within each 1  s segment. This then yielded the average 
RMS power across the block (baseline period + following stimulus period). Baseline correction was 
performed by subtracting the average of the 2 s of the baseline period from the entire block. This 
will be referred to as the ‘block baseline correction’ from here on. RMS power was chosen as the 
metric to correlate bNIRS and EEG data as previous studies have demonstrated that task- related 
BOLD changes are best explained by RMS (Kilner et al., 2005; Rosa et al., 2010). The blocks were 
then averaged across trials to obtain an averaged RMS response per participant. A portion of the 
averaged RMS power was then entered into a GLM analysis described below – this consisted of 8 s 
of the stimulus period. Figure 6—figure supplement 1 provides a visual depiction of how the RMS 
power was derived from the pre- processed EEG data. For each participant, the RMS power was also 
averaged across the stimulus period for statistical analysis of the EEG data. For each frequency band, 
statistical t- tests were performed on this averaged RMS power comparing the social condition versus 
the baseline (RMS power was averaged during the baseline period), the non- social condition versus 
the baseline, and social versus non- social. The FDR procedure using the Benjamin- Hochberg method 
(Benjamini and Hochberg, 1995) was performed to correct for multiple comparisons, across the 32 
EEG channels.

Data analysis
Figure 6—figure supplement 2 outlines the data analysis pipelines for both bNIRS and EEG data, as 
well as the procedure for the combined bNIRS- EEG analysis.

Figure 6. Simplified summary of the signalling pathways that mediate neurovascular coupling. High- frequency neural activity causes the release of 
neurotransmitters such as glutamate and noradrenaline which bind to either N- methyl- D- aspartate (NMDA) receptors in interneurons or metabotropic 
glutamate receptors (mGluR) or adrenaline receptors in astrocytes. In both cases, this causes an influx of calcium (Ca2+) which in turn leads to an increase 
in adenosine triphosphate (ATP) production through the mitochondrial electron transport chain (ETC). As a by- product, in interneurons, nitric oxide 
(NO) is produced in the interneurons which dilates arterioles to increase blood flow leading to increased oxygen delivery in surrounding brain regions. 
Alternatively, in astrocytes derivates of arachidonic acid (AA) include prostaglandins (PG) and epoxyeicosatrienoic acids (EET) which cause vasodilation. 
This figure has been adapted from Harris et al., 2011.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Procedure for deriving the electroencephalography (EEG) root mean square (RMS) power from the pre- processed EEG data.

Figure supplement 2. Flowchart for the data analysis pipelines for broadband near- infrared spectroscopy (bNIRS) (left), electroencephalography (EEG) 
(middle), and combined bNIRS- EEG (right).
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Combined NIRS-EEG analysis
A GLM (Friston et al., 1994) approach was employed to investigate the relationship between the 
bNIRS haemodynamic and metabolic data with the EEG neural data. Figure 6 shows the physiological 
relationship between EEG neural activity and the bNIRS haemodynamic and metabolic signals. The 
canonical GLM typically uses a model of the expected haemodynamic response, that is the HRF, to 
predict the haemodynamic signal. However, given the differences in the haemodynamic response in 
adults and infants, the standard adult HRF model cannot be assumed for infant data. For example, 
infants display a delay in their haemodynamic responses (Schroeter et al., 2004; Shimada and Hiraki, 
2006; Minagawa- Kawai et al., 2011). In addition, the analogous of the HRF is not established for 
the metabolic response (i.e. the metabolic response function [MRF]). Therefore, the first step of this 
analysis involved reconstructing the HRF for HbO2 and HHb and the MRF for oxCCO before combing 
bNIRS and EEG data.

The reconstruction of the infant HRF and MRF started with block- averaging the HbO2, HHb, and 
oxCCO signals for social and non- social conditions within each infant. Based on our previous study 
(Siddiqui et al., 2021), we selected only the channels that displayed statistically significant responses 
to the contrast task versus baseline. The single subjects block- averaged responses were averaged 
across the social and non- social conditions and then across the significant channels. The resulting 
block- averaged responses were then averaged across the group to obtain a ‘grand average’ HbO2, 
HHb, and oxCCO response.

The grand average was then used in an iterative approach to estimate the HRF and MRF that 
best fit the HbO2, HHb, and oxCCO responses. This involved fitting the grand- averaged signals with 
different HRF/MRF models starting from the canonical HRF made of two gamma functions and varying 
the following parameters: (a) delay of response, (b) delay of the undershoot, and (c) ratio of response 
to undershoot to identify the combination of parameters that best reconstructed the infant HRF/
MRF for the social/non- social stimuli. The parameters were varied in increments of 1 s such that the 
delay of the response was varied from 5 to 15 s from the stimulus onset, the delay of the undershoot 

Figure 7. Procedure for obtaining the reconstructed haemodynamic response function (HRF) and the metabolic response function (MRF). The panel on 
the right shows the estimated HRF and MRF with the corresponding basis function parameters giving the best fit with the group- averaged HbO2, HHb, 
oxCCO responses. The yellow shaded areas represent the stimulation periods.
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was varied from 5 to 20 s, and the ratio of the response to the undershoot was varied from 2 to 6 s. 
All possible combinations of parameters were tested. The grand average responses were fitted with 
each HRF/MRF in GLM approach, and β-values were obtained for each combination of the HRF/MRF 
parameters. The β-values were entered into a statistical test and the parameter combinations that 
yielded the highest, statistically significant β-values (i.e. the model best fitting the data) were selected 
to reconstruct the infant HRF/MRF. This is approach is similar to those used previously to reconstruct 
the infant HRF (Minagawa- Kawai et al., 2011) and identified the best fit to be with a 2 s delay of 
response for HbO2 and HHb and a 3 s delay of response for oxCCO in comparison to the adult HRF 
(i.e. 6 s). Moreover, the delay of the undershoot was 9 s earlier for all chromophores and the ratio of 
the response to the undershoot was 2 for HbO2 and HHb and 3 for oxCCO, in comparison to 6 for 
the adult HRF. These correspond to the basis function representing the haemodynamic/metabolic 
response to an event of zero duration/impulse function. The new reconstructed HRF and MRF were 
then used for the GLM approach to correlate bNIRS and EEG data. The process for estimating the 
HRF and MRF has been depicted in Figure 7.

To constrain the analysis, we chose to investigate coupling of haemodynamic and metabolic 
with neural activity at specific channels. For this, we used the results from an analysis we described 
previously that combined bNIRS haemodynamic and metabolic signals (Siddiqui et al., 2021; Pinti 
et al., 2021). The results from this identified task- relevant cortical regions displayed high levels of 
haemodynamic and metabolic coupling. The bNIRS channels that displayed significant haemody-
namic and metabolic coupling for social and non- social conditions were used here. All EEG chan-
nels were used as EEG is not as spatially specific as bNIRS. For each infant, for each chromophore, 
for each channel, and each EEG frequency band, the new infant HRF/MRF that was reconstructed 
in the previous step was convolved with the events to obtain the ‘predicted’ bNIRS signal. The 
‘predicted’ bNIRS signal was then convolved with the EEG RMS power block (consisting only of 
the data from the stimulus period) at each frequency band to obtain the neural regressor for the 
bNIRS data, considering both social and non- social conditions together. The design matrix thus 
included the neural regressor reflecting the increased EEG activity to the social and non- social 
stimuli and used to fit the bNIRS data. This was performed for HbO2, HHb, and oxCCO individually 
for all the channels. β-Values were estimated for each channel and t- tests against 0 were conducted 
to test whether there was a statistically significant association between bNIRS signals and EEG 
frequency bands. The FDR procedure using the Benjamin- Hochberg method (Benjamini and Hoch-
berg, 1995) was performed to correct for multiple comparisons across EEG and bNIRS channels. 
The FDR- corrected significant t- values were plotted. This method has been used in numerous 
studies previously in correlating fMRI BOLD- EEG (Scheeringa et al., 2009). Only bNIRS channels 
that displayed significant (prior to FDR correction) haemodynamic and metabolic coupling were 
used for this analysis (as indicated in Figure  2b and d). For the social condition, channels 12, 
13, and 14 for HbO2, channels 11, 12, 14, and 18 for HHb, and channels 11, 12, 13, 14, and 18 
for oxCCO displayed significant haemodynamic and metabolic coupling. Moreover, for the non- 
social condition, channels 12 and 14 for HbO2, channels 12, 14, and 16 for HHb, and channels 12, 
14, and 16 for oxCCO displayed significant coupling. For consistency, the channels selected for 
the bNIRS- EEG analysis were the same across chromophores and conditions. The final channels 
included in the analysis therefore were channels 11, 12, 13, 14, 16, and 18. For the integrated 
bNIRS- EEG analysis, six channel- wise t- tests were carried (one per included bNIRS channel, e.g. 
6) for each EEG frequency band. Therefore, the FDR correction was applied across the six bNIRS 
channels for each of the hypotheses tested.

For the bNIRS analysis, data from 25 infants was included while for the EEG analysis, data from 
35 infants were included. For the joint bNIRS- EEG analysis, only infants that had both valid bNIRS 
and EEG data for both social and non- social conditions were included and therefore 14 infants were 
included in this analysis.

Image reconstruction
Image reconstruction was performed on the bNIRS data, at the individual subject level and then 
averaged across infants to produce a grand average that is shown in Figure 4. This was done to visu-
ally assess the similarities in the spatial distributions of the changes in HbO2, HHb, oxCCO. For this 
analysis, three additional long- distance channels were created over the right hemisphere (in addition 
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to the 19 bNIRS channels) that had a source/detector separation of 4.3 cm to generate multiple and 
overlapping channels.

More precisely, the block- averaged attenuation changes at 13 discrete wavelengths (from 780 to 
900 nm at 10 nm intervals) for each infant were selected from the bNIRS data. This was done to reduce 
the computational burden of the reconstruction (Arifler et al., 2015). A four- layer infant head model 
(consisting of the grey matter [GM], white matter, cerebrospinal fluid, and extra cerebral tissue) was 
built using averaged MRI data from a cohort of 12- month- old infants presented in Shi et al., 2011. 
The Betsurf segmentation procedure (Jenkinson et al., 2005) was then used to define an outer scalp 
boundary from the average head MRI template. The voxelised four- layer model was converted to a 
high- resolution tetrahedral mesh (∼7.8×105 nodes and ∼4.7×106 elements) using the iso2mesh soft-
ware (Fang and Boas, 2009). The same software was used to create the GM surface mesh (∼5.8×104 
nodes and ∼1.2×105 faces), used to visualise the reconstructed images.

The reconstruction of images of HbO2, HHb, and ΔoxCCO are described elsewhere (Brigadoi 
et al., 2017), using a multispectral approach (Corlu et al., 2005). Wavelength- specific Jacobians were 
computed with the Toast++ software (Schweiger and Arridge, 2014) on the tetrahedral head mesh 
and projected onto a 50 × 60 × 50 voxel regular grid for reconstruction, using an intermediate finer 
grid of 100 × 120 × 100 voxels to optimise the mapping between mesh and voxel space. Optical 
properties were assigned to each tissue type and for each wavelength by fitting all published values 
for these tissue types (Bevilacqua et al., 1999; Strangman et al., 2002; Custo et al., 2006). Diffuse 
boundary sources and detectors were simulated as a Gaussian profile with a 2 mm standard devia-
tion, and Neumann boundary conditions were applied. The inverse problem was solved employing 
the LSQR method to solve the matrix equations resulting from the minimisation and using first- order 
Tikhonov regularisation, with the parameter covariance matrix containing the diagonal square matrices 
with the background concentration values of the three chromophores (23.7 for HbO2, 16 for HHb, and 
6 for ΔoxCCO) (Zhao et al., 2005; Bortfeld et al., 2007) and the noise covariance matrix set as the 
identity matrix. The maximum number of iterations allowed to the LSQR method was set to 50, and 
with a tolerance of 10–5. The regularisation hyperparameter λ was set to 10–2.

The reconstructed images, defined on the same regular grid of the Jacobian, were remapped to 
the tetrahedral head mesh and then projected to the GM surface mesh, by assigning a value to each 
node on the GM boundary surface that was equal to the mean value of all the tetrahedral mesh node 
values within a 3 mm radius. The concentration changes for HbO2 and HHb were normalised to the 
maximum concentration change of HbO2 while ΔoxCCO was normalised to its own maximum change 
in concentration.
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