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Abstract

This paper describes the use of deep reinforcement learning (RL) to apply the concept of cognition in sensing systems to the
choice of operational radio frequency (RF) mode (active, bistatic receive, electronic surveillance (ES), electronic protection
measures (EPM)) for a multi-function RF system (MFRS). This is investigated in a simulated air-to-air combat scenario, with
the RL on a blue fast jet rewarded for successfully guiding a missile to the opposition, a red fast jet, and penalised if the red jet is
successful. Three RL algorithms (deep Q-network (DQN), advantage actor-critic (A2C), and proximal policy optimisation (PPO))
are compared with baselines that include the 4 static modes and a set of fixed rulesets, and it is shown that - after hyperparameter
tuning - the algorithms perform comparably to these baselines. It is suggested that PPO might be the optimal algorithm in this
context.

1 Introduction

The congestion of the electromagnetic (EM) spectrum has neg-
ative impacts on the performance of traditional radar, but also
presents an opportunity: that the RF already available in the
environment could be used to detect and track targets without
having to transmit oneself. A radar acting as the receive node in
such a set up would thereby be more covert and more “green”
with respect to the EM environment. One of the concerns about
this type of radar is that it is reliant on there being good sig-
nals of opportunity available; it is best used in conjunction with
active radar.

This work suggests that there are multiple RF operational
modes (eg active, bistatic receive, ES, or EPM) whose advan-
tages would be better leveraged as part of a set of capabilities
within a single aperture, and applies a type of machine learn-
ing (ML) called RL to the choice of mode at any given time. It
can be argued that this produces a system that can be defined as
cognitive. An air-to-air simulation has been developed that out-
puts data to, and receives instructions from, a RL algorithm that
controls the modes of a MFRS. This architecture has been for-
matted to match the Open AI Gym [1] environments, such that
Stable Baselines [2] agents can be used to quickly test different
RL algorithms.

The rest of this paper continues as follows. Section 2 offers a
definition for cognition when applied to sensing systems, pro-
vides more detail on the modes that a MFRS might use, and
introduces some RL concepts. Section 3 describes the architec-
ture of the simulation and other code scripts that were used,
the measurements of performance that were captured for use as
baselines, and how the the RL algorithms were implemented.

The results are presented and discussed in section 4. Section 5
suggests several steps to continue this work.

The key novel points of this work are: a detailed, quantitative
analysis of the advantages and limitations offered by a MFRS
and these modes in an air-to-air scenario; the application of
RL to this situation; and the comparison of the performance of
the RL algorithms to both the static modes and to fixed-rule
solutions.

2 Context

2.1 Cognition in Sensing Systems

Haykin, in his seminal work on cognitive radar [3], takes gen-
eralised concepts of cognition from psychology and applies
them to radar, defining a cognitive radar to require a perception-
action cycle (PAC), memory, attention and intelligence. Other
definitions [4–7] often include learning, and responsiveness to
the environment, both on transmit and receive. The emphasis
on transmit and receive is partially due to the original focus
on waveform design in [3], and partially due to the inspiration
drawn from the natural world, as bats and dolphins are hailed as
“nature’s masters of echolocation” [7]. As the field has devel-
oped, it has been recognised [8] that a clear definition of a
cognitive radar scale is required. A classification system has
been proposed, where degrees of cognition can be measured
along 3 axes: planning, memory/learning, and decision.

The definition that will be used as a goal for this work
encompasses many of the requirements presented above. It is
acknowledged that it is a more stringent, binary, definition of
cognition, that it is less subtle than that proposed in [8], and
that it may not bring benefits at every level of the radar decision
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chain. However, in this context it represents a (perhaps ambi-
tious) target. The definition states that a cognitive system will
learn from its experiences (ie maintains a memory), and uses
that learning such that it will improve its performance when
presented with the same situation again.

Although not a requirement for cognitive radar, most lit-
erature on the subject uses either sophisticated optimisation
algorithms, or deep learning of some kind, for example RL,
which has been used here. Section 2.3 gives an introduction to
this topic.

2.2 Operational Modes

Airborne RF systems can have many roles to play. On the radar
side, they may be required to survey a large area, detecting
and tracking many targets at once, and passing the informa-
tion to other “blue” parties, either cueing them to form their
own tracks or to take some action regarding the targets. This
role is often performed by an airborne warning and control
system (AWACS). Or perhaps the radar will be cued to form
and maintain a weapons-quality track whilst guiding a mis-
sile towards the target. ES systems, on the other hand, must
analyse a wide frequency band for transmitted signals, and
process this data into useful information on the EM environ-
ment and the transmitters found within it. The fulfillment of
any of these tasks may be required in a congested and con-
tested EM environment, with the spectrum taken up by both
civilian, friendly, and unfriendly military signals. One of the
key pressures towards more bistatic operation is the scarcity of
free frequencies in the spectrum. Similarly, the steadily more
contested EM environment has necessitated research on EPM.

The limited space and power on-board an aircraft, as well as
the increasing flexibility of RF antennas, suggests that combin-
ing these roles into a single aperture might prove advantageous.
Such an MFRS could then have, for instance, the following
modes: active (traditional radar), bistatic (receive only), ES,
EPM.

The new flexibility and potential advantages offered by the
incorporation of new modes into a single aperture come at
the price of additional decisions. When is each mode advan-
tageous? How often should the MFRS change mode? Where is
the tipping point at which remaining covert is no longer worth
the reduction in available information? Because there is, as of
yet, no system that operates in such a flexible way, there is
no received wisdom or established protocol to aid operators in
making these assessments. This work investigates whether arti-
ficial intelligence (AI), specifically RL, can be used to either
produce this protocol, or be used in real-time to make those
decisions.

2.3 Reinforcement Learning

RL is a type of ML in which the “correct” answer is not known,
but an agent is able to interact with an environment. To do so,
the agent observes the current state, st ∈ S of the environment,
and chooses an action, at ∈ A. The environment propagates the
effects of that action, as well as any other dynamics that may

affect the state, and returns a new observation and a reward, r ∈
R for the agent. This reward is an indication of the performance
of the agent, and may be either calculated from values in the
state, for example, the track accuracy, or based on events that
occur within the environment, for example, a successful track
update.

The agent’s goal is to maximise its return, which is defined
as the sum of discounted future rewards, Rt = ΣK

k=0γ
krt+k,

where K can be any value up to the length of the episode,
and γ ∈ [0, 1] is a discount factor to control the importance
of immediate rewards against future rewards: if γ = 1, future
rewards are worth as much as immediate rewards; if γ = 0,
only immediate rewards are considered; typically, this value is
> 0.9 but less than 1. The value of a state, V (s) is the expected
return; the expected return of a state-action pair is measured
using the Q-value.

Some RL algorithms, such as DQN [9], use the Q-value to
choose an action: the ε-greedy policy chooses the action with
the highest Q-value with a probability of (1− ε), and acts ran-
domly (it explores) otherwise. Other algorithms, like A2C [10],
instead maintain a policy, which is a probability distribution
over the actions, and update this using a separate estimate of the
advantage function,A(s, a) = Q(s, a)− V (s), whereas policy
gradient methods such as PPO [11] increase the probabilities of
actions that lead to high returns directly.

RL can be considered a way of implementing cognition,
although it is not the only possible way! A RL algorithm will
maintain a replay buffer of experiences it has seen recently, and
use these to update the parameters of its neural network (NN)
(or NNs). These can be seen as short- and long-term memo-
ries, and their update mechanisms. The parameters, along with
the current state of the environment, are used to select an
action responsively; the basis on Q-values implicitly predicts
the impact of those actions. And as the new experiences are
used to train the NN, a RL algorithm will change its behaviour
when presented with the same situation a second time. In this
way, all of the requirements presented in the definition used
here are met.

3 Method

A RL algorithm was trained to choose the operational mode
of a MFRS within a simulation developed for this work. An
air combat scenario was simulated, where a blue and a red fast
jet were given track-based behaviours with the ultimate goal
of guiding a missile to within 50m of the other jet. The ini-
tial positions are shown in figure 1. The AWACS shown on the
right orbits in this location, providing RF illumination for the
blue MFRS’s bistatic mode. Radar detections in this simulation
are probabilistic, that is, a random number is compared with the
required probability of detection (derived from the target’s sig-
nal to noise ratio (SNR)) to determine if a detection attempt is
successful or not. Although this high-level modelling is not as
accurate as fully modelling the complex RF signals, it is much
faster, and is sufficiently representative for this work.

The red fast jet was equipped with a traditional radar, an ES
system, and a jammer, which could all operate simultaneously.
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Fig. 1: Diagram of starting positions of the platforms simulated

The blue fast jet had only a MFRS with 4 available modes, as
described above; the RL algorithm controlled these modes. A
reward of +1 was assigned to the algorithm if the blue fast jet
was successful; and a reward of -1 for when the red jet was
successful. Note that this leaves open the possibility for neither
side to win, and the reward to be zero (in fact, this was the case
for 75% of episodes). This means that the rewards are particu-
larly sparse, occurring only infrequently across many episodes;
this will make learning more difficult. The parameters used in
the simulation to represent the modes, and other key parameters
such as the power of the red jet’s jammer, were adjusted after
an analysis of initial results showed that active mode was suffi-
ciently superior to the others to prevent there being any benefit
to switching mode. This adjustment aimed to more accurately
represent the advantages of the alternative modes.

The simulation was linked to a PYTHON script, and wrapped
in an Open AI Gym [1] class, such that Stable Baselines
[2] algorithms could be readily applied. A Pipe object from
PYTHON’s multiprocessing toolbox was used to pass infor-
mation and control between the simulation and the PYTHON
script.

The action space for the algorithm contained the 4 modes of
the MFRS; the state space contained track information such as
range and velocity, track completeness; and contextual infor-
mation such as whether the blue jet had a missile in the air, and
if the illuminator for the bistatic mode (the AWACS radar) was
operating.

Baseline performance measurements were captured for each
of the 4 static modes (active, bistatic, ES, EPM); a random
baseline; and 100 randomly-generated if-then rulesets. These
were produced by selecting randomly from a specified set of
possible values (based on the percentiles of values seen in the
other baselines) for each variable in the state, thresholds, and
comparators (“<”, “>”, “=”). The results were measured over
20,000 episodes.

The Optuna package [12] was used to tune the hyperpa-
rameters of 3 algorithms: DQN [9], A2C [10], and PPO [11]
from the Stable Baselines toolbox [2]. Tuning, although com-
putationally expensive, was necessary as the out-of-the-box
algorithms showed little or no learning.

The score for a particular set of hyperparameters was cal-
culated as the sum of rewards, averaged over 3 trials of 100
episodes, after training for 1,480,000 (for the DQN, which
otherwise did not show sufficient improvement to allow dis-
crimination between the hyperparameter sets) or 740,000 (for

A2C and PPO) timesteps∗. The averaging was done in order to
account somewhat for variations in (a) the initialisation of the
algorithm and (b) the stochastic detections in the simulation.

4 Results

The baseline results are presented in table 1 - note that, as the
jets are prevented from firing if they only have an ES track, the
blue fast jet cannot win when its MFRS is in this mode.

Table 1 Baseline results.
Baseline Average

blue win
rate

Average red
win rate

Active 0.09 0.16
Bistatic 0.07 0.08
ES 0.00 0.31
EPM 0.11 0.10
Random 0.07 0.08
Average over rulesets 0.04 0.20
Highest blue win ruleset 0.11 0.10
Lowest red win ruleset 0.06 0.08
Highest red win ruleset 0.00 0.32

These baselines give an idea of the range of performances
possible in this set-up: blue win rate can be as low as 0% (ie
blue never wins) but only as high as 11%, whereas the red fast
jet always seems to win at least 8% of playouts, or as many as
32%. The bias towards a red success in this particular set up is
clear. The disadvantages of active mode (that it is a transmitting
mode, and susceptible to jamming) are apparent in the high red
win rate. The bistatic mode significantly reduces this red win
rate and improves platform survivability, but does not offer a
corresponding improvement in red win rate. The EPM mode
does improve the blue win rate, but does not lower the red win
rate as significantly as the bistatic mode.

Overall, there is a gentle, negative, linear relationship
between blue and red win rates (higher blue win rate correlates
to lower red win rate), as shown in figure 2; the triangles indi-
cate static modes and crosses the rulesets, with the dashed line
showing the line of best fit. This figure also helps to visualise
good performance: the further down and right a result is, the
better the performance; as the RL algorithms train, they might
be expected to slide down the line of best fit.

As EPM mode is the only baseline to have a blue win rate
higher than the red win rate, it can be described as the best
baseline, although in some situations a decreased likelihood of
a red missile being successful might be prioritised over high
likelihood of a blue missile being successful.

The results from exemplar training runs of the tuned RL
algorithms are shown in table 2. The initial and final win rates

∗As each simulation playout ran for 300 seconds, and the mode selec-

tor was asked for a decision every 4 seconds, each simulation contains

approximately 74 timesteps. 1,480,000 timesteps is therefore equivalent to

approximately 20,000 episodes; 740,000 approximately 10,000 episodes.
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Fig. 2: Blue vs red win rates for the baseline results

Table 2 RL results.
Algorithm Initial

blue win
rate

Final blue
win rate

Initial red
win rate

Final red
win rate

A2C 0.02 0.09 0.24 0.13
PPO 0.01 0.10 0.21 0.13
DQN 0.01 0.07 0.24 0.16

are calculated as the average across the first and last 5000
episodes respectively. The 1000-sample rolling averages of the
blue and red win rates against the number of training episodes
completed are plotted in figure 3. Also included are the 1000-
sample rolling averages of the proportion of time spent in each
mode, also against training episodes.

Although none of these tuned and trained algorithms sur-
pass the EPM static baseline in overall performance, they do
show evidence of learning, and the final performances fall in
the bottom right hand side of the plot in figure 2.

The left-hand plots in figure 3 show how performance is
unstable during training, particularly for A2C, but seems to
stabilise as the best performance is reached and the algorithm
reduces the proportion of time spent exploring the state-action
space. In addition to giving the best performance, the PPO algo-
rithm also stabilises most quickly, followed by DQN - albeit at
a worse performance - and then A2C. This pattern is consistent
across all training runs for each algorithm.

The right-hand plots in figure 3 show how the relative
proportions of modes selected vary with training. The DQN
algorithm, the weakest of the 3, does not settle on any particu-
lar mode, although the tendency to select EPM or bistatic does
seem to increase, whilst ES mode is selected less and less often.
In contrast, both the A2C and PPO algorithms have a marked
preference for bistatic and EPM modes respectively.

For the tuned PPO algorithm, the proportion of time still
spent in bistatic mode does not seem to offer an advantage,
unfortunately. However, the A2C algorithm, which only spends
∼65% of its time in its preferred mode, bistatic, significantly
improves the blue win rate relative to this static baseline, from
7% to 10%, although it does not maintain the low red win rate
of the baseline.

(a) DQN

(b) A2C

(c) PPO

(d) Legends

Fig. 3: Win rates and modes against training episodes for the
tuned algorithms

On different training runs, the algorithms neither reach the
same performance nor tend towards the same balance of modes.
This is demonstrated forcefully by the example shown in fig-
ure 4, which shows a training run of the tuned PPO algorithm
where it quickly converges to very high performance, relying
mostly on bistatic mode, but then switches to using almost
entirely ES mode. It may be that the algorithm found a local
minimum, where there were fewer negative rewards for red
successes, and possibly without sufficient memory of past
episodes to encourage it to use other modes to garner positive
rewards for blue successes.

5 Conclusion

This paper has discussed the use of deep RL to apply the
concept of cognition in sensing systems to the choice of opera-
tional mode for a MFRS. It has been shown that RL algorithms,
when tuned, can be trained to perform comparably to the base-
lines. The results suggest that DQN is the weakest of the
3 algorithms trialled, and suggest that the learning demon-
strated by PPO converged more quickly and more stably than
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Fig. 4: Win rates and modes against episodes for tuned PPO

either DQN or A2C. However there is significant variation
between training runs; more analysis using additional training
runs is required to determine whether a medley of modes is
advantageous over the best baseline (EPM) in this context.

Two variations on this setup are suggested for investiga-
tion: different reward systems, and different scenarios. Both
of these could place emphasis on different elements of an air-
borne RF system’s roles. For example, rewarding the cognitive
agent controlling the MFRS for forming a track (an event-based
reward) or proportionally to track accuracy (a metric-based
reward) could encourage the agent to select either active or
EPM mode, depending on the level of jamming present. In
contrast, a reward system based on remaining covert by not
transmitting ought to lead to greater use of bistatic and/or ES
mode.

These emphases could also be achieved by changing the
scenario within which the cognitive MFRS is operating. An
illustrative comparison is the difference in behaviours that
would be desirable in the case of (a) an aircraft (with a MFRS)
defending a particular zone and (b) the same aircraft attempting
to infiltrate an area defended by unfriendly platforms. Whereas
in the first, an aggressive behaviour might be optimal (the use
of active mode, for example, to alert the encroaching red air-
craft that they have been spotted), in the second, this could
be catastrophic. Instead, use of the covert modes would be
desired. Even more interesting would be scenarios where it is
not always obvious what the best mode would be, and where
it changes over time. This could be achieved with multiple red
targets in a more dynamic vignette.

Having investigated these variations, they could then be
used to test the brittleness (or the contrary, robustness) of the
learned solutions. How badly will a RL agent trained in for
one situation, or with one reward scheme, perform in another?
How long will it take to retrain, compared with training from
scratch? These are vital questions that need answering before a
cognitive system could be used in reality.
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