Sebastian, Martina;
Goldrick, Stephen;
Cheeks, Matthew;
Turner, Richard;
Farid, Suzanne S;
(2023)
Enhanced harvest performance predictability through advanced multivariate data analysis of mammalian cell culture particle size distribution.
Biotechnology and Bioengineering
10.1002/bit.28571.
(In press).
Preview |
Text
Enhanced harvest performance predictability.pdf - Published Version Download (2MB) | Preview |
Abstract
The industry's pursuit for higher antibody production has led to increased cell density cultures that impact the performance of subsequent product recovery steps. This increase in cell concentration has highlighted the critical role of solids concentration in centrifugation yield, while recent product degradation cases have shed light on the impact of cell lysis on product quality. Current methods for measuring solids concentration and cell lysis are not suited for early-stage high-throughput experimentation, which means that these cell culture outputs are not well characterized in early process development. This article describes a novel approach that leveraged the data from a widely-used automated cell counter (Vi-CELL™ XR) to accurately predict solids concentration and a common cell lysis indicator represented as lactate dehydrogenase (LDH) release. For this purpose, partial least squares (PLS) models were derived with k-fold cross-validation from the particle size distribution data generated by the cell counter. The PLS models showed good predictive potential for both LDH release and solids concentration. This novel approach reduced the time required for evaluating the solids concentration and LDH for a typical high-throughput cell culture system (with 48 bioreactors in parallel) from around 7 h down to a few minutes.
Type: | Article |
---|---|
Title: | Enhanced harvest performance predictability through advanced multivariate data analysis of mammalian cell culture particle size distribution |
Location: | United States |
Open access status: | An open access version is available from UCL Discovery |
DOI: | 10.1002/bit.28571 |
Publisher version: | https://doi.org/10.1002/bit.28571 |
Language: | English |
Additional information: | © 2023 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals LLC. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
Keywords: | Automated cell counter, centrifugation, monoclonal antibodies, multivariate data analysis (MVDA), particle size distribution, shear |
UCL classification: | UCL UCL > Provost and Vice Provost Offices > UCL BEAMS UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Biochemical Engineering |
URI: | https://discovery.ucl.ac.uk/id/eprint/10180953 |
Archive Staff Only
View Item |