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Abstract
The aim of this study is to systematically appraise the evidence on available full thickness 3D gingival and mucosal models
(3D culture in scaffold base system) and their application in periodontal and peri-implant research. This study involved a
systematic review of twenty-two studies obtained from searching from five electronic databases: MEDLINE-OVID,
EMBASE, EBSCOhost, Web of Science Core Collection and LILACS, as well as a hand search of eligible articles up to
September 2022. A total of 2338 studies were initially identified, after removal of duplicates (573), abstracts/title selection
(1765), and full text screening (95), twenty-two studies were included, thirty-seven models were identified. Several cellular
markers were reported by the studies included. The expression of keratinocytes differentiation markers (K4, K5, K10, K13,
K14, K16, K17, K18, K19, involucrin, laminin5), proliferation marker (Ki67, CD90), and vimentin, Type I, II and IV
collagen produced by fibroblasts were investigated in thirty models. No quantitative analyses were performed, and results of
the review confirmed a substantial level of heterogeneity across experiments. In conclusion, there is currently insufficient
evidence to conclude that the available 3D gingival and mucosal models can entirely recapitulate the human gingival tissue/
mucosa and provide a useful research tool for periodontal and peri-implant research. This review also highlighted the lack of
a standardized protocol to construct and characterize 3D gingival models. A new protocol is proposed for the
characterization of in vitro gingival models for future research.

1 Introduction

For several years, two-dimensional (2D) cell cultures as an
in-vitro tool, and animal models have been commonly used
in periodontal research to study: disease patho-mechanisms,
test new therapeutics and evaluate new regenerative strate-
gies [1, 2]. 2D cell culture and animal models, however, are
not free from limitations. For example, a 2D cell culture of
gingival cells cannot fully replicate the architecture, phy-
siological, and pathological microenvironment of living
human gingival tissue, plus ethical and financial concerns
are associated with animal experiments [3].

Three-dimensional (3D) gingival models provide
researchers with an alternative to animal experimentation and

2D cell culture. Studies have reported the construction of 3D
gingival models since 1997 with modified cell sources,
scaffolds, and culture media. Initially, partial thickness mod-
els were constructed including epithelial tissue in absence of
underlying connective tissue or connective tissue including
gingival fibroblast cells without epithelial components [4, 5].
To date, full thickness 3D gingival models using human
gingival-derived cellular sources including keratinocytes to
assemble the epithelial layer and human gingival fibroblasts to
establish the connective tissue layer are available. The
advantage of full thickness 3D gingival model is their closer
recapitulation to the complex structures and functions of
native human gingival tissue [6, 7]. Several studies have
demonstrated the application of these models in periodontal
research. For instance, Dabija-Wolter et al. demonstrated the
using of 3D gingival model to study host-microbial interac-
tion. In this study, they examined the extent destruction of
epithelial layer due to invation of F. nucleatum. They con-
cluded invation of this pathogenic bacteria will trigger elim-
ination of bacterial infection through epithelial shredding
without causing a permanent damage of the tissue in 3D
gingival model [8]. Razali et al. used 3D peri-implant model
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to understand the effect of photofunctionalization on three
different types of implant abutment materials (yttriastabilized
zirconia, alumina-toughened zirconia, and grade 2 commer-
cially pure titanium). They and concluded that photo-
functionalization of implant abutment materials improved the
biological seal of the surrounding soft tissue peri-implant
interface [9].

Although growing evidence have shown the promising
outcome of 3D gingival model in periodontal research, there’s
no consensus on fabrication method and material neither ideal
characteristics for 3D gingival model. Studies have suggested
that to recapitulate native gingival tissue, 3D model should be
consisted of epithelial and connective tissue layers, which
were separated by well define basement membrane. In addi-
tion, differentiation markers of each cell component, and
functional assessment of the layers are also crucial [10, 11].
However, a critical evaluation of all these different types of
models is missing. Indeed, all these different types of gingival
models have not been reviewed with regards to their repre-
sentation of human gingival tissue. The aim of this study was
therefore to appraise current available 3D in vitro gingival
models constructed using organoid cell culture system and
provide answers to the following questions:

1. Are any of the current 3D gingival models better replicate
the native human gingival tissue in terms of their structure,
differentiation characteristics, and barrier function.

2. What are the available substrates that are used to
reconstruct 3D gingival models?

2 Materials and methods

2.1 Focused questions

In view of the lack of specific tools to define the specific
research questions we adapted the PICOS tool to search
systematically for available evidence.

(P)Participant: 3D cell culture gingival model that is
constructed by seeding gingival fibroblasts cells in the
substrate and co-cultured with oral epithelial cells.

(I/E) Type of intervention/Exposure: N/A.
(C) Comparison: native human gingival tissue.
(O) Outcomes:

● 1-Resemblance of native human gingival tissue (3D
structural layers evaluated by

● histological analysis)
● 2- Differentiation markers of each cell component.
● 3- Functional assessment of the layers

(S) Studies type: In vitro experiments.

2.2 Protocol registration and reporting format

A systematic review protocol was developed and registered with
the Open Science Framework (OSF) database, hosted by the
Center for Open Science(COS) (https://archive.org/details/osf-
registrations-6mzw2-v1 - License: http://www.gnu.org/licenses/
lgpl-3.0.txt). Further when possible the systematic review was
conducting according to the PRISMA guidelines [12].

2.3 Search strategy

Five electronic databases: MEDLINE (OVID), EMBASE,
Dentistry and Oral Science Source (EBSCOhost), Web of
Science Core Collection and LILACS (Latin American &
Carribbean Health Sciences Literature) were included and
updated up to the 12th of September 2022.

Hand searching process was performed by 2 independent
reviewers (ZA and MH) and in case of any dispute further
discussion with a third reviewer occurred (FDA). Only
studies in the English language were included.

2.4 Study selection

All articles retrieved were exported and de-duplicated using
the Reference Management Software “EndNote X9.3.3 (Bld
13966)”.

2.4.1 Study eligibility assessment

Screening and assessment of study eligibility were per-
formed by 2 reviewers independently (ZM & MH)
according to the inclusion and exclusion criteria. Agreement
between the 2 reviewers was determined by kappa statistics.

2.4.1.1 Inclusion/exclusion criteria
Inclusion Criteria:

– Studies of 3D cell culture gingival models constructed
with a substrate seeded by human gingival fibroblasts or
human periodontal ligament cells and human gingival/
oral epithelial cells

– 3D cell culture gingival model construct with scaffold
base system

– Including histological analysis
– Published in the English language.

Exclusion Criteria:

– 3D cell culture gingival model which was constructed
without substrate base system

– Studies of 3D cell culture gingival model which
constructed with a substrate that seeded by non-human
sources of fibroblast or epithelial cells.
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– Studies of 3D cell culture gingival model which was
constructed with a substrate that seeded by human
gingival fibroblasts or human periodontal ligament cells
without human gingival/oral epithelial cells.

– Studies of 3D cell culture gingival model which was
constructed with a substrate that seeded by human
gingival/oral epithelial cells without human gingival
fibroblasts or human periodontal ligament cells.

– Animal studies.
– Studies without clear histological analysis.
– Abstracts without full papers.

2.4.2 Data extraction strategy

Piloting of data extraction was conducted before starting
with the full search strategy, further as some articles had a
different methodology to prepare 3D models other than
human cell sources two reviewers (ZM & MH) performed
pilot runs using a specially designed data extraction
spreadsheet. Any disagreements were resolved by discus-
sion and if this was not possible, arbitration with an
experienced reviewer was considered (FDA). Main cate-
gories of data were extracted as listed below: Study Char-
acteristics Data: “Study authors, Year of publication and
title, Study design, Conclusions”, “Participant/ 3D cell
culture gingival model with inclusion/exclusion criteria,
Human gingival fibroblasts cells, Specific substrate for cells
seeding, Human epithelial cells “.

2.5 Study bias protection assessment

Quality assessment of included trials undertaken indepen-
dently and in duplicate by two reviewers (ZM & MH) as part
of the data extraction process. There are no established criteria
for evaluating in vitro studies. Two tools of risk of bias were
used in this review. The first one was the modified ARRIVE
guidelines (Supplemental Data 2) to assess the quality of each
study [13]. A second tool ‘Systematic Review Centre for
Laboratory Animal Experimentation (SYRCLE)’s risk of bias
tool’ was also used to analyze data and adapted by ruling out
the blind intervention section [14].

3 Results

3.1 Study selection

A total of 2338 articles were identified through database
searching and Midline OVID n= 743; EMBASE n= 697;
Web of Science n= 639; EBSCO n= 250; LILAC n= 9.
The final number retrieved after completing the selection
process was 22 (Fig. 1). Due to the absence of relevant

quantitative measures to evaluate gingival models, quanti-
tative models, and meta-analysis were not possible. Quali-
tative analyses of the evidence retrieved was conducted to
summarize the characteristics of 3D gingival models.

3.2 Quality of studies

3.2.1 Modified ARRIVE guidelines (Supplemental Data 2)

Most of the selected studies were of high quality based on
modified ARRIVE guidelines. Only seven studies discussed
the scientific implications and limitations [9, 15–20].

Five studies did not give the statement of potential
conflicts and funding disclosure [21–25] while one article
was not published in a peer reviewed journal [26].

3.2.2 SYRCLE bias assessment

Well-balanced results in terms of low, unclear, and high risk
of selection bias across studies were identified. All studies
presented with high risk of bias in the random sequence
generation and baseline variable characteristics. On ana-
lyzing allocation concealment, most selected articles had an
unclear risk of bias, and only two articles had a low risk of
bias [25, 27]. The randomization parameter was at high risk
of bias. On analyzing random outcome assessment, all
studies had an unclear risk of bias. In addition, all articles
presented a low risk of bias in the results of incomplete
outcome data, selective outcome reporting and other sour-
ces of bias (Tables 1 and 2).

3.3 3D Gingival model characteristics

Up to thirty-seven gingival and peri-implant models were
described in the included twenty-two studies. Thirty-six
models were constructed using the organotypic culture
technique in a static cell culture condition. Only one study
used a dynamic perfusion bioreactor system, where disc
shape collagen sponge scaffolds were fitted in a perfusion
bioreactor [22].

Regarding the cellular source, different types of cells
were used including primary cells from gingival tissue
biopsies or immortalized cell lines or a combination of both
(Table 3).

Among these twenty-two studies, only six studies
examined human gingival biopsy as a control [16,
25, 26, 28–30].

3.3.1 Macroscopical model appearance

In this review, one study by Koskinen Holm, C., & Qu, C.
investigated macroscopical appearance of three gingival
models constructed by using collagen type I (rat tail) that
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crosslinked with genipin, cytochalasin D, and genipin/
cytochalasin D, respectively [16]. Genipin is a chemical
crosslinking agent, while cytochalasin D, is used to inhibit
the rapid actin polymerization [31, 32]. This study showed
that the crosslinked models using genipin or genipin/cyto-
chalasin D were larger size in compared with non-
crosslinked model.

3.4 Histological analysis

The included studies performed histological structure ana-
lysis to evaluate the successful construction of 3D model by
using different types of staining techniques such as hema-
toxylin (H), hematoxylin and eosin (H&E), (H&E) and
Periodic acid-Schiff (PAS), Masson’s trichrome, and van
Gieson.

3.4.1 Epithelium layer

The number of epithelial cell layers was reported in nine
studies with thirteen models and it ranged between 4 and 16
layers [8–10, 15, 17, 19, 23, 28, 33] (Table 4).

Dabija-Wolter et al. reported the number and thickness of
epithelial layers. The thickness of epithelium at day 3 of
development was 37.73 µm, and 49.79 µm, 130.93 µm, and
190.83 µm were at days 5, 7, and 9 respectively [28]. The
study by Jennings et al. reported 120 µm thickness of well
stratified epithelium. Chai et al. reported a pre-implant
gingival model with a thickness of 50–100 µm [19] while
Kriegebaum et al. demonstrated the formation of gingival
model with an epithelium layer with 111.6 µm and 31 µm in
thick when (TFE) and (DRT) were used respectively [23].

3.4.2 Connective tissue layer

With regards to the characteristic of connective tissue layer
formation, eleven studies with nineteen models confirmed
fibroblasts embedded in well-structured collagen fibrils
[16, 17, 21, 23–25, 29, 30, 33–35]

Only one study reported the thickness of connective
tissue layer, this study showed that by using TFE and DRT
as substrates for gingival model construction the formation
of connective tissue layers was 249.3 µm and 420.9 µm
respectively [23].

Fig. 1 PRISMA flow diagram of
the study inclusion process
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3.5 Differentiation of gingival model

Thirty models from sixteen studies reported several
expression markers to evaluate biological structures inclu-
ded in the constructed models. The reported markers were
K4, K5, K10, K13, K14, K16, K17, K18, K19, involucrin,
laminin5, proliferation marker Ki67, CD90, and vimentin,
Type I, II and IV collagen
[8, 16–18, 20, 21, 23–26, 28–30, 33–35].

3.5.1 Keratinocytes proliferation marker

The expression of keratinocytes proliferation marker Ki67
was investigated in eleven models
[8, 16–18, 20, 26, 27, 33]. In addition to Ki67, one study
analyzed the expression of PCNA as a marker for cell
proliferation, which also confirmed the proliferation
potential of keratinocytes in the model [20]. In contrast,
apoptotic p53 marker was not detected in models prepared
by using collagen type I hydrogel [16].

3.5.2 Keratinocytes differentiation markers

3.5.2.1 Cytokeratins Cytokeratins (CKs) are the main
intermediate filaments of gingival epithelia. Within the

gingiva, the expression patterns of various CKs have been
used as molecular indicators for different oral gingival
epithelium regions [36, 37].
CK4 is predominantly found in the suprabasal compart-

ment of non-keratinized epithelia including the buccal
mucosa of the sulcular gingival epithelium. Tomakidi et al.
analyzed the expression of CK4 in models constructed
using primary non-keratinized gingival cells where the
positive expression of CK4 in suprabasal layer was
observed [24]. Roffel et al. reported a peri-implant gingival
model, and the expression of CK4 was observed in the free
gingival epithelia and sulcular epithelium but not in the
junctional epithelium [17]. Sakulpaptong et al. reported the
expressions of CK4 were observed in peri-implant gingival
models prepared from human primary gingival cells. In
addition, the expression of CK4 in the human native
gingival tissue was also reported in this study [30].
CK13, a marker for non-stratified epithelial, was

investigated in eight studies [8, 15, 24–26, 28, 33, 34].
Buskermolen et al. showed the expression pattern of CK13
in the gingival model, constructed with both primary and
immortalized gingival keratinocytes, was similar to native
gingiva. The gingival model established with KC-HPV
showed a very low expression of CK13 [25]. However, the
study by Jennings et al. reported that the abnormal
expression of CK13 was observed in the gingival model
using OSCC cells [26].
CK14, a basal cell specific marker, was evaluated in four

studies. Tomakidi et al. showed the expression of CK14 was
only limited to the basal layer [24]. In contrast, de Carvalho
Diasa et al. and Koskinen Holm, C., & Qu, C., reported the
expression of CK14 in both basal and suprabasal layer
[16, 33]. Jennings et al. observed the expression CK14
throughout the entire epithelium [26]. And Bao et al. reported
lower levels of CK14 expressions in gingival models in
comparison to the human gingiva tissue [34].
CK5 is generally found in the basal cell compartment in

all stratified epithelia. Two studies investigated the expres-
sion of CK5 [24, 30] and reported its expression limited to
the basal cell compartment as revealed by gene expression
study as well as immunolocalisation study. In a study by
Sakulpaptong et al. [30], CK5 was expressed in peri-
implant gingival models as well as in human native gingival
tissue.
CK10 is known to be largely expressed in cornifying

stratified and proliferating epithelia. Six studies analyzed
the expression of CK10 in gingival models
[8, 15, 16, 24, 25, 34]. Buskermolen et al. and Koskinen
Holm, C., & Qu, C., showed the expression pattern of CK10
in the gingival models were similar to native human
gingiva. However, the expression of CK10 was at a very
low level in the model made with immortalized cell KC-
HPV [16, 25].

Table 1 Quality assessment and risk of bias (modified from the
ARRIVE and CONSORT guidelines)

Studies 1 2 3 4 5 6 7 8 9 10 11 12

[10] 1 1 3 2 3 2 2 3 3 1 1 1

[24] 1 1 3 2 3 2 2 3 3 1 0 1

[19] 1 2 3 2 3 2 2 3 3 1 1 1

[9] 1 2 3 2 3 2 2 3 3 2 1 1

[25] 1 1 3 2 3 2 2 3 3 1 0 1

[15] 1 2 3 2 3 2 2 3 3 1 1 1

[34] 1 2 3 2 3 2 2 3 3 1 1 1

[35] 1 1 2 2 3 2 2 3 3 1 1 1

[21] 1 2 3 2 3 2 2 3 3 1 1 1

[33] 1 2 3 2 3 2 2 3 3 1 0 1

[26] 1 1 3 2 3 2 2 3 3 1 1 0

[8] 1 1 3 2 3 3 2 3 3 1 1 1

[22] 1 2 3 1 3 2 2 3 3 1 0 1

[27] 1 2 3 2 3 2 2 3 3 1 1 1

[17] 1 2 3 2 3 3 2 3 3 1 1 1

[20] 1 1 3 2 3 3 2 3 3 1 1 1

[29] 1 2 3 2 3 3 2 3 2 1 1 1

[23] 1 1 3 2 3 3 2 3 2 1 0 1

[28] 1 2 3 2 3 3 2 3 3 1 1 1

[18] 1 2 3 2 3 3 2 3 3 2 1 1

[30] 1 2 3 2 3 3 2 3 3 1 1 1

[16] 1 2 3 2 3 3 2 3 3 1 1 1
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Table 3 Summary of cellular
sources used in construction of
gingival or peri-implant models

Cells origin Type of cells Type & no. of
models

References

Keratinocyte Fibroblast Gingiva Peri-
implant

Primary cells Primary Primary 13 5 [8–10,
18, 23–25, 28–30, 35]

Immortilized cells OKG4/bmi1/
TERT

Fib-TERT,
T0026

3 1 [17, 20, 25, 27]

KC-HPV Fib-TERT,
T0026

1 [25]

HGEK-16 GFB-16 2 [22, 34]

Gie-No3B11 hTERT 1 [21]

hTERT (TIGKs,
CRL-3397,
ATCC)

hTERT
(hGFBs, CRL-
4061, ATCC)

4 [16]

Primary and
Immortilized cells

OKF6/TERT-2 Primary 2 1 [10, 15]

TR146 Primary 1 [19]

NOK-si Primary 1 [33]

FNB6-TERT Primary 1 [26]

H357 Primary 1 [26]

Table 2 Quality assessment and risk of bias (SYRCLE tool), each item was scored as “yes”, “no”, or “unclear”

Studies Selection bias Performance bias Detection bias Attrition bias Reporting bias Other bias

Random
sequence
generation

Baseline
characteristics

Allocation
concealment

Random
housing

Blinding Random
assessment
outcome

Blinding Incomplete
outcome data

Selective
outcome
reporting

Other
sources of
bias

[10] No Yes Unclear Yes Unclear No No No Yes Yes

[24] No Yes Unclear Yes Unclear No No No Yes Yes

[19] No Yes Unclear Yes Unclear No Unclear No Yes Yes

[25] No Yes Yes Yes No No Unclear No Yes Yes

[9] No Yes Yes Yes Yes No No No Yes Yes

[15] No Yes Unclear Yes Unclear No Unclear No Yes Yes

[34] Yes Yes Unclear Yes Yes No No No Yes Yes

[35] No Yes Unclear Yes Unclear No No No Yes Yes

[21] No Yes Unclear Yes Unclear No No No Yes Yes

[33] No Yes Unclear Yes Unclear No No No Yes Yes

[26] No Yes Unclear Yes Unclear No No No Yes Yes

[8] No Yes Unclear Yes Unclear No No No Yes Yes

[22] No Yes Unclear Yes No No No No Yes Yes

[27] No Yes Yes Yes Unclear No Unclear No Yes Yes

[17] No Yes Unclear Yes Unclear No No No Yes Yes

[20] Yes Yes Unclear Yes Unclear Unclear No No Yes Yes

[29] Yes Yes Unclear Yes Unclear Unclear No No Yes Yes

[23] Yes Yes Unclear Yes Unclear Unclear No No Yes Yes

[28] No Yes Unclear Yes Unclear No No No Yes Yes

[18] No Yes Unclear Yes Unclear No No No Yes Yes

[30] No Yes Unclear Yes Unclear No No No Yes Yes

[16] No Yes Unclear Yes Unclear No No No Yes Yes

Individual risk of bias each item in the SYRCLE tool was scored as “yes”, “no”, or “unclear”
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Other cytokeratins such as CK8, CK16, CK18, CK19 and
CK17 were investigated only in three studies [21, 28, 34].
The expression levels of CK18 and CK19 were similar

between 3D and native human gingival tissue [34]. The
expression of CK17 and CK19 was confirmed to be
expressed in keratinocytes at multilayer in the 3D model
by Ferra-Cancellas [21]. Dabija-Wolter et al. reported the
expressions of CK 16 were observed in the suprabasal
layer of the gingival model, and in both parabasal and
suprabasal layers in native human gingival tissue. In the
same study, the expression of CK19 and CK8 was
observed in all cell layers l. However, both markers were
expressed in few patterns in the basal layer of human
native gingival tissue [28].

3.5.2.2 Other keratinocytes differentiation markers Two
studies showed the expression pattern of involucrin in the
3D gingival model was similar to native human gingival
tissue [16, 25]. Other markers such as ODAM, FDC-SP,
transglutaminase, and filaggrin were reported as junctional
epithelial-specific markers [28].

3.5.3 E-cadherin (epithelial cadherin)

E-cadherin is a major protein involved in cell-to-cell adhesion.
The expression of E-cadherin was reported in three models
[8, 15, 26], confirming the tight epithelial barrier.

3.5.4 Basement membrane markers

Collagen IV and laminin are important proteins within the
basement membrane. Six studies investigated and con-
firmed the expression of these two proteins in the basement
membrane in the models [17, 23–25, 28, 30].

3.5.5 ECM components collagen type I and collagen type II

In this review the expression pattern of collagen type I (Col
I) and collagen type II (Col II) was reported in two studies,
and the levels of expression were found not significantly
differed from native human gingival tissue [30, 34]. How-
ever, one study reported expression of both collagen 1, and
CD90 by using qRT-PCR technique [16].

3.5.6 Vimentin

Vimentin is a differentiation marker for fibroblast. Bus-
kermolen et al. and Koskinen Holm, C., & Qu, C., showed
the expression of this marker in gingival model to be similar
to native gingival tissue. Similarly, Ferrà -Cañellas et al.
reported the expression of vimentin in the gingival model,
which confirms the development of fibroblast in the gingi-
val model [16, 21, 25].Ta
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3.6 Gingival model for periodontal research

With regards to the application of these gingival models,
studies demonstrated the utilization of these models in several
periodontal research applications as well as eight peri-implant
models used in five studies were found (Fig. 2).

3.6.1 Host and microbial interaction study

In total, nine studies demonstrated the applicability of gin-
gival models in host-microbial interaction studies. Within
these nine studies, seven studies reported the response of
gingival models to different bacterial challenges [8,
18, 20–22, 26, 27]. Four studies [8, 20, 21, 27] demon-
strated the alteration of the epithelial layer upon the host-
microbial interaction.

Apart from host-microbial interaction, the gingival
model was used to investigate candida infection and it
showed alteration of the structure by prominent degradation
of the cornified layer of epithelial cells [10].

3.6.2 Mucosal model for dental implant research

The peri-implant mucosal models were used either for
comparing different types of titanium and dental material
posts surfaces [17, 19, 30], or for photofunctionalized effect
on the biological seal of different types of abutment mate-
rials [9].

3.6.3 Gingival model for periodontal wound healing and
regeneration

Potential application of 3D gingival models to study wound
healing processes of the gingiva either following cold injury
[27], micro-immunotherapy medicine (low dose of bone
morphogenic protein (LD BMP4)) [21], or for the exposed
model to sensitizers (Lin [18]).

3.7 Substrate biomaterials for construction of
gingival model

In this review, 10 different substrate types were identified
among all 37 models reported. The most used substrate was
type I collagen sourced from rat tail, which was used in
twenty-three models [8, 10, 17, 18, 20, 21, 24–28, 33–35]).
Acellular human cadaveric dermis substrate (Alloderm) was
used in three models [9, 19, 35], and decellularized dermis
(purose dermis allograft) used in another model [30]. The
other substrate including porcine collagen type I [22], por-
cine acellular dermal matrices (Strattice) [35], collagen/
elastin matrix substrate (Matriderm) (bovine collagen type I
with elastin) [29], dermal regeneration template (DRT)
Single Layer substrate, Vicryl substrate, Tissu Foil E (TFE)

[23], bovine type I collagen substrate were used to prepare
four models [15, 30], (Table 4) and (Fig. 2).

4 Discussion

This review comprehensively described thirty-seven dif-
ferent 3D gingival and peri-implant models from twenty-
two research studies. Twelve of these models confirmed
good cell proliferation (marker Ki67) in both basal and
suprabasal layers and most of the models confirmed good
differentiation of epithelial cells (reporting different CKs
markers). This was the first attempt to collectively
appraise the available evidence resulting in not a single
better model to study and test 3D gingival or peri-implant
tissues.

Several studies have constructed gingival models from
different cell origins, including primary cells, immortalized
cell lines or a mixture of both. The highest number of
epithelial layers was reported from the model using the
primary cells origin [8]. In this review, two models were
prepared from immortalized cell lines, H357, and OSCC,
and demonstrated to be deficient in a well-defined differ-
entiated epithelium [25, 26]. In contrast, one study reported
that established Immortalized cell lines from primary human
gingival cell induced by E6 and E7 oncoproteins of human
papillomavirus, and resulted in a successful formation of
gingival model with multi-layered epithelia [34]. These
observations confirmed that these two types of immortalized
human gingival cells (H357 and OSCC) are not suitable
sources for gingival model construction. Further this review
highlighted that when using cell lines in 3D gingival model
construction, greater clarity in the presentation of the results
is needed, this is because cell lines generally inherit the
characteristics of their parental primary tissue cells hence
when used these cells may not accurately reproduce prop-
erties or responses of normal epithelial cells [10, 34].

A crucial element in the construction of a gingival model
is the substrate that provides scaffolding for the cells. The
ideal substrate should have a high level of biocompatibility,
porosity, biostability, and mechanical properties. In this
review ten different substrates demonstrated to be applic-
able as matrices to mimic native gingival ECM and most of
them were of animal origin. Rat tail collagen type I isolated
from rat tail tendon was the most used and confirmed to
allow the formation of the highest number of epithelial
layers [8, 10, 28, 33]. The stratification of epithelial layers
indicates the development of a gingival model, at the same
time, a high level of stratification of keratinocytes has been
demonstrated when there is an underlying homogenous
distribution of fibroblasts among substrates. Rat tail col-
lagen is considered the major type of collagen that is used as
a substrate to mimic human ECM. Unfortunately, shrinkage
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is considered a disadvantage of models prepared by using
collagen type I. This shrinkage can lead to a drastic decrease
in the size of cell population in the hydrogel. However, it
was reported that using genipin and genipin/cytochalasin D
to crosslink collagen type I hydrogel allowed the con-
struction of a model with more resistance to shrinkage
facilitating in turn high cells survival and function [16].
Lastly, additional drawbacks for this collagen include its
cost and its differences with human ECM´s collagen (where
type I and III collagens are present as major constituents)
plus isolated rat tail collagen is invariably fragmented [38].
All these drawbacks prevent considering rat tail collagen
hydrogel to be ideal for gingival model construction.

Two more animal type of substrates were identified. A
bovine collagen type I [15, 30] which demonstrated strati-
fication and differentiation of epithelial layers with under-
lying connective tissue containing fibroblasts and a porcine
substrate as a source of collagen type I to mimic human
ECM as 3D collagen sponge scaffolds in a perfusion bior-
eactor system for easy manipulation [22]. However, these
two substrates were not counted as a promising type for
model construction due to lacking resemblance to native
gingival human connective tissue.

In addition to collagen, dermal substrates were also
widely used for tissue engineering and cell culture experi-
ments. In this review, four dermal substrates were used for

Fig. 2 Flow chart of 3D gingival
and peri-implant models
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reconstructing gingival models including acellular cadaveric
dermis and decellularized dermis (porous dermis allograft)
as well as human [9, 19, 30, 35], porcine (strattice matrix)
[35], and bovine (Matriderm) [29] sources. All of these
dermal substrates showed good proliferation, differentiation
and stratification of keratinocytes with a high distribution of
fibroblasts. However, these types of substrates suffer from
limited availability.

Lastly DRT was used as substrate for gingival model
construction, a porous matrix of fibers of crosslinked
bovine tendon collagen. High thickness tissue layers of
gingival model with higher cells proliferation when com-
pared to equine (TissuFoil E) and synthetic materials
(Vicryl) substrate [23]. Electrospun type I crosslinked
bovine collagen was used in one study to recreate a peri-
implant gingival model [30] resulting in less tissue con-
traction and promising results. Size changes and contrac-
tion that occurred after model construction are attributed to
the slow remodelling activity of the used substrates com-
pared with native gingival tissue. This drawback is added
to others mentioned above to take into account for
proper selection of substrate to construct a developed
gingival model.

It is worth mentioning that all the evidence on the use of
different substrates collectively confirmed a high level of
heterogeneity and the lack of a clear superior substrate to
use for constructing the best 3D gingival model.

5 Limitations and future research

This review highlighted high heterogeneity, and lack of
standardized fabrication and characterization protocols for
the creation of a valid 3D gingival or peri-implant model.
As such, a new framework for future characterization and
construction of a 3D gingival model should be proposed
that accounts for the uncertainty identified within this study.

The first step should include histological confirmation
that the new model results in well-defined stratified epi-
thelium layers with equal or more than four cell layers, and
fibroblasts embedded and distributed homogenously in a
well-structured substrate. Secondly well differentiated tissue
layers should be confirmed via specific markers expression
for each cell or layer regions, as following:

– Ki67 for cell proliferation near basal epithelial layer
– CK14 and CK5 for early differentiation in the basal

layer and CK4 or CK13 in the suprabasal layer.
– CK16, CK18, CK19 and CK17 in different epithelial

layers as late differentiation markers
– Involucrin as terminal differentiation marker for kera-

tinocytes within the upper two third of the epithelium
– CK10 marker to confirm the presence of cornifying

stratified epithelia as well as in proliferating epithelia
– Collagen IV and Laminin expression for the basement

membrane

Fig. 3 Schematic representation of the experimental protocol to generate 3D gingival model
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– CD90 and Collagen (I and II) in ECM
– Vimentin expression to confirm development of

fibroblasts.

Thirdly an ideal 3D gingival model to use for different
dental applications will need a well-developed vascular
structure including capillary vessels, epithelial and stromal
cells as well as immune, neural and bone cells (Fig. 3).

6 Conclusions

There is insufficient evidence to suggest whether the
available 3D gingival models can entirely recapitulate the
human gingival tissue and be valuable when performing
experimental periodontal research. This review highlighted
the lack of specific cell origin or substrate for constructing
gingival models to reproduce physiologic properties of
native human gingival tissue structures. Future research
should aim at resolving the current challenges of con-
struction a developed vascularized 3D gingival model
mimic native human gingival tissue by engineering a new
substrate with a high remodeling activity and suitable
microenvironment for seeding human gingival cells.
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