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Abstract—Multiple-input multiple-output (MIMO) system has
been the defining mobile communications technology in recent
generations. With the ever-increasing demands looming towards
the sixth generation (6G), we are in need of additional degrees of
freedom that deliver further gains beyond MIMO. To this goal,
fluid antenna system (FAS) has emerged as a new way to obtain
spatial diversity using reconfigurable position-switchable anten-
nas. Considering the case with more than one ports activated on
a 2D fluid antenna surface at both ends, we take the information-
theoretic approach to study the achievable performance limits of
the MIMO-FAS. First of all, we propose a suboptimal scheme,
referred to as QR MIMO-FAS, to maximize the rate at high
signal-to-noise ratio (SNR) via joint port selection, transmit and
receive beamforming and power allocation. We then derive the
optimal diversity and multiplexing tradeoff (DMT) of MIMO-
FAS. From the DMT, we highlight that MIMO-FAS outperforms
traditional MIMO antenna systems. Further, we introduce a new
metric, namely q-outage capacity, which can jointly consider rate
and outage probability. Through this metric, our results indicate
that MIMO-FAS surpasses traditional MIMO greatly.

Index Terms—6G, Diversity and multiplexing tradeoff, Fluid
antenna system, MIMO, Outage capacity.

I. INTRODUCTION

A. Background

S IXTH-GENERATION (6G) mobile communication seeks
to push the key performance indicators (KPIs) way beyond

what the current fifth generation (5G) promises to offer. Such
upgrade will require new technologies that can achieve more
from the same amount of bandwidth. Presently, the dominating
technology has been multiple-input multiple-output (MIMO),
which also comes in the form of multiuser MIMO and massive
MIMO. In 6G, the desire is to exceed MIMO [1], [2].
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To achieve this very ambitious goal, one emerging idea is
fluid antenna system (FAS) [3]. FAS represents any software-
controllable fluidic, conductive or dielectric structure that can
adjust its shape and position to reconfigure the gain, radiation
pattern, operating frequency and other radiation characteristics.
This is now feasible, thanks to the recent advances in utilizing
flexible conductive materials such as liquid metals or ionized
solutions [4], switchable pixels [5], [6], and stepper motors
for antennas [7], [8]. The concept of fluid antenna includes all
forms of movable and non-movable flexible-position antennas.

Unlike traditional antenna that is placed at a fixed location,
fluid antenna is able to switch its location almost instantly in
a limited space. The most basic single fluid antenna consists
of one radio frequency (RF)-chain and N preset locations
(also known as ports) that are distributed in a given space
[3]. The radiating element of the fluid antenna can switch its
position to obtain a higher rate, lower outage probability, less
interference and other desirable performance gains depending
on the applications. As the ports can be placed closely to each
other, the channels of these ports are strongly correlated and
thus spatial correlation plays a crucial role in FAS.

The main implementation designs for FAS are: i) liquid-
based fluid antenna and ii) RF pixel-based fluid antenna. In
the liquid-based fluid antenna, each liquid droplet can precisely
switch its position by controlling the electric field using the
thin conductive lines on top of the dielectric layer while other
technology may use an electronically controlled pump to shift
the position of a fluid radiating element in a tube. On the
other hand, in the RF pixel-based fluid antenna, the RF pixels
can be turned on-and-off instantly regardless of the surface
area. One or several pixels when on, form an antenna port
for transmission or reception like a standard antenna. Besides,
each activated port is connected to an RF-chain, operating like
a conventional antenna. In short, the basic principle of FAS
is to exploit the dynamic nature of fluid antenna to achieve
ultimate flexibility for diversity and multiplexing gains.1

Due to its unprecedented benefits, single-user, single-input
single-output (SISO)-FAS has recently been investigated under
different scenarios and assumptions. Specifically, as the num-
ber of ports increases, [9] showed that the outage probability
of FAS could be reduced drastically while [10] demonstrated
that FAS could significantly improve the ergodic capacity.

1It is worth pointing out that FAS does not necessarily use ‘fluid’ materials
for antenna and in wireless communications that requires adaptation in time
of milliseconds or less, reconfigurable pixels are more relevant.
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Motivated by these works, [11] derived the level crossing
rate, [12] devised a port selection algorithm by observing the
channels of a few ports, [13] investigated the performance
of FAS over general correlated channels and [14] analyzed
the outage probability of FAS for Terahertz communications
while selection combining and maximum gain combining were
further considered. Optimistic results were obtained in these
works but it was illustrated in [15] that the outage probability
of FAS could only be reduced to a floor when a more accurate
spatial correlation model was adopted. The recent work [16]
explained such limitations at an intuitive level and revealed
that the performance of FAS was generally determined by
the available space. Furthermore, only in certain cases might
FAS achieve a similar outage probability as compared to the
classical maximal ratio combining (MRC) system.

The unique ability of switching the antenna position finely
in FAS can also be exploited to mitigate interference, which
would be impractical in traditional antenna selection systems.
Recently, [17] investigated orthogonal multiple access to serve
multiple users with fluid antennas while [18] used a space di-
vision multiple access approach to minimize the user transmit
power. Nevertheless, an arguably more interesting idea is the
fluid antenna multiple access (FAMA) scheme [19] where the
rationale is to exploit the moment of deep fades in the spatial
domain to alleviate inter-user interference. FAMA is classified
into slow FAMA and fast FAMA in which the former switches
its port when the channel changes [20] and the latter switches
its port on a symbol-by-symbol basis [21]. Most recently, the
outage probability for two-user FAMA was revisited in [22].

In summary, FAS has shown promises but much is still
not well understood. For example, the performance of FAS
itself can be lifted if more than one ports are activated. For a
point-to-point communication channel, we refer to the system
where both ends are equipped with a multi-port FAS, as
MIMO-FAS which is also known as fluid MIMO or flexible
MIMO in [3]. Note that multiple ports can also be activated
in a two dimensional (2D) surface using liquid-based fluid
antenna or RF pixel-based fluid antenna. The schematics of
the MIMO-FAS designs were discussed in [3]. Compared to
a traditional MIMO antenna selection system in which the
number of antennas is limited in a given surface (at least half
wavelength separation between the antennas) and the antennas
are fixed in positions, MIMO-FAS is distinct in the sense that
the positions of the radiating elements can be dynamically
and finely adjusted and that the number of preset locations
(i.e., ports) within a given surface can be arbitrarily large,
which yields additional gains. Note that FAS has also been
proposed for multiple access recently [20]–[22], where the
fine resolution of FAS is absolutely essential and conventional
antenna selection would be unable to cope.

It is anticipated that the capacity and reliability of MIMO-
FAS will be improved over the SISO counterpart. In fact, a
related work showed that the capacity of a movable antenna
system (which can be interpreted as MIMO-FAS with movable
fluid antennas) could be improved up to 30.3% as compared to
traditional MIMO systems [23]. In the study, however, spatial
correlation due to rich scattering between the antenna positions
was not considered. More importantly, the optimal diversity

and multiplexing tradeoff (DMT) of MIMO-FAS is unknown.
In information theory, the optimal DMT can be employed as

a unified framework to compare the performance of different
multiple-antenna systems [24]. More concretely, it focuses on
the asymptotic high signal-to-noise ratio (SNR) regime and a
scheme is then said to achieve a multiplexing gain of r and
a diversity gain of d (r) if the rate of the system scales like
r log SNR and its outage probability decays like SNR−d(r).
It is known that r cannot exceed the total degrees of freedom
of the channel and d (0) is limited by the maximal diversity
gain, i.e., total number of independent channels. In between
the two extremes, a system must tradeoff each type of gains.

B. Contributions

Motivated by the above, this paper analyzes the performance
of MIMO-FAS with the goal of gaining useful insights for
designing an efficient MIMO-FAS. To this end, we first
develop a system model of MIMO-FAS while taking into
account of the spatial correlation effect. To characterize the
performance limits of MIMO-FAS, we consider a rich scat-
tering environment since it is well known that multipath can
help to improve the diversity and multiplexing gains.2 We
then propose a suboptimal scheme that maximizes the rate of
MIMO-FAS through joint port selection, transmit and receive
beamforming and power allocation at high SNR. Based on this
scheme, we derive the optimal DMT of MIMO-FAS to reveal
the fundamental limits of MIMO-FAS from an information-
theoretic viewpoint. From the analytical results, we further
study the effects of different MIMO-FAS parameters and
reveal the superiority of MIMO-FAS over traditional MIMO
and MIMO antenna selection in terms of DMT. In addition,
we introduce a new metric, referred to as q-outage capacity, to
showcase the benefits of MIMO-FAS. Our main contributions
are summarized as follows:
• We develop a system model for MIMO-FAS with a

2D fluid antenna surface at both ends while taking
into account of the spatial correlation of the ports. In
particular, we employ a simple yet accurate channel
model that considers the spatial correlation in a three-
dimensional (3D) scattering environment. Based on this
channel model, we introduce several system parameters
such as active ports, beamforming matrices and power
allocation. The achievable rate of MIMO-FAS is then
derived where its expression resembles the rate of a
traditional MIMO system.

• Also, we formulate a non-convex optimization problem
to maximize the rate of MIMO-FAS via joint port se-
lection, transmit and receive beamforming and power
allocation. We show that the global optimal solution can
be obtained using an exhaustive search, singular value
decomposition (SVD) and waterfilling power allocation,
at the expense of a non-polynomial time complexity. To

2Note that rich scattering can help to improve the performance of any
MIMO systems. This includes MIMO-FAS, traditional MIMO and MIMO
antenna selection. Therefore, if the number of scatterers is small, one may
further consider using a reconfigurable intelligent surface to create artificial
scatterers to improve the performance of any MIMO systems.

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2023.3327063

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on November 06,2023 at 20:56:47 UTC from IEEE Xplore.  Restrictions apply. 



3

reduce the time complexity, we propose the QR MIMO-
FAS scheme that maximizes the rate of MIMO-FAS at
high SNR via suboptimal port selection, beamforming
and power allocation. It is shown that QR MIMO-FAS
has a polynomial time complexity.

• Furthermore, we derive the outer bound of the DMT of
MIMO-FAS. By using the outer bound and QR MIMO-
FAS, we obtain the optimal DMT of MIMO-FAS. In this
process, we prove that the spatial correlation matrix Js
can be represented by a finite-size matrix Jsred even if
the number of ports increases to infinity. Afterwards, we
propose methods to estimate the size of Jsred and linearly
transform between Js and Jsred with proof of certificates.

• Extensive results are provided to highlight the effects of
several MIMO-FAS parameters. In the discussions, we
provide useful insights for designing an efficient MIMO-
FAS. Although MIMO-FAS provides rate improvements
over the traditional MIMO antenna systems, we highlight
that the superiority of MIMO-FAS actually lies in the
diversity gain. Specifically, the diversity gain of MIMO-
FAS for a fixed r is much greater than that of MIMO
and MIMO antenna selection if the total number of active
ports or antennas is the same.

• Finally, we introduce a new performance metric, referred
to as q-outage capacity, that jointly considers both rate
and outage probability. We show that MIMO-FAS outper-
forms the traditional MIMO and MIMO antenna selection
in terms of q-outage capacity. This result suggests that
MIMO-FAS is more reliable in delivering high data rate
transmission than the traditional MIMO systems.

C. Organization and Notations

The remainder of this paper is organized as follows. Section
II introduces the system model of MIMO-FAS. Section III
details the proposed QR MIMO-FAS scheme that maximizes
its rate at high SNR. The optimal DMT of MIMO-FAS is
analyzed in Section IV. Section V presents the numerical
results to compare MIMO-FAS with the traditional MIMO
systems and we conclude the paper in Section VI.

Throughout this paper, scalar variables are denoted by italic
letters (e.g., c), vectors are denoted by boldface italic small
letters (e.g., c) and matrices are denoted by boldface italic
capital letters (e.g., C). Additionally, (·)T denotes transpose,
(·)H denotes conjugate transpose while det (·), rank (·) and
trace (·) represent the determinant, rank and trace of a matrix,
respectively. Moreover, |·|, ‖·‖2 and ‖·‖F denote the absolute,
Euclidean norm and Frobenius norm operations, respectively.
Furthermore, we use log(·) to denote logarithm with base 2,
[·]+c outputs the argument that is lower bounded by c, min {·}
and max {·} denote the minimum and maximum value of the
argument, respectively. E[·] returns the expected value of the
input random quantity, and ⊗ denotes the Kronecker product.
Finally, ek represents an all-zero vector except the k-th entry
being unity, diag(·) denotes a diagonal matrix whose diagonal
entries are the inputs, and (·)† denotes the pseudoinverse of an
input matrix. To help readers follow the mathematical contents,
the meanings of the key variables are listed in Table I.

Table I: The meanings of key notations.

Notation Meaning
A Activation port matrices at both of the transmit-

ter and receiver sides
As Activation port matrix at side s
Cq

sys q-outage capacity of a system
d (r) Diversity gain for r multiplexing gain

G Circularly symmetric complex Gaussian matrix
with i.i.d. entries

H Complex channels of MIMO-FAS

H̄ Complex channels of the activated ports
Ha Partial channels of the active ports
Hi Partial channels of the inactive ports
Js Spatial correlation matrix at side s
Ĵs Approximated matrix of Js

Js
red Full rank spatial correlation matrix at side s
K Input covariance
ns Total number of active ports

nmax/nmin Maximum/minimum of nrx and ntx

Nmax/Nmin Maximum/minimum of Nrx and Ntx

Ns Total number of ports at side s
Ns

i Number of ports in the i-th dimension at side s
N
′
s Rank of Js

red

N
′
min Minimum of N

′
rx and N

′
tx

P out
sys (SNR, r) Outage probability of a system in terms of

r log SNR
P̄ out
sys (SNR, q) Outage probability of a system for a fixed q-

transmission rate
P Power allocation matrix
r Multiplexing gain

Rsys (SNR) Rate of a system for a given SNR
s ∈ {tx, rx} Subscript/superscript to denote the

transmit/receiver side
SNR Transmit SNR

vs
l Certificate between the linear transformation of

J
(l)
s and J

(l−1)
sub

Ws Total area of the fluid antenna at side s
W s

i Length of the fluid antenna in the i-th dimension
at side s

W Transmit and receive beamforming matrices
W s Beamforming matrix at s side
λ Wavelength of the carrier frequency

Λs Matrix whose diagonal entries are the eigenval-
ues of Js

Σ Matrix whose diagonal entries are singular val-
ues of H

Σ̄ Matrix whose diagonal entries are singular val-
ues of H̄

Ω Special matrix used for port optimization

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider a point-to-point wireless
communication channel in which the transmitter and receiver
are equipped with a fluid antenna. To facilitate our discussions,
we use the subscript/superscript s to denote the parameters at
the transmitter or receiver as tx or rx, respectively, i.e., s ∈
{tx, rx}. We assume that the fluid antenna takes up a 2D space
with an area of Ws and has Ns ports spread uniformly over the
2D space. A grid structure is considered where Ns

i ports are
uniformly distributed along a linear space of length λW s

i for
i ∈ {1, 2}, so that Ns = Ns

1 × Ns
2 and Ws = λW s

1 × λW s
2 ,

where λ is the wavelength of the carrier frequency. In this
MIMO-FAS, the transmitter and receiver can only activate ns
out of Ns ports. Note that for SISO-FAS, ns = 1,∀s.

Considering a 3D environment under rich scattering, the
spatial correlation between the (ns1, n

s
2)-th port and the
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Figure 1: A schematic of point-to-point MIMO-FAS.

(ñs1, ñ
s
2)-th port is given by

Js(ns1,ns2),(ñs1,ñs2)

= j0

(
2π

√(
|ns1−ñ

s
1|

Ns1−1 W s
1

)2

+
(
|ns2−ñ

s
2|

Ns2−1 W s
2

)2
)
, (1)

where j0 (·) is the spherical Bessel function of the first kind.3

A detailed proof can be found in Appendix I. As seen in (1), it
is cumbersome to label a port in 2D. To simplify our notations,
we use the function map : R2 → R, e.g., map (ns1, n

s
2) = ls,

where ls ∈ {1, . . . , Ns}.
Using the mapping function, we can express the spatial

correlation matrix Js as

Js =


Js1,1 Js1,2 . . . Js1,Ns
Js2,1 Js2,2 . . . Js2,Ns

...
...

. . .
...

JsNs,1 JsNs,2 . . . JsNs,Ns

 , (2)

where Jsks,ls is the spatial correlation of the ks-th and the ls-th
port at side s, and ks and ls are the labels after mapping. Since
Jsks,ls = Jsls,ks , (2) can be decomposed into Js = U sΛsU

H
s

where U s is an Ns ×Ns matrix whose l-th column (i.e., usl )
is the eigenvector of Js and Λs = diag

(
λs1, . . . , λ

s
Ns

)
is an

Ns ×Ns diagonal matrix whose l-th diagonal entries are the
corresponding eigenvalues of usl . Without loss of generality,
we assume that the values of the eigenvalues in Λs are in
descending order, i.e., λs1 ≥ · · · ≥ λsNs . Note that U sΛsU

H
s

is computed independently for each s ∈ {tx, rx}.

3Note that (1) can be reduced to a 1D fluid antenna under 2D scattering
environments by setting Ns

1 = 1 and 0
0
, 0 and replacing j0 (·) by J0 (·)

where J0 (·) is the Bessel function of the first kind.

Given U s and Λs for ∀s, the complex channel of MIMO-
FAS can be modelled as

H = δ U rx

√
ΛrxG

√
ΛH
txU

H
tx, (3)

where G =
[
g1, . . . , gNtx

]
, gl = [g1,l, . . . , gNrx,l]

T , gk,l =
xk,l + jyk,l, and xk,l, yk,l are independent Gaussian random
variables with zero mean and variance of 1

2 , ∀k, l, and δ2 is
the path loss. Letting hvec = vec (H), the covariance of hvec

is δ2
(
JTtx ⊗ Jrx

)
, where JTtx⊗Jrx is the spatial correlation

matrix between the transmit and receive ports.4

Next, we denote the activation port matrices at the transmit-
ter and receiver, respectively, as Atx =

[
atx1 , . . . ,a

tx
ntx

]
and

Arx =
[
arx1 , . . . ,arxnrx

]T
, where atxl and arxl are standard

basis vector (i.e., asl ∈ {e1, . . . , eNs}). Since only distinct
ns ports can be activated at a time, we have atxk 6= atxl and
arxk 6= arxl if k 6= l. Let us further denote W tx and W rx

as the transmit and receive beamforming matrices, with the
constraint ‖W s‖2 = 1. Then the receive signals of MIMO-
FAS can be rewritten as

W rxArxY = W rxArxHAtxW txx+W rxArxw (4)

⇒ Ỹ = H̃x+ w̃, (5)

where x is the information signal and w is the additive white
Gaussian noise with zero mean and identity covariance. In
(5), we defined Ỹ ,W rxArxY , H̃ ,W rxArxHAtxW tx

and w̃ , W rxArxw. For ease of expositions, we denote

4Due to the port spatial correlation, it can be shown that only a small
number of observed ports/training is required to obtain the full channel state
information regardless of the number of ports of the FAS [25]. Machine
learning techniques have also been proposed to address the channel estimation
problem for port selection in FAS, e.g., [20].
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A = [Atx,Arx], W = [W tx,W rx], H̄ = ArxHAtx and
K = W txPW

H
tx where K is the input covariance and P =

E
[
xxH

]
is the power allocation matrix. Then, the rate of

MIMO-FAS is given by

R (A,W ,P ) = log det
(
I + H̄KH̄

H
)
, (6)

where trace (K) ≤ SNR and SNR is the transmit SNR.

III. QR MIMO-FAS: SUBOPTIMAL PORT SELECTION,
BEAMFORMING AND POWER ALLOCATION

In this section, we aim to maximize the rate of the MIMO-
FAS via joint optimal port selection, beamforming and power
allocation. The optimization problem is formulated as

max
A,W ,P

R (A,W ,P ) (7a)

s.t. asl ∈ {e1, . . . , eNs} , s ∈ {rx, tx} ,∀l, (7b)
atxk 6= atxl , if k 6= l, (7c)
arxk 6= arxl , if k 6= l, (7d)
‖W tx‖2 = ‖W rx‖2 = 1, (7e)
trace (K) ≤ SNR. (7f)

Note that (7) is a non-convex optimization problem because
i) the optimization variables are mutually coupled and ii) its
domain is non-convex. A systematic way to solve this problem
is to employ an exhaustive search [26], SVD and waterfilling
power allocation [27]. In particular, the maximum rate of
MIMO-FAS can be computed via SVD and waterfilling power

allocation over
 Ntx
ntx

 ×
 Nrx
nrx

 port combinations.5

Nevertheless, such a method requires a non-polynomial time
complexity of O (Nntx

tx Nnrx
rx ) which is prohibitively high.

To reduce the time complexity, we propose a suboptimal
scheme, namely QR MIMO-FAS, to maximize the rate of
MIMO-FAS in the high SNR regime. This scheme is useful
for analyzing the DMT of MIMO-FAS. In the proposed
scheme, we decouple (7) into two subproblems: i) optimal port
selection and ii) optimal beamforming and power allocation.
For optimal port selection, (7) can be simplified as

max
A

R (A,W ,P ) s.t. (7b), (7c), (7d). (8)

However, it is still challenging to solve (8) since the objective
function cannot be directly evaluated. To overcome this prob-
lem, we exploit the fact that R (A,W ,P ) strongly depends
on det(H̄H̄

H
) in the high SNR regime [28]. Thus, (8) can

be relaxed as

max
A

det(H̄H̄
H

) s.t. (7b), (7c), (7d), (9)

5As will be shown later in this paper, Ns, ∀s can be represented by a finite
constant even in cases where Ns →∞.

which is unfortunately still an NP-hard problem [29].6 How-
ever, we can obtain a suboptimal solution by using the strong
rank-revealing QR (RRQR) factorization [30].

Specifically, by applying QR factorization with pivoted
column on HH , we have

HHΠ = QR, (10)

where Π is a permutation matrix, Q is an orthogonal matrix
and R is an upper triangular matrix where the absolute of
leading entries in R are decreasing in values. The upper
triangular matrix R can be rewritten as

R = [R1 R2] =

[
S1 S2

0 S3

]
, (11)

where R1 = [S1 0]
T and R2 = [S2 S3]

T . Substituting (11)
into (10), we obtain[

HHΠa H
HΠi

]
=
[
HH

a HH
i

]
= [QR1 QR2] , (12)

in which Π = [Πa Πi]. In (12), the left hand side and right
hand side of (10) are separated into two blocks and thus we can
interpret HH

a and HH
i as the MIMO-FAS channels of active

and inactive ports, respectively. Since the singular values of
HH and R remain the same, it is clear that (12) provides the
following properties

Nmin∏
m=1

σm

(
HH

)
=

ns∏
m=1

σm

(
HH

a

) Nmin∏
m=ns+1

σm

(
HH

i

)
=

ns∏
m=1

σm (R1)

Nmin∏
m=ns+1

σm (R2) , (13)

where Nmin = min {Nrx, Ntx} and σm (·) denotes the m-th
singular value of the matrix argument.

In alignment with (9), our objective here is to maximize∏ns
m=1 σm

(
HH

a

)
in (13) by permuting the k-th column of

HH
a and the l-th column of HH

i . To facilitate this objective,
we employ the matrix Ω where the (k, l)-th entry of Ω is

Ωk,l =

√∣∣∣S†1S2

∣∣∣2
k,l

+ ‖s3,l‖22 +
∥∥∥s†,T1,k

∥∥∥2

2
, (14)

where |S|k,l gives the absolute value of the (k, l)-th entry of
S, ss,l is the l-th column of Ss and s†,Ts,k is the k-th row of
S†s. Furthermore, let us denote HH

a,k,l (or Πa,k,l) is the new
matrix where the k-th column of HH

a (or Πa) and the l-th
column of HH

i (or Πi) are permuted.
Conventionally, it is necessary to permute all the (k, l) com-

binations and find the maximum
∏ns
m=1 σm

(
HH

a,k,l

)
in the

presence of spatial correlation. Nevertheless, using (14), we
can determine the increase or decrease of

∏ns
m=1 σm

(
HH

a,k,l

)
over

∏ns
m=1 σm

(
HH

a

)
before permuting them. Hence, we can

6The relaxation is done because R (A,W ,P ) ≈ log det(H̄KH̄
H

) at
high SNR and the rate of using equal power allocation approaches to that of
waterfilling power allocation as SNR increases [37]. For other SNR regimes,
solving (7) with low complexity remains open. Nevertheless, we can obtain
an efficient solution at low SNR by activating nrx/ntx ports where the
row/column-norm of H are the largest and they are separated by at least
crx/ctx distance. We refer this scheme as the greedy selection.
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Algorithm 1 Pseudocode of QR MIMO-FAS
1: Compute (10) via QR factorization with pivoted column
2: Compute Ω using (14)
3: While Ωk,l > 1
4: Permute the k-th column of HH

a /Πa and the l-th column
of HH

i /Πi with the largest Ωk,l > 1
5: Update HH = HH

a,k,l and Π = Πa,k,l

6: Perform QR factorization using Π and return to Step 2
7: end
8: Set A∗r = ΠT

a

9: Repeat Steps 1–7 by replacing HH with A∗rH
10: Set A∗r = ΠT

a

11: Compute SVD on A∗rHA
∗
t to obtain W ∗

12: Use bisection to obtain P ∗

directly permute the k-th column of HH
a (and Πa) and the

l-th column of HH
i (and Πi) and then update HH = HH

a,k,l

(and Π = Πa,k,l) if Ωk,l > 1. In this paper, we permute the
columns based on the largest Ωk,l which yields a suboptimal
solution. Furthermore, we perform QR factorization to obtain
the expression in (10) with the existing Π . These steps can be
repeated until Ωk,l ≤ 1 ∀k, l. Using strong RRQR factoriza-
tion, we can obtain HH

a with the maximum
∏ns
m=1 σm

(
HH

a

)
where A∗rx = ΠT

a . Reapplying strong RRQR factorization on
A∗rxH , we can also obtain A∗tx where A∗tx = Πa.

Given A∗, (7) reduces to the optimal beamforming and
power allocation problem which can be formulated as

max
W ,P

R (W ,P |A∗) s.t. (7e), (7f). (15)

Interestingly, (15) can be easily solved via SVD and waterfill-
ing power allocation [27]. In particular, the solution to (15)
is W ∗

r = M̄
H and W ∗

t = N̄ where H̄ = M̄Σ̄N̄
H ,

M̄ is the left singular matrix of H̄ , N̄ is the right sin-
gular matrix of H̄ , Σ̄ = diag

(
Σ̄1, . . . , Σ̄nmin

)
denotes the

diagonal matrix whose l-th entry is the l-th singular value
of H̄ , Σ̄1 ≥ · · · ≥ Σ̄nmin

and nmin = min {ntx, nrx}.

In addition, P ∗ = diag
(
p∗1, . . . , p

∗
nmin

)
, p∗l =

[
µ− 1

Σ̄2
l

]+

0

,

and SNR =
∑
p∗l .7 Thus, the optimal input covariance is

K∗ = W ∗
txP

∗W ∗H
tx . Using the above methods, the rate of

the QR MIMO-FAS for a given SNR can be expressed as

RQR (SNR) =

nmin∑
l=1

log
(
1 + p∗l Σ̄

2
l

)
, (16)

where (16) helps analyze the optimal DMT of MIMO-FAS.
The pseudocode of the proposed scheme is presented in

Algorithm 1. Let us denote Nmax = max {Ntx, Nrx} and
nmax = max {ntx, nrx}. The worst computational cost of Step
1 is 4

3n
3
max − 4Nmaxn

2
max + 4N2

maxnmax flops [30]. Steps 2–
7 require (1 + ti)

[(
2
3n

3
maxN

2
max + 2n2

maxN
3
max + 2N3

max

)]
flops [31], where ti is a finite number of permutations and it

7Note that it is possible to employ equal power allocation at high SNR. In
fact, our analysis leverages this assumption for tractability. Nevertheless, we
will consider waterfilling power allocation here since it is optimal regardless
of the SNR. In addition, it would be useful later to make a fair comparison
between different benchmarking schemes.

is usually small due to Step 1 [28]. Step 9 has the same total
computational cost as Steps 1–7, which is also finite. In ad-
dition, Steps 11 and 12 require 21n3

max and log
(
µmax

ε0

)
nmax

flops, respectively, where µmax is the interval for searching µ
and ε0 is the tolerance for bisection method. Summing up the
computational costs, the proposed scheme has a polynomial
time complexity of O

(
n3

maxN
3
max

)
. Compared to the global

optimal solution, the proposed scheme significantly reduces
the time complexity.

IV. OPTIMAL DMT

In this section, we analyze the optimal DMT of MIMO-
FAS. As defined in [24], a MIMO scheme is said to achieve
a multiplexing gain of r and a diversity gain of d if

lim
SNR→∞

Rsys (SNR)

log SNR
= r, (17)

and the outage probability satisfies8

lim
SNR→∞

log
(
P out

sys (SNR, r)
)

log SNR
= −d (r) , (18)

in which Rsys (SNR) and P out
sys (SNR, r) are, respectively, the

rate and outage probability of the system. Similar to [24], we
use the symbol =̇ to denote exponential equality. In particular,
f (SNR) =̇ SNR−d if

lim
SNR→∞

log (f (SNR))

log SNR
= −d. (19)

To obtain the optimal DMT of MIMO-FAS, we present the
following lemmas.

Lemma 1. Given a 2D space with an area of Ws where both
W s

1 � 0 and W s
2 � 0, Js in (2) can be represented by Jsred,

i.e., a full rank symmetric N
′

s × N
′

s finite-size matrix even if
Ns →∞.

Proof: For a positive Ws, consider (2) where Ns → ∞.
Without loss of generality, we focus on two neighboring ports:
the (ns1, n

s
2)-th and (ñs1, ñ

s
2)-th port. In cases where Ns

1 →∞,
we analyze (ñs1, ñ

s
2) = (ns1 ± 1, ns2). The spatial correlation

between the (ns1, n
s
2)-th and (ñs1, n

s
2)-th port is given by

Js(ns1,ns2),(ñs1,ns2)
= lim
Ns1→∞

j0

(
2π

Ns
1 − 1

W s
1

)
= 1, (20)

since lim
Ns1→∞

1
Ns1−1 = 0. In other words, the spatial correlation

of the ñs1-th port is identical to that of the ns1-th port in
the limit. For ease of exposition, let us refer to the spatial
correlation of a port as an entry.

For ns2 = {1, . . . , Ns
2}, we can remove the identical entries

(e.g., ñs1 for ∃ns1) and obtain N̄s
1 distinct entries. Next, let

us denote the (ṅs1, n
s
2)-th port as the farthest port away

from the (ns1, n
s
2)-th port. Since W s

1 � 0, it is clear that
Js
(ns1,ns2),(ṅs1,ns2)

= j0 (2πċ) where ċ � 0 is the distance

8Here, we use the fact that the error probability can be arbitrarily close to
the outage probability [32], [33].
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between the (ṅs1, n
s
2)-th and (ns1, n

s
2)-th ports. By intermediate

value theorem, we can conclude there is an ε such that

ε = inf

{
e
∣∣∣Js(ns1,ns2),(ns1±e,ns2) 6= 1,

e ∈ N,
0 < e ≤ Ns

1 − 1

}
.

(21)
Note that one cannot make any assumption on e and ε except
their existence. Let us define cs1 , ε

Ns1−1W
s
1 as the mini-

mal distance required for the spatial correlation between the
(ns1, n

s
2)-th and (ns1 ± e, ns2)-th ports to be completely distinct.

Then we can verify that N̄s
1 is finite since W s

1 ≥ N̄s
1 c
s
1 > 0.

Let us write the N̄s
1 distinct entries as a vector vns2 for each

ns2 ∈ {1, . . . , Ns
2}. If these vectors are linearly dependent, then

we can similarly remove the dependent vectors and obtain
N̄2 independent vectors. As a result, we can rewrite Js as
a symmetric N̄s × N̄s finite-size matrix with distinct entries
where N̄s = N̄s

1 N̄
s
2 .

Using a similar argument, we see that Js can be represented
by an N̄s× N̄s finite-size matrix if Ns

2 →∞. Combining the
two cases, it is straightforward to see that Js can be rewritten
as a symmetric N̄s × N̄s matrix as Ns

1 → ∞ and Ns
2 → ∞

since both W s
1 � 0 and W s

2 � 0, and we have (21) and

ε2 = inf

{
e
∣∣∣Js(ns1,ns2),(ns1,ns2±e) 6= 1,

e ∈ N,
0 < e ≤ Ns

2 − 1

}
.

(22)
From the above, it is clear that we can use the same argument
to show that Js can be rewritten as a symmetric N̄s × N̄s
matrix if Ns

1/N
s
2 is finite since we can always remove the

entries where their vertical/horizontal distances between the
adjacent ports are less than cs1/c

s
2.

Let us denote N
′

s as the full rank of the symmetric N̄s ×
N̄s matrix where N

′

s ≤ N̄s. Then we can further reduce the
symmetric N̄s× N̄s matrix to a full rank symmetric N

′

s×N
′

s

submatrix Jsred by removing the (N̄s − N
′

s) dependent rows
and columns. Thus, Js can always be represented by Jsred,
i.e., a full rank symmetric N

′

s×N
′

s finite-size matrix. In other
words, it suffices to consider Jsred instead of Js since some
rows/columns of Js are identical or a linear combination of
the others. A more general result is given in Appendix II.

Lemma 2. If J tx and Jrx are full rank, the optimal DMT of
any MIMO system with channel H is the same as that of a
system with channel G.

Proof: See [34].

Lemma 3. The optimal DMT of using only nrx×ntx channels
from the MIMO channel G, where ntx ≤ Ntx and nrx ≤ Nrx,
is a piecewise linear function connecting the points (nmin, 0)
and

{r, (Nrx − r) (Ntx − r)} , r = 0, . . . , N, (23)

where

N = arg min
η∈Z

0≤η≤nmin−1

(Nrx − η) (Ntx − η)

nmin − η
. (24)

Proof: See [35].

Corollary 1. If the antennas are placed based on a grid
structure with at least half a wavelength apart and the
transmit/receive spatial correlation matrices are full rank, then

the optimal DMT of nrx × ntx MIMO antenna selection is a
piecewise linear function connecting the points (nmin, 0) and

{r, (wrx − r) (wtx − r)} , r = 0, . . . , Nas, (25)

where

Nas = arg min
η∈Z

0≤η≤nmin−1

(wrx − η) (wtx − η)

nmin − η
. (26)

Proof: Given a fixed W 1
s and W 2

s , there can be at most
ws =

(⌊
W 1
s

0.5

⌋
+ 1
)(⌊

W 2
s

0.5

⌋
+ 1
)

antennas at side s. Using
Lemma 2 and Lemma 3, we obtain (25) and (26).

Using the above lemmas, we can now obtain the outer bound
of the DMT of MIMO-FAS.

Theorem 1. For finite Wrx and Wtx, the outer bound of the
DMT of MIMO-FAS is a piecewise linear function connecting
the points (nmin, 0) and{

r,
(
N
′

rx − r
)(

N
′

tx − r
)}

, r = 0, . . . , N ′, (27)

where

N ′ = arg min
η∈Z

0≤η≤nmin−1

(
N
′

rx − η
)(

N
′

tx − η
)

nmin − η
. (28)

Proof: By using SVD, we can decompose H = MΣN
where M is the left singular matrix of H , N is the right
singular matrix ofH , Σ = diag (Σ1, . . . ,ΣNmin) is a diagonal
matrix whose l-th entry is the singular value of H and Σ1 ≥
· · · ≥ ΣNmin

. According to the Cauchy’s Interlacing theorem
[36], it follows that Σ1 ≥ Σ̄1 ≥ · · · ≥ Σ̄nmin

≥ Σnmin
≥

· · · ≥ ΣNmin
. Therefore, the rate of MIMO-FAS can be upper

bounded by

R (SNR) =

nmin∑
l=1

log
(
1 + p̃∗l Σ

2
l

)
, (29)

where p̃∗l =
[
µ− 1

Σ2
l

]+
0

and SNR =
∑
p̃∗l . At high SNR, (29)

can be simplified as

R (SNR) =

nmin∑
l=1

log

(
1 +

SNR

nmin
Σ2
l

)
, (30)

since the rate of using equal power allocation approaches to
that of waterfilling power allocation as SNR increases [37].
Consequently, the outage probability of MIMO-FAS can be
lower bounded by

Pout (SNR, r) = P {R (SNR) < r log SNR} . (31)

At high SNR, the outage probability is rewritten as [24]

Pout (SNR, r) = P

{
nmin∑
l=1

log
(
1 + SNRΣ2

l

)
< r log SNR

}
,

(32)
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since

lim
SNR→∞

log
(
P
{∑nmin

l=1 log
(

1 + SNR
nmin

Σ2
l

)
< r log SNR

})
log SNR

= lim
SNR→∞

log
(
P
{∑nmin

l=1 log
(

1 + SNR
nmin

Σ2
l

)
< r log SNR

})
log SNR

nmin

= lim
SNR→∞

log
(
P
{∑nmin

l=1 log
(
1 + SNRΣ2

l

)
< r log SNR

})
log SNR

.

(33)

Using (19), we can obtain the outer bound on the diversity
gain for a fixed multiplexing gain r as

Pout (SNR, r) =̇ P

{
nmin∑
l=1

log
(
1 + SNRΣ2

l

)
< r log SNR

}
.

(34)
According to [38], the joint probability density function (PDF)
of Σ2 is given by

f
(
Σ2
)

=
∑
q

(−1)
Nmin(Nmin−1)

2 A
Nmin!4 (q)

4
(
Σ2
)
×

det
(
Σ

2(ql+Nmax−Nmin)
k

)
, (35)

where q = [q1, . . . , qNmax
]
T , Nmin = min {Ntx, Nrx},

A =

∏Nmin

k=1 λsk
∏Nmax

l=1 λs
′

l det ((−λsk)
ql)

4 (λs)4(λs
′
)

×

det

((
λs
′

k

)ql+Nmax−Nmin

∣∣∣∣Nmin

k=1

,
(
λs
′

i

)Nmax−k
∣∣∣∣Nmax

k=Nmin+1

)
∏Nmin

l=1 (ql +Nmax −Nmin)!
,

(36)

where 
s = {s|Ns = min {Ntx, Nrx}} ,
s′ = {s′|Ns′ = max {Ntx, Nrx}} ,

λs =
[
λs1, . . . , λ

s
Ns

]T
,

(37)

4 (λs) denotes the Vandermonde determinant of vector λs,
det (f (k, l)) is the determinant of a matrix with the (k, l)-th
entry given by the function f (k, l) and ql = bl+Nmax− l. In
addition, b = [b1, . . . , bNmax

]
T is the irreducible representation

of unitary group such that b1 ≥ · · · ≥ bNmax
≥ 0 are integers.

Conventionally, we can analyze the outer bound by simpli-
fying the joint PDF of Σ2 and then analyzing the exponents
of Σl. Nevertheless, it is found that no simplification can be
made to keep the exponents of Σl tractable when the rows
and columns of H are fully correlated [39]. To alleviate this
problem, we employ Lemma 1, Lemma 2, and Lemma 3.

Specifically, according to [40], the PDF of H can be
obtained by removing the dependent entries and the PDF
of the singular values of H can be obtained via coordinate
changes [41]. Using Lemma 1, we know that Js can be
represented by a full rank symmetric finite-size matrix, i.e,
Jsred ∈ RN

′
s×N

′
s and rank (Jsred) = N

′

s. It follows that H
and G in (3) can be rewritten as N

′

rx × N
′

tx matrices with
the same PDFs. From Lemma 2, it is known that the DMT

of any MIMO system with channel H ∈ CN
′
rx×N

′
tx is the

same as that of a system with channel G ∈ CN
′
rx×N

′
tx . Since

G is an independent and identically distributed (i.i.d.) cir-
cularly symmetric complex Gaussian matrix, it follows that
rank (G) = N

′

min = min{N ′rx, N
′

tx} with probability one.
Using Lemma 3, we can conclude that the outer bound of the
DMT of MIMO-FAS is a piecewise linear function connecting
the points as given in (27) and (28).

Using Theorem 1, we can now derive the optimal DMT of
MIMO-FAS by considering its outer bound and inner bound.
Specifically, the DMT of QR MIMO-FAS can be regarded as
the inner bound of the DMT of MIMO-FAS.

Theorem 2. The DMT of QR MIMO-FAS is equivalent to the
outer bound of the DMT of MIMO-FAS, and thus it is also the
optimal DMT of MIMO-FAS.

Proof: At high SNR, (16) can be simplified as

RQR (SNR) =

nmin∑
l=1

log

(
1 +

SNR

ntx
Σ̄2
l

)
(38)

since the rate of using equal power allocation approaches to
that of waterfilling power allocation as SNR increases [37].
Consequently, the outage probability is characterized by

P out
QR (SNR, r) = P {RQR (SNR) < r log SNR} . (39)

At high SNR, the difference between (30) and (38) is

R (SNR)−RQR (SNR) ≈
nmin∑
l=1

log

(
ntxΣ2

l

nminΣ̄2
l

)
= c0, (40)

which is a constant.9 As limc→∞ log
(

1+c
c

)
= 0, the approxi-

mation of (40) is tight as SNR→∞. As such, we have

lim
SNR→∞

RQR (SNR)

log SNR
= lim

SNR→∞

R (SNR)− c0
log SNR

= lim
SNR→∞

R (SNR)

log SNR
, (41)

and

lim
SNR→∞

log
(
P out

QR (SNR, r)
)

log SNR

= lim
SNR→∞

log (P {R (SNR) < r log SNR + c0})
log SNR

= lim
SNR→∞

log (P {R (SNR) < r log SNR})
log SNR

= lim
SNR→∞

log (Pout (SNR, r))

log SNR
. (42)

Thus, the DMT of QR MIMO-FAS is equivalent to the outer
bound, and also the optimal DMT of MIMO-FAS.

It is challenging to explicitly obtain N
′

s because Js might
be near to being singular. It is also unclear how Js can be
reduced to/reconstructed from Jsred. To address these issues,
we propose methods to reliably estimate N

′

s, and to linearly
transform Js to Jsred and vice versa with a proof of certifi-
cates. These methods are based on the following theorems.

9Note that a constant gap amounts to a finite scaling of SNR. This implies
that R (SNR) = RQR (SNR + γ) for some γ > 0.
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Table II: Estimation of N
′

s for different Ws in terms of λ2,
where ξ = 10−3, Ns = 100, Ns

1 = Ns
2 , and W s

1 = W s
2 .

Ws 0.5× 0.5 1× 1 1.5× 1.5 2× 2 2.5× 2.5 3× 3

N
′
s 13 23 34 48 60 73
E 0.001 0.002 0.003 0.002 0.005 0.005

[‡] Note that the figures regarding the diversity order of MIMO-FAS described
in [25] were based on an earlier version of this paper considering the spatial
correlation in 2D environments only. The correct diversity orders for MIMO-
FAS in 3D environments should be referred to this table. For example, for
MIMO-FAS with 0.5λ× 0.5λ FAS at both ends, the diversity order is 13×
13 = 169 which is much higher than originally reported.

Theorem 3. Since Js can be well-approximated by Ĵs where
Ĵs = U sΛ̂U

H
s and Λ̂ = diag(λs1, . . . , λ

s
N ′s
, 0, . . . , 0), the

rank of Js can be estimated as N
′

s.

Proof: Define an arbitrarily small ξ > 0 as the threshold
where the numerical values of the eigenvalues are negligible.
According to [42], Js can be regularized by Ĵs, where Ĵs =
U sΛ̂U

H
s , Λ̂ = diag(λs1, . . . , λ

s
N ′s
, 0, . . . , 0) and λsl < ξ, l ∈

{N ′s + 1, . . . , Ns}. The Frobenius norm between Js and Ĵs
is given by

E = ‖Js − Ĵs‖F =

Ns∑
l=N ′s+1

λsl , (43)

which can be upper bounded by (Ns −N
′

s)ξ. In practice, we
have λs1 � λs

N ′s+1
> . . . > λsNs and thus (43) is usually very

small. Therefore, the rank of Js can be estimated as N
′

s.

Theorem 4. For arbitrary Ns = Ns
1 ×Ns

2 and a finite Ws =
W s

1×W s
2 , Js in (2) can be reduced to Jsred using the set Vs =

{vsl |J
(l)
s ṽ

s
l = 0, l = N

′

s + 1, . . . , Ns} where ṽsl = [vsl − 1]T .
Conversely, Js in (2) can be reconstructed from Jsred with the
set Vs.

Proof: Let us introduce a vector ṽsl = [vsl − 1]T where
vsl ∈ Rl and vsl 6= 0. In addition, let us denote

J (l)
s =

[
J

(l−1)
sub jl
jTl jl,l

]
. (44)

Note that Js = J (Ns)
s and Jsred = J (N

′
s)

s . If N
′

s = Ns, then
Vs is an empty set and Js = Jsred. Thus, we can focus on
the case where N

′

s < Ns. Without loss of generality, we may
assume that the last column of J (l)

s is a linear combination of
the first (l − 1) columns of J (l)

s . This implies that J (l)
s ṽ

s
l = 0,

i.e., ṽsl is in the null space of J (l)
s and ṽsl 6= 0. If J (l)

s ṽ
s
l = 0

and l 6= N
′

s, we can reduce J (l)
s to J (l−1)

sub by setting vsl ∈ Vs.
Otherwise, we have J (l)

s = Jsred since J (l)
s must be a full rank

matrix. Conversely, J (l)
s can be reconstructed from J

(l−1)
sub if

vsl is given. Specifically, we can define jl , J
(l−1)
sub vsl and

jl,l , j
T
l v

s
l and they are sufficient to reconstruct J (l)

s . Hence,
vsl can be interpreted as a certificate that J (l)

s can be reduced
to/reconstructed from J

(l−1)
sub for l = {N ′s + 1, . . . , Ns}.

The proposed methods enable us to estimate N
′

s for given
Ns

1 , Ns
2 , W s

1 , and W s
2 . Furthermore, they allow us to verify

that Js indeed can be reduced to (or reconstructed from) Jsred

with proof of certificates. An example of the estimations of N
′

s

is given in Table II. This table can help us better understand the
performance of MIMO-FAS. For example, by substituting the
estimation of N

′

s into Theorem 1, we observe that MIMO-FAS
yields massive diversity gains if r < nmin. Thus, it is worth
investigating how we can leverage MIMO-FAS effectively. To
answer this question, we introduce the q-outage capacity.

Definition 1. The q-outage capacity of a system is defined as

Cqsys = q
(
1− P̄ out

sys (SNR, q)
)
, (45)

where
P̄ out

sys (SNR, q) = P {Rsys (SNR) < q} , (46)

where P̄ out
sys (q) is the outage probability of a system for a fixed

target rate or transmission rate q independent of the SNR. It
is worth noting that (45) differs from the ε-outage capacity as
it is not measuring the largest q such that P̄ out

sys (SNR, q) ≤ ε.
Instead, (45) is interpreted as the average rate that a system
can reliably transmit over period of time such that the statis-
tics of the fading do not change. Furthermore, both q and
P̄ out

sys (SNR, q) play important roles in (45). For example, if
q ≈ 0, we usually have P̄ out

sys (SNR, q) ≈ 0. If q is large,
then we typically have P̄ out

sys (SNR, q) ≈ 1. Nevertheless,
both cases yield Cqsys ≈ 0. In between the two extremes,
we have Cqsys � 0 and there is an optimal q for a system
such that (45) is maximized. In addition, the q-outage capacity
gain of MIMO-FAS over a traditional antenna system can be
characterized as

CqMIMO-FAS − C
q
sys

= q
[
P̄ out

sys (SNR, q)− P̄ out
MIMO-FAS (SNR, q)

]
. (47)

Using (47), we can easily see the benefits that can be harnessed
by MIMO-FAS over a traditional antenna system.

V. RESULTS AND DISCUSSIONS

Here, we present the analytical and Monte Carlo simulation
results to evaluate the performance of MIMO-FAS. For brevity,
we focus on a symmetric MIMO-FAS design where Ns

1 = Ns
2 ,

W s
1 = W s

2 and Wrx = Wtx. Unless stated otherwise, we
assume that Ns = 100, ns = 4, Ws = 1λ2, δ2

s = 1 and
SNR = 30dB. We also consider multiple schemes based on
different combinations of techniques to highlight the respective
gains and effects. These benchmarking schemes are:10

• Optimal MIMO-FAS: It considers the MIMO-FAS setup
that utilizes an exhaustive search, SVD and waterfilling
for port selection, beamforming and power allocation,
respectively.

• QR MIMO-FAS: This is the proposed MIMO-FAS that
employs strong RRQR factorization, SVD and waterfill-
ing power allocation for a suboptimal solution.

10Note that [23] has proposed a solution where the antennas can move to
locally optimal positions. We can interpret these positions as activating some
ports as Ns → ∞. However, the solution cannot be employed here due to
two impediments. Firstly, the spatial correlation of these positions cannot be
obtained. Secondly, we are considering the cases where the positions might
be discrete. Therefore, the solution is not considered in this paper.

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2023.3327063

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on November 06,2023 at 20:56:47 UTC from IEEE Xplore.  Restrictions apply. 



10

10 12 14 16 18 20 22 24 26 28 30

SNR

10
-4

10
-3

10
-2

10
-1

10
0

O
u
ta

g
e
 p

ro
b
a
b
ili

ty

Figure 2: Outage probability of FAS versus SNR for different
number of ports and dimensional space, with q = 7bps/Hz.

• Greedy MIMO-FAS: This is the MIMO-FAS that em-
ploys greedy selection, SVD and waterfilling power allo-
cation for an efficient solution in the low SNR regime.

• Random MIMO-FAS: It randomly activates the ports and
uses SVD as well as waterfilling power allocation.

• MIMO: This refers to the traditional MIMO that employs
SVD and waterfilling power allocation. Unless otherwise
stated, we assume that the number of antennas is nmimo

s =
4 and the antennas are spatially correlated based on (1).

• MIMO-AS: This refers to the traditional MIMO antenna
selection system that employs strong RRQR factorization,
SVD and waterfilling power allocation. Unless stated oth-
erwise, the number of active antennas is nmimo−as

s = 4.
Also, a maximum number of antennas is considered in
the given surface where the antennas are placed based on
a grid structure with at least half a wavelength apart, and
they are spatially correlated due to (1).

To highlight the superiority of 2D space, we first consider a
simplified scenario where there is only a single fluid antenna at
the receiver. Fig. 2 shows the outage probability of FAS versus
SNR for various number of ports and dimensional space. Here,
the outage probability is obtained using (46) by replacing
Rsys (SNR) with RQR (SNR). Given the same number of
ports, the ports that are distributed in 2D space can achieve a
much lower outage probability as compared to the ones that are
distributed in 1D space. This improvement can be explained
from the fact that a 2D space has an additional dimension
for the fluid antenna to move around. Hence, it contains more
spatial diversity and yields a lower outage probability. This
suggests that the ports in MIMO-FAS should be designed
using the entire 2D space for better performance.

Next in Fig. 3, we study the average rates of the bench-
marking schemes for different ns at different SNR. Since the
optimal MIMO-FAS is computed using an exhaustive search,
we set Ns = 12 where Ns

1 = 3 and Ns
2 = 4. Fig. 3(a)

illustrates that QR MIMO-FAS achieves a similar average
rate as compared to the optimal MIMO-FAS at high SNR.
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Figure 3: Average rates of the benchmarking schemes for
different values of ns: a) SNR = 30dB; b) SNR = 10dB; c)
SNR = −10dB.
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Furthermore, the average rate of QR MIMO-FAS scales like
ns log SNR when ns ranges from 1 to 6. Nevertheless, it
suffers from a diminishing rate gain when ns ranges from
7 to 12. Thus, MIMO-FAS is most effective when each active
port has the freedom of being at least half a wavelength apart
from each other. In addition, the average rate of QR MIMO-
FAS outperforms traditional MIMO when the number of active
ports or antennas is the same (i.e., ns = 4). This is because
QR MIMO-FAS activates the optimal ports in each realization,
which reduces the spatial correlation effect. In Fig. 3(b), we
further observe that QR MIMO-FAS provides a higher sum-
rate in the medium SNR regime when ns is small while
greedy MIMO-FAS yields a better performance when ns is
large. Nevertheless, as shown in Fig. 3(c), greedy MIMO-FAS
is generally more efficient than QR MIMO-FAS in the low
SNR regime. These results suggest that an efficient scheme
with low complexity is still required to maximize the rate of
MIMO-FAS in the medium and low SNR regimes. Besides,
QR MIMO-FAS yields a similar or higher rate than MIMO-AS
when the number of active ports or antennas is the same.

Fig. 4 presents the average rates and outage probabilities of
the benchmarking schemes for different values of Ns. In these
results, we omit the optimal MIMO-FAS because it is difficult
to perform exhaustive search online for large Ns. On the other
hand, since the activated ports can be placed very close to each
other, it would be useful to consider the mutual coupling effect
and investigate its effect on the performance of MIMO-FAS. In
particular, we consider two designs: liquid-based and RF pixel-
based fluid antennas. To make a fair comparison between the
cases with and without mutual coupling, we assume that Ns

1 =⌊
W s

1

0.5

⌋
+1 and vary Ns

2 accordingly. This means the resolution
in one direction is fixed while we change the resolution of
FAS in another direction to examine the impact of mutual
coupling. The details of the mutual coupling model are given
in Appendix III.

As seen in Fig. 4, generally speaking, the performance
of QR MIMO-FAS and random MIMO-FAS with mutual
coupling are not vastly different from the case without mutual
coupling regardless of whether liquid-based or RF pixel-based
fluid antenna is considered. This suggests that the active ports
can be placed close to each other, typically much less than
half a wavelength, and still yield a similar performance. By
contrast, the rate performance of greedy MIMO-FAS appears
to suffer more from mutual coupling as Ns increases. How-
ever, greedy MIMO-FAS is not supposed to work well here
because the setting is under the high SNR regime.

It is worth pointing out that for RF pixel-based fluid antenna,
mutual coupling can exist regardless of whether the pixels are
on or off. It is therefore essential to improve the S-matrix
via antenna design in order to achieve a good performance.
However, the advantage of RF pixel-based fluid antenna is that
the mutual coupling matrix is deterministic given Ns

1 and Ns
2

regardless of which pixels are the active ones. Thus, one can
directly obtain the optimal port selection, beamforming and
power allocation while taking into account of the mutual cou-
pling effect. Moreover, matching networks can be employed
directly to further improve the performance of MIMO-FAS but
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Figure 4: The performance of the benchmarking schemes for
different values of Ns: (a) average rate; (b) outage probability,
with q = 39bps/Hz; (solid) without mutual coupling; (dotted)
liquid-based fluid antenna with mutual coupling; (dashed) RF
pixel-based fluid antenna with mutual coupling.

this technique is not considered in our results.
Based on the above observations, we hence focus on the

performance of MIMO-FAS without mutual coupling effect. In
Fig. 4(a), we see that the average rates of random MIMO-FAS
and greedy MIMO-FAS generally decrease as Ns increases.
This suggests that efficient port selection in MIMO-FAS is
essential. Furthermore, the average rate of QR MIMO-FAS is
1bps/Hz higher than that of MIMO-AS and 6bps/Hz higher
than that of MIMO when Ns is large. In Fig. 4(b), the outage
probabilities of random MIMO-FAS, Greedy MIMO-FAS and
MIMO are near one (i.e., 0.99) while the outage probability
of MIMO-AS is in the order of 10−2. In contrast, the outage
probability of QR MIMO-FAS is much lower (i.e., the order of
10−3). Nevertheless, the outage probability of QR MIMO-FAS
decreases to a floor as Ns continues to increase. This limitation
is due to the fact that there are approximately N

′

s diversity in
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Figure 5: The performance of QR MIMO-FAS, MIMO and
MIMO-AS for different values of Ws: (a) average rate; (b)
outage probability, with q = 42.5bps/Hz.

Js for a fixed Ws. Therefore, the outage probability of QR
MIMO-FAS is limited by N

′

s for a fixed Ws (see, Table II).
To verify this explanation, we further investigate the outage

probabilities of QR MIMO-FAS, MIMO and MIMO-AS for
different values of Ws. For brevity, we omit random MIMO-
FAS and greedy MIMO-FAS as we now know that these
schemes do not provide an effective performance for large
Ns. As seen in Fig. 5(a), the average rates of QR MIMO-FAS,
MIMO and MIMO-AS increase and then plateau. Neverthe-
less, as shown in Fig. 5(b), the outage probabilities of QR
MIMO-FAS decrease without bound as Ws increases if Ns
is sufficiently large. By analyzing Table II, we can observe
that although Ns remains fixed, N

′

s generally increases if Ws

is increased. In contrast, the outage probability of MIMO is
always near to being one since the diversity gain of MIMO
remains the same even if Ws is increased. On the other hand,
the outage probability of MIMO-AS decreases at a slower rate
due to the lower resolution (i.e., the number of antennas is less
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Figure 6: The outage probabilities of QR MIMO-FAS, MIMO
and MIMO-AS for different values of q.
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Figure 7: The optimal DMT of MIMO-FAS, MIMO and
MIMO-AS.

than the number of ports in the given space). Overall, Figs. 4
and 5 suggest that the value of Ns be determined by Ws.

From the above results, one might be amazed with the rate
improvement of QR MIMO-FAS. Nevertheless, we highlight
that the superiority of QR MIMO-FAS lies in the diversity
gain. In particular, QR MIMO-FAS can reduce its outage prob-
ability to a much lower value than MIMO and MIMO-AS if q
is low (e.g., q < nmin log SNR). To examine this phenomenon
more closely, Fig. 6 illustrates the outage probabilities of QR
MIMO-FAS, MIMO and MIMO-AS for different q. Within
6bits/Hz, we see that the outage probability of QR MIMO-
FAS reduces at a steeper rate (e.g., from the order of 10−1 to
10−5) while the outage probability of MIMO-AS reduces at
a slower rate (e.g., from the order of 10−1 to 10−2) and the
outage probability of MIMO remains roughly the same.

To understand this at a more fundamental level, we present
the DMT of QR MIMO-FAS in Fig. 7. Note that the DMT of
QR MIMO-FAS is also the optimal DMT of MIMO-FAS. As
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Figure 8: The q-outage capacity of MIMO-FAS, MIMO and
MIMO-AS.

shown in Table II, the value of N
′

s depends on Ws as long as
Ns ≥ N

′

s. In Fig. 7, it can be seen that the diversity gain of
MIMO-FAS is much superior than that of an nrx×ntx MIMO
system for a fixed r. For example, the maximum diversity of
4×4 MIMO is 16 as r → 0. This is because the optimal DMT
of a traditional nrx×ntx MIMO system is a piecewise linear
function connecting the point (r, (nrx − r) (ntx − r)) [24].
Meanwhile, the maximum diversity of MIMO-AS is limited
by wrxwtx. For instance, if Ws = 1λ2, the maximum diversity
of MIMO-AS is 81. In contrast, the maximum diversity gain
of MIMO-FAS is approximately 23 × 23 = 529 � {81, 16}
if Wrx = Wtx = 1λ2. Hence, the diversity gain of MIMO-
FAS is massive because outage only occurs when all the ports
experience deep fades. To obtain the same diversity gain at
multiplexing gain r from 0 to N ′, a traditional N

′

rx × N
′

tx

MIMO would have been required. However, the downside is
that it can only have at most nmin multiplexing gain.

Finally, we investigate the q-outage capacity to showcase
the benefits of MIMO-FAS. Fig. 8 presents the q-outage
capacities of QR MIMO-FAS, MIMO and MIMO-AS as
well as the q-outage capacity gain of QR MIMO-FAS over
MIMO and MIMO-AS. For ease of exposition, the optimal
q∗ of QR MIMO-FAS, MIMO and MIMO-AS are denoted
as q∗MIMO-FAS, q∗MIMO, q∗MIMO-AS, respectively. As it is seen,
the outage capacities of the schemes increase up to q∗ and
decrease thereafter. To the left side of q∗, the capacity is lim-
ited by q (i.e., rate) since P̄ out

sys (SNR, q) is small. To the right
side of q∗, the capacity is limited by the outage probability
because P̄ out

sys (SNR, q) is large. Since MIMO provides limited
diversity gain and MIMO-AS has a limited number of antennas
within a given space, both schemes fail to achieve certain q-
outage capacity achievable by QR MIMO-FAS. This suggests
that MIMO-FAS can reliably deliver a much higher rate than
traditional MIMO and MIMO-AS systems.

VI. CONCLUSIONS

In this paper, we analyzed the performance limits of MIMO-
FAS. To this end, we developed a system model for MIMO-

FAS where a 2D fluid antenna surface was used at both ends,
while taking into account of the spatial correlation of the
ports. We then proposed a suboptimal scheme to maximize
the rate of MIMO-FAS at high SNR via joint port selection,
beamforming and power allocation, namely QR MIMO-FAS.
One key contribution was the derivation of the outer bound
of the DMT for MIMO-FAS. Through the outer bound and
the proposed scheme, we then obtained the optimal DMT
of MIMO-FAS which revealed the fundamental limits of
MIMO-FAS. Extensive results were presented, illustrating that
QR MIMO-FAS achieved a similar rate as compared to the
optimal MIMO-FAS in the high SNR regime. By fixing other
MIMO-FAS parameters, we found that the average rate and
outage probability of QR MIMO-FAS approached to a limit as
Ns increased. Likewise, the average rate of QR MIMO-FAS
improved up to a certain level as Ws increased. Nevertheless,
the outage probability of QR MIMO-FAS decreased without
bound as Ws increased. For the same multiplexing gain, we
also showed that MIMO-FAS achieved massive diversity gain
as compared to the traditional MIMO and MIMO-AS systems.
Motivated by this, we further illustrated that MIMO-FAS could
reliably deliver a much higher rate than the traditional MIMO
and MIMO-AS systems in terms of q-outage capacity that
jointly considered both rate and outage probability.

APPENDIX I: SPATIAL CORRELATION OF 2D FLUID
ANTENNA SURFACE OVER 3D SCATTERING ENVIRONMENT

Without loss of generality, let us refer to the position of
the (n1, n2)-port as nls =

[
0,

ns2−1
Ns2−1W

s
2 ,

ns1−1
Ns1−1W

s
1

]
T where

map (n1, n2) = ls and λ is the wavelength. Suppose a plane
wave impinges on the fluid antenna surface from azimuth angle
ϕ and elevation angle θ. Then, the array response vector can
be expressed as [43]

a (ϕ, θ) =
[
ej

2π
λ k(ϕ,θ)Tn1λ, . . . , ej

2π
λ k(ϕ,θ)TnNsλ

]T
, (48)

where

k (ϕ, θ) =
[

cos (θ) cos (ϕ) cos (θ) sin (ϕ) sin (θ)
]T
,

(49)
is the normalized wave vector.

Let us denote the spatial correlation matrix as Js =

E
{
a (ϕ, θ)a (ϕ, θ)

H
}

. From (48), we know that the (ks, ls)-
th entry of Js can be expressed as

[Js]ks,ls = E
{
ej

2π
λ k(ϕ,θ)Tnksλe−j

2π
λ k(ϕ,θ)Tnlsλ

}
= E

{
ej2πk(ϕ,θ)T (nks−nls )

}
, (50)

where map (ñs1, ñ
s
2) = ks. Using the Jacobi-Anger plane wave

expansion [44], (50) can be rewritten as

[Js]ks,ls = 4π

∞∑
m=0

m∑
n=−m

(−i)m×

αnmY
n
m

(
nks − nls
‖nks − nls‖

)
×

jm (2π ‖nks − nls‖) , (51)
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where jm (.) is the spherical Bessel function of the first kind,
Y nm (·) is the spherical harmonics, and

αnm =

∫
Ω

fk(ϕ,θ) (k)Y nm (k) dΩ (k) , (52)

where Ω (k) is a surface element of a unit sphere Ω. For a 3D
isotropic scattering environment, we have fk(ϕ,θ) (k) = 1

4π
and thus (52) reduces to

αnm =
1

4π

∫
Ω

Y nm (k) dΩ (k) . (53)

Using the fact that

Y nm

(
nks − nls
‖nks − nls‖

)
=

1√
4π

if n = m = 0, (54)

and ∫
Ω

Y nm

(
k̃
)
dΩ
(
k̃
)

=

{√
4π if n = m = 0,

0 otherwise,
(55)

(51) can be rewritten as

[Js]ks,ls = j0 (2π ‖nks − nls‖) , (56)

which gives (1). Note that (1) conforms with [45]–[47] since
j0 (c) = sin c

c . In addition, (1) can be reduced to a 1D fluid
antenna with 2D scattering environment by setting Ns

1 = 1
and 0

0 , 0 and replacing j0 (·) by J0 (·) where J0 (·) is the
Bessel function of the first kind [9].

APPENDIX II: GENERALIZATION TO OTHER SPATIAL
CORRELATION MODELS

Without loss of generality, let us consider a 1D fluid antenna
since a similar argument can be made for a 2D fluid antenna
surface. To begin with, let us denote J as the N × N
spatial correlation matrix. Suppose that W � 0, and the
spatial correlation between the k-th port and the l-th port
is Jk,l = f (k, l,N) where the spatial correlation function
f satisfies two conditions: i) limN→∞ f (k, k ± 1, N) = 1
and ii) there are some ∃l 6= k such that f (k, l,N) 6= 1.
The first condition implies that the (k ± 1)-th row/column
of J can be removed from J since the (k±1)-th row/column
of J is always identical to the k-th row/column of J in the
limit. The second condition implies that there exist some l-th
port whose l-th row/column must be retained in J since its
spatial correlation is completely distinct from the k-th port.
If f satisfies these two conditions, then there must exist a
minimal spacing c between the k-th and l-th ports such that
their spatial correlation is distinct. Using the fact that W is
finite, it is clear that there are at most N̄ non-identical ports
since conditions (i) and (ii) hold. In particular, N̄ must be
finite because W ≥ N̄c > 0. As a result, J can be rewritten
as a symmetric N̄ × N̄ finite size matrix. Let us denote N

′
as

the full rank of the symmetric N̄ × N̄ matrix where N
′ ≤ N̄ .

Then, we can further reduce the symmetric N̄ × N̄ matrix to
a full rank symmetric N

′ ×N ′ submatrix J red by removing
the (N̄ −N ′) dependent rows and columns. Consequently, J
can be represented by J red which is a full rank symmetric
N
′ ×N ′ finite-size matrix.

APPENDIX III: THE EFFECT OF MUTUAL COUPLING

In liquid-based fluid antenna, mutual coupling only occurs
between the active ports. Thus, the MIMO-FAS channel with
mutual coupling effect can be modeled as [48]

H̄mc = Zrx,lmc H̄Z
tx,l
mc , (57)

where Zrx,lmc and Ztx,lmc are the mutual coupling matrices which
can be pre-computed offline given the antenna technologies
used. The mutual coupling matrix is given as

Zs,lmc = (ZA + ZL)
(
Zls + ZLI

)−1

, s ∈ {rx, tx} , (58)

where ZA, ZL and Zls are the antenna impedance, load
impedance and mutual impedance matrix of the active ports,
respectively. To compute Zls, we assume that each active port
is a dipole element with a length of 0.5λ and a width of
0.001λ. Consequently, ZA = 73.08 + 42.21j and ZL = Z∗A.
Due to the dipole’s physical constraint, we fix Ns

1 =
⌊
W s

1

0.5

⌋
+1

and vary Ns
2 accordingly. If all the active ports are far

from each other, we have Zsmc ≈ I . Given (57), SVD and
waterfilling power allocation are then performed. It is worth
highlighting that this model is a conservative one because
the mutual coupling effect is not considered when optimizing
Atx and Arx. In fact, the performance of MIMO-FAS can
be further improved when considering the mutual coupling
effect and allowing the optimal active ports to be freely located
within the given surface.

In RF pixel-based fluid antenna, mutual coupling can exist
regardless of whether the pixels are on or off. Thus, in practice,
it is important to improve the S-matrix via antenna design. To
a coarse approximation, the S-matrix is modeled as

Ssmc =


αrlS

s
1,1 αisoS

s
1,2 · · · αisoS

s
1,Ns

αisoS
s
2,1 αrlS

s
2,2

...
...

. . .
αisoS

s
Ns,1

· · · αrlS
s
Ns,Ns

 , (59)

where αrl and αiso determine the improvement level of the
return loss and isolation, respectively, while Ssks,ls is the S-
parameter between the ks-th and ls-th ports. In this paper, we
assume that the return loss and isolation levels are −15dB
and 30dB, respectively, which are typical values that can be
achieved using state-of-the-art technologies [49]. Given (59),
the mutual impedance matrix of the RF pixel-based fluid
antenna can be computed as

Zps = z0 (I + Ssmc) (I − Ssmc)
−1
, (60)

where z0 = 50Ω is the reference impedance. Similar to (58),
the mutual coupling matrix is given as

Zs,pmc = (ZA + ZL) (Zps + ZLI)
−1
, s ∈ {rx, tx} . (61)

Similar to (57), the MIMO-FAS channel with mutual coupling
effect is modeled as

Hmc = Zrx,pmc HZ
tx,p
mc . (62)

In contrast to (57) and (58), it is worth noting that (61) and
(62) are Ns × Ns matrices. Given (62), the port selections,
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beamforming and power allocation can be performed by dif-
ferent schemes. Note that matching networks can be employed
to further improve the performance of MIMO-FAS [50].
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