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Abstract 

Objective To describe comprehensively the distribution and progression of high-frequency continuous vital signs 
monitoring data for children during critical care transport and explore associations with patient age, diagnosis, 
and severity of illness.

Design Retrospective cohort study using prospectively collected vital signs monitoring data linked to patient demo-
graphic and transport data.

Setting A regional pediatric critical care transport team based in London, England.

Patients Critically ill children (age ≤ 18 years) transported by the Children’s Acute Transport Service (CATS) at Great 
Ormond Street Hospital (GOSH) between January 2016 and May 2021 with available high-frequency vital signs moni-
toring data.

Interventions None.

Main results Numeric values of heart rate (HR), blood pressure (BP), respiratory rate (RR), oxygen saturations  (SpO2), 
and end-tidal carbon dioxide in ventilated children  (etCO2) were extracted at a frequency of one value per sec-
ond totalling over 40 million data points. Age-varying vital signs (HR, BP, and RR) were standardized using Z scores. 
The distribution of vital signs measured in the first 10 min of monitoring during transport, and their progression 
through the transport, were analyzed by age group, diagnosis group and severity of illness group. A complete dataset 
comprising linked vital signs, patient and transport data was extracted from 1711 patients (27.7% of all transported 
patients). The study cohort consisted predominantly of infants (median age of 6 months, IQR 0–51), and respiratory 
illness (36.0%) was the most frequent diagnosis group. Most patients were invasively ventilated (70.7%). The Infec-
tion group had the highest average (+ 2.5) and range (− 5 to + 9) of HR Z scores, particularly in septic children. Infants 
and pre-school children demonstrated a greater reduction in the HR Z score from the beginning to the end of trans-
port compared to older children.

Conclusions Marked differences in the distribution and progression of vital signs between age groups, diagnosis 
groups, and severity of illness groups were observed by analyzing the high-frequency data collected during paediatric 
critical care transport.
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Introduction
Critically ill children admitted at general hospitals fre-
quently require emergency transport to tertiary paedi-
atric intensive care units (PICUs) for a higher level of 
care [1–3]. Most of these transports are performed by 
paediatric critical care transport teams (PCCTs) who 
act as “mobile PICUs”, stabilize and safely transport 
critically ill children to PICUs [4, 5], which have been 
providing a better care to transported children with 
improved outcomes [6].

PCCTs are in an ideal position to recognize clinical 
deterioration early and institute critical care treat-
ments in a timely way to improve children’s outcomes 
[7]. However, although vital signs, such as heart rate 
(HR), blood pressure (BP) and respiratory rate (RR), 
are monitored continuously during transport, timely 
recognition of deterioration (or response to treat-
ment) can be challenging due to a variety of factors: 
the physically challenging environment, limited num-
ber of staff, a wide range of patient ages and diagnoses 
encountered, rapid changes in patient physiology, the 
need for urgent interventions, and cognitive overload. 
It means that physiological status is often assessed 
in ‘snapshots’ rather than the patient’s trajectory [8]. 
There is also scant literature on the extent to which 
vital signs deviate from ‘normal’ values in this popu-
lation. A deeper understanding of the distribution 
and progression of vital signs during transport could 
empower PCCTs by providing valuable insights into 
the acceptable limits of these indicators. This knowl-
edge would support well-informed clinical decisions 
and enhance the quality of care provided.

The distribution of physiological parameters has 
been recently described in normal children as well as 
in pre-hospital settings [9–11]. The centiles and distri-
butions of continuously measured vital signs have been 
reported in hospitalized critically ill children [12, 13]. 
To the best of our knowledge, there are no studies that 
report the distribution and evolution of physiological 
parameters during paediatric critical care transport. In 
this study, we present, for the first time, a comprehen-
sive description of the distribution and progression of 
continuous vital sign data collected at a high frequency 
of one reading per second during transport using a 
dataset that includes a large cohort of transported crit-
ically ill children. Additionally, we investigate variabil-
ity in these data based on patient age, diagnosis, and 
severity of illness.

Methods
Study design and setting
The study was registered and approved by the research 
and innovation department at Great Ormond Street 
Hospital (GOSH). Formal ethical approval was waived 
since data were collected as part of routine care and 
anonymized before analysis, which was covered by 
generic research database approval (17/LO/0008). This 
was a retrospective cohort study that analyzes continu-
ously monitored physiologic variables of critically ill 
children (age ≤ 18  years) transported to PICUs by the 
Children’s Acute Transport Service (CATS), a regional 
PCCT based in London, between 1 July 2016 and 30 May 
2021.

Data sources
The CATS team implemented a technical solution (Swift-
Care, Kinseed Limited, Uxbridge, UK) in 2016 to enable 
the gathering, collation, and storage of multi-parameter 
monitoring of numeric and waveform vital signs, such 
as heart rate (HR), respiratory rate (RR), systolic, mean, 
and diastolic blood pressure (BP) (non-invasive as well as 
arterial when available), oxygen saturations  (SpO2), body 
temperature and end-tidal carbon dioxide  (etCO2) dur-
ing transports. Data were stored at high resolution (one 
data point per second for numeric vital sign). Upon the 
arrival of the CATS team at the patient’s bedside in the 
referring hospital, the ambulance staff utilized a smart-
phone equipped with SwiftCare software to establish an 
automatic and wireless connection with the patient mon-
itor (Philips Intellivue MP5, Philips, Netherlands). They 
recorded both numeric and waveform vital sign data con-
tinuously until the patient handover at the destination 
PICU.

Study data
The analyzed dataset consists of data on patient demo-
graphics, diagnosis, interventions, transport episode 
data, and numeric vital signs. Numeric vital sign obser-
vations were measured every second, including HR, 
 SpO2,   etCO2, RR in invasively ventilated patients RR(v) 
and in unventilated patients RR(u); we also analyzed 
non-invasive systolic, mean, and diastolic blood pres-
sure (SBP, MBP and DBP) values measured intermit-
tently (values were carried forward every 1 s until a new 
recording was made). For each transport, these granular 
physiological data were linked to patient and transport 
data extracted from the CATS electronic information 
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system (SwiftCare, Kinseed Limited, Uxbridge, UK) such 
as age, gender, interventions, and primary diagnosis. Our 
dataset also included the Paediatric Index of Mortality 
3 (PIM3) score calculated using variables collected at/
around the time the CATS team arrived at the patient 
bedside [14]. The transport was divided into three stages: 
stabilization (from CATS arrival at the referring hospital 
to departure from the referring hospital), patient jour-
ney (from departure from referring hospital to arrival at 
the PICU), and handover (from arrival on PICU to leav-
ing the PICU). The duration of each of these three stages 
was also ascertained. We did not consider waveform data 
(such as ECG data) in this initial study.

Data cleaning and analysis
Extensive data cleaning was initially undertaken to 
validate and then discard implausible values for physi-
ological variables (e.g., HR < 0 or > 300) as previously 
described [13]. We carried out missing value imputa-
tion, outlier detection, and data format conversion in 
both personal, diagnosis and transport data. Patients 
with missing/corrupted values that could not be recov-
ered in patient demographics (such as age and gender), 
transport episode, and PIM3 score were excluded (see 
Online Resource 4, Supplementary Figure S1 for patient 
screening).

Since the cohort comprised children of different ages 
with different ‘normal’ ranges for vital signs, we standard-
ized these values based on previously published normal 
values from healthy children by age [9]. Standardization 
was done using Z scores, which indicates how much a 
given vital sign value deviates from the mean value in 
healthy children of similar age and gender. Details of the 
Z score calculations are provided in Online Resource 1. 
We categorized the patient’s primary diagnosis into six 
major diagnosis groups (Online Resource 2). We carefully 
reviewed the list of detailed primary diagnosis names, 
sought input from the emergency transport team of cli-
nicians and consultants, and created a limited number 
of major diagnosis groups that were simple, clear, and 
aligned with the clinical relevance of the diagnoses in our 
study population. The characteristics of the study cohort 
were described in terms of age group, diagnosis group, 
four most common diagnoses, and PIM3 score group.

The vital signs collected were analyzed because it can 
provide the transport team with valuable information 
about the development of diseases and children’s health 
conditions when the CATS team arrived at the patient’s 
bedside. As a large majority of patients have over 
10  min of vital sign monitoring data (≥ 600 data points 
on record), distributions of vital sign numerical val-
ues were generated using the first 10 min of monitoring 
time from patients (indicating patient physiology at first 

contact) and stratified by age, diagnosis, and PIM3 score 
to inspect data distributions at the very beginning time.

Progression of vital sign data over the entire transport 
was compared between age groups, diagnosis groups and 
PIM3 score groups We normalized each patient’s distri-
bution before generating the population-level distribu-
tion to avoid sampling bias due to different numbers of 
contributing values, which would lead to distributions 
weighted to represent patients with more data points. 
Bearing this in mind, we divided the data into consecu-
tive non-overlapping intervals with a bin size of 5  min 
because 5-min resolution has been reported as an effec-
tive interval for health monitoring and deterioration pre-
diction [15]. At the individual patient level within each 
5-min bin, we calculated statistical measures for each 
vital sign such as mean and standard deviation (SD) of 
the raw values as well as the Z-score derived from the 
raw value. At the population-level, we calculated the 
mean value of each 5-min mean value from the patients 
in that group (see Online Resource 3 for graphical illus-
tration of the calculation). A linear regression model was 
applied to determine if vital signs trends changed over 
transport time.

The study dataset was analyzed within the Python envi-
ronment. All analysis code was written in Python 3.8. 
Data manipulation and analysis were done using NumPy 
v1.18 [16] and Pandas v1.2.4 [17]. All charts were pro-
duced with MatPlotLib v3.1.3 [18] and seaborn v0.11.1 
[19]. No statistical tests were performed for this descrip-
tive paper.

Results
Study population
Between 1 July 2016 and 30 May 2021, the CATS team 
transported 6470 patients to PICU, of whom 6,182 
were ≤ 18  years of age and had non-missing age data. 
Vital sign data was not collected in all transports due 
to challenges such as technical issues and availability 
of devices. In this study, a complete dataset comprising 
linked vital signs, patient and transport data was available 
in 1711 patients (27.7%) (Online Resource 4, Supplemen-
tary Figs.  1 and 2). The 1711 patients with linked study 
data were not systematically different from the overall 
population of 6182 transported patients, see Table 1. The 
study cohort consisted predominantly of infants (median 
age of 6  months, IQR 0–51), with the most frequent 
diagnostic groups being respiratory (36.0%), cardiovas-
cular (25.1%) and neurological (17.5%). Median PIM3 
predicted risk of mortality was 3.4% (IQR 2.1–5.2%). 
Most patients were invasively ventilated (70.7%) and 
nearly one-third required vasoactive agents (31.7%) dur-
ing transport. The median overall transport time was 
208 min (IQR 165–255).
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Vital sign data
A total of over 40 million data points were extracted 
from the study cohort. The most frequently monitored 
vital signs were  SpO2 (88.8% of the study cohort with at 
least 10  min of monitoring time) and HR (88.5%), fol-
lowed by RR (84.7%), SBP, DBP, and MBP (82.2%), and 
 etCO2 (63.4%). The number of patients by age group who 
had continuous monitoring vital sign data and the num-
ber of available data points for each vital sign are given 
in Table  2 (broken down by transport stage in Online 
Resource 4, Supplementary Table  S1). In total, 1844  h 
of monitoring data for HR, 1854 h for  SpO2, 1623 h for 
SBP, 1622 h for DBP, 1633 h for MBP, 1406 h for  etCO2, 
1442  h for RR(v), and 324  h for RR(u) were available  
for analysis.

Distribution of vital signs in the first 10 min of transport
The distribution of HR, BP, and RR Z scores by diagnostic 
group during the first 10 min of monitoring is shown in 
Fig. 1—the infection and respiratory group had the high-
est median and range of HR Z scores, and the greatest 
variation in BP and RR (in unventilated children). Fig-
ure 2 shows HR, BP, and RR Z score distributions in the 
four most common diagnoses (congenital heart disease, 
bronchiolitis, status epilepticus and sepsis)—septic chil-
dren had the highest mean and standard deviation of HR 
Z scores. Distribution of  SpO2 and  etCO2 values by diag-
nosis showed that cardiovascular diagnosis group and 
congenital heart disease children had the lowest median 
 SpO2 values (due to the presence of cyanotic heart lesions 
in the population);  etCO2 values were highest in the res-
piratory group, particularly the bronchiolitis population 
(Online Resource 4, Supplementary Figure S3). Boxplots 
of Z score for HR and BP by PIM3 score group are shown 
in Online Resource 4, Supplementary Figure S4.

Trajectory of vital signs
The progression of HR and BP Z score values during the 
transport by age groups is shown in Fig. 3. Trends in Z 
score for HR indicated that infants and pre-school chil-
dren demonstrated a reduction in the HR Z-score (indi-
cating improving physiology) from the beginning to the 
end of transport, more pronounced than the reduction 
seen in older children (Online Resource 4, Supplemen-
tary Figure  S5). Compared to younger age groups, the 
pre-school, school child, and adolescent groups present a 
greater variation in HR Z score with a range between + 1 
and + 4. Progression of Z-score for HR by diagnosis 
group, with three individual patients’ trajectories super-
imposed (for comparing the individual longitudinal 
trajectory with the population level), and for BP by diag-
nosis and PIM3 score groups are respectively shown in 
Online Resource 4, Supplementary Figs. 6, 7, and 8.

Table 1 Demographic, clinical, and transport characteristics 
of the study population compared to all transported children 
during the study period

a PIM3 Paediatric Index of Mortality version 3. The PIM3 score was assessed by 
the transport team within the first hour after arriving at the patient beside. Data 
are number (%), unless otherwise indicated
b Stabilization time: time from arrival of the CATS team to patient bedside to 
leaving the referring hospital
c Overall transport time: time from arrival of the CATS team to patient bedside to 
leaving the destination PICU

Characteristics All CATS 
transports
with patient 
data (n = 6182)

Transports analysed in
the study (n = 1711)

Age, months/years

  ≤ 1 month (newborn) 2145 (34.7%) 670 (37.9%)

 1– ≤ 12 month (infant) 1270 (20.5%) 337 (19.1%)

 1– ≤ 4 years (pre-school child) 1148 (18.6%) 310 (17.5%)

 4– ≤ 11 years (school child) 976 (15.8%) 276 (15.6%)

 11– ≤ 18 years (adolescent) 643 (10.4%) 174 (9.8%)

Gender

 Male 3449 (55.8%) 932 (54.5%)

Diagnosis group

 Respiratory 2220 (35.9%) 616 (36.0%)

 Cardiovascular 1409 (22.8%) 429 (25.1%)

 Neurological 1069 (17.3%) 299 (17.5%)

 Infection 625 (10.1%) 151 (8.8%)

 Gastrointestinal 461 (7.5%) 112 (6.5%)

 Trauma 321 (5.2%) 84 (4.9%)

 Other 76 (1.2%) 20 (1.2%)

PIM3 risk of  mortalitya

  ≤ 1% 392 (6.3%) 100 (5.8%)

 1– ≤ 3% 2282 (36.9%) 595 (34.8%)

 3– ≤ 5% 2022 (32.7%) 577 (33.7%)

 5– ≤ 10% 1016 (16.4%) 288 (16.8%)

 10– ≤ 15% 194 (3.0%) 64 (3.8%)

 15– ≤ 30% 171 (2.8%) 53 (3.1%)

  > 30% 105 (1.7%) 34 (2.0%)

Invasive ventilation

 Yes 4208 (68.1%) 1210 (70.7%)

Vasoactive agent infusion

 Yes 1792 (28.9%) 543 (31.7%)

Inhaled nitric oxide

 Yes 198 (3.2%) 50 (2.9%)

Critical incident during transport

 Patient-related 490 (7.9%) 151 (8.8%)

 Equipment-related 337 (6.1%) 119 (6.9%)

 Patient or equipment related 824 (13.3%) 255 (14.9%)

Stabilisation time,  minutesb

  ≤ 60 1175 (19%) 273 (16.0%)

 60– ≤ 120 2893 (46.8%) 830 (48.5%)

 120– ≤ 180 1541 (24.9%) 440 (25.7%)

  > 180 573 (9.3%) 168 (9.8%)

Overall transport  timec, minutes

  ≤ 180 2203 (35.6%) 572 (33.4%)

 180–360 3744 (60.6%) 1088 (63.6%)

  > 360 235 (3.8%) 51 (3.0%)
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Discussion
For critically ill children, emergency pediatric transport 
represents a period of considerable physiological insta-
bility. In this study, we analyzed over 40 million data 
points to describe in detail the distribution and trajectory 
of commonly monitored vital signs in a large cohort of 
transported children. There were key differences between 
age groups, diagnosis groups and severity of illness 
groups in both the overall distribution and the progres-
sion over time of vital signs such as heart rate and blood 
pressure. In all age groups, but more so in pre-school 
and school age children, the average heart rate improved 
from the beginning of transport to the end of the trans-
port, although the trajectory of individual patients was 
variable, with some showing little change throughout the 
transport.

The main strength of this study is the unique data-
set of high-frequency vital sign data collected during 
transport; to our knowledge, this is the first description 
of such data in a large cohort of transported critically 

ill children. Even though vital signs are monitored 
continuously during pediatric critical care transport, 
these data have been seldom stored electronically and 
therefore there has been limited opportunity to har-
ness them to provide computerized clinical decision 
support. In comparison, within the hospital setting, 
the increasing adoption of electronic health records 
(EHRs) means that vital sign data, even those collected 
at low frequency, have been used to predict clinical 
deterioration or severe sepsis for patients in inpatient 
settings [20, 21]. In critically ill children, low-frequency 
data may not adequately reflect the temporal variabil-
ity and complexity of these signals; at least one report 
suggests that the higher the resolution of available data, 
the more comprehensive the description of the patient’s 
clinical state [22]. In our cohort, numeric data on HR, 
BP, RR,  SpO2, and  etCO2 were available at a high fre-
quency (one value per second) in a large cohort of chil-
dren allowing us to assess within- and between-patient 
variability.

Table 2 Number of patients and number of data points from continuously collected vital sign data by age groups

N number of analyzed patients in different age groups, Np number of patients who had non-null vitalsign values, Nd: total available data points for vital signs, HR 
heart rate, beats per min, RR(v) respiratory rate, breaths per min (ventilated patients), RR(u) respiratory rate, breaths per min (unventilated patients), SBP systolic blood 
pressure, mm Hg, DBP diastolic blood pressure, mm Hg, MBP mean blood pressure, mm Hg

Vital sign Overall cohort 
(N = 1711)

Newborn
(N = 670)

Infant
(N = 337)

Pre-school child 
(N = 310)

School child
(N = 276)

Adolescent (N = 174)

HR,  Np (%) 1514 (88.5) 573 (85.5) 290 (86.1) 261 (84.2) 240 (86.9) 150 (86.2)

HR,  Nd 6,640,909 2,343,011 1,404,762 1,174,783 1,086,799 631,554

HR, hours 1844.70 650.84 390.21 326.33 301.89 175.43

SpO2,  Np (%) 1520 (88.8) 571 (85.2) 290 (86.1) 264 (85.2) 244 (88.4) 151 (86.8)

SpO2,  Nd 6,676,848 2,352,492 1,397,512 1,185,511 1,102,832 638,501

SpO2, hours 1854.68 653.47 388.20 329.31 306.34 177.36

SBP,  Np (%) 1407 (82.2) 530 (79.1) 280 (83.1) 246 (79.4) 214 (77.5) 137 (78.7)

SBP,  Nd 5,843,451 2,067,824 1,281,958 1,079,181 879,432 535,056

SBP, hours 1623.18 574.39 356.09 299.77 244.29 148.63

DBP,  Np (%) 1407 (82.2) 530 (79.1) 280 (83.1) 246 (79.4) 214 (77.5) 137 (78.7)

DBP,  Nd 5,840,468 2,066,788 1,281,320 1,078,460 879,040 534,860

DBP, hours 1623.18 574.40 356.10 299.77 244.29 148.63

MBP,  Np (%) 1407 (82.2) 530 (79.1) 280 (83.1) 246 (79.4) 214 (77.5) 137 (78.7)

MBP,  Nd 5,881,698 2,083,610 1,286,387 1,085,668 886,521 539,512

MBP, hours 1633.81 578.78 357.33 301.57 246.26 149.86

etCO2,  Np (%) 1085 (63.4) 345 (51.5) 237 (70.3) 220 (70.9) 184 (66.7) 99 (56.9)

etCO2,  Nd 5,064,133 1,581,787 1,181,165 968,379 881,673 451,129

etCO2, hours 1406.70 439.39 328.10 268.99 244.91 125.31

RR (v),  Np (%) 1044 (61.1) 342 (51.1) 227 (67.4) 210 (67.7) 173 (62.6) 92 (52.9)

RR (v),  Nd 5,194,567 1,692,015 1,195,379 984,859 881,685 440,629

RR (v), hours 1,442.94 470.00 332.05 273.57 244.91 122.40

RR (u),  Np (%) 405 (23.7) 215 (32.1) 55 (16.3) 41 (13.2) 46 (16.7) 48 (27.6)

RR (u),  Nd 1,168,831 592,859 179,699 151,079 110,574 134,620

RR (u), hours 324.68 164.68 49.92 41.97 30.72 37.39
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Knowledge of the expected distribution of vital 
signs in the acute setting (especially during emergency 
transport) is important to guide clinical decisions and 
achieve a better understanding of vital sign interpreta-
tion. Since clinicians may choose to intervene more, or 
less, based on the expected range of values and their 
predicted trajectory. Using a target range for vital signs 
in a particular patient based on data from a non-crit-
ical care population could adversely impact manage-
ment decisions, assessment of clinical trajectory, and 
potentially lead to alarm fatigue from inappropriately 
set limits [12]. Our data provide useful clinical insights: 
for example, they show that the highest HR Z scores 
are seen in children with infection (IQR 1.09–4.85) 

(especially septic patients) and those with a diagnosis of 
status epilepticus (IQR 0.87–3.29), and that the average 
set respiratory rate (median: -0.42) during ventilation 
is lower than the ‘normal’ value for age in all diagno-
sis groups. The average  SpO2 in ventilated children 
(IQR [median]: 96.1–100 [99.4]) is higher than in chil-
dren (IQR/median 95.0–100/98.5) who are spontane-
ously breathing. Children with a high severity of illness 
score (PIM3 > 0.3 IQR 0.46–2.7) have a larger variabil-
ity in their HR Z score during transport unlike those 
with a small severity of illness score (0.01 < PIM3 ≤ 0.03 
IQR0.06–3.16). Individual patient trajectories may dif-
fer from the average trajectory, and will help to spot 
“outliers” early.

Fig. 1 Box plots of Z scores for vital sign values from the first 10 min of monitoring by diagnosis group
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In addition, another noteworthy aspect of strength is 
the provision of an alternative standardization approach 
for vital signs in pediatric patients using Z scores. This 
approach not only significantly minimizes discrepan-
cies in age-dependent vital signs in transported chil-
dren, but also assists clinicians in understanding how 
much the current vital sign observation deviates from 

the “normal” vital sign value for age in different patient 
cohorts, by providing both the raw vital sign value and 
its corresponding Z score [9]. Moreover, the trans-
formed Z scores offer the potential to unlock the value 
of multiple vital sign monitoring and big data systems 
for clinical decision support in transport teams, by ena-
bling the discovery of underlying patterns using large 

Fig. 2 Distribution of Z scores for vital signs from the first 10 min of monitoring in four common diagnoses (congenital heart disease, bronchiolitis, 
status epilepticus, and sepsis)
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amounts of EHR data, longitudinal vital sign data, and 
transport episode data [23]. In future work, we plan to 
conduct prospective research on the impact of data-
driven models such as machine learning and deep learn-
ing models, on real-time assessment of patient health 
deterioration during transport using our data.

Limitations
Not all transported children had data stored, raising 
the potential for our sample to be unrepresentative; 
however, we have shown that patient characteristics of 
the study cohort are similar to the overall transported 
population. The proportion of missing data was also 
uneven across age groups, which may have introduced 
bias. Another limitation is that in some cases, vital 
sign data did not cover the entire transport duration 
(at least vital signs were seldom stored electronically 
in some cases), i.e., it started later than the arrival 
of the team at the patient bedside and ended before 

patient handover on the PICU. Vital sign capture was 
not uniform among the individual vital sign measure, 
and the average monitoring time is around 60 min. In 
this study, we tried to quantify a typical monitoring 
time frame (e.g., first 10 min of monitoring, and 5-min 
monitoring interval) to observe the vital sign trends. 
In addition, unlike in a hospital setting, transports end 
when the patient reaches the PICU rather than when 
the patient improves sufficiently for discharge or dies, 
which means that it is difficult to appreciate the full 
trajectory of clinical improvement from transport 
data alone.

Conclusions
Analysis of continuously collected high-frequency data 
during pediatric critical care transport showed marked 
differences in the distribution and progression of vital 
signs between age groups, diagnosis groups, and sever-
ity of illness groups.

Fig. 3 Progression of Z scores for HR and BP over transport time (minutes) by age group
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