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Abstract: Microsurgery serves as the foundation for numerous operative procedures. Given its highly
technical nature, the assessment of surgical skill becomes an essential component of clinical practice
and microsurgery education. The interaction forces between surgical tools and tissues play a pivotal
role in surgical success, making them a valuable indicator of surgical skill. In this study, we employ six
distinct deep learning architectures (LSTM, GRU, Bi-LSTM, CLDNN, TCN, Transformer) specifically
designed for the classification of surgical skill levels. We use force data obtained from a novel
sensorized surgical glove utilized during a microsurgical task. To enhance the performance of our
models, we propose six data augmentation techniques. The proposed frameworks are accompanied
by a comprehensive analysis, both quantitative and qualitative, including experiments conducted
with two cross-validation schemes and interpretable visualizations of the network’s decision-making
process. Our experimental results show that CLDNN and TCN are the top-performing models,
achieving impressive accuracy rates of 96.16% and 97.45%, respectively. This not only underscores the
effectiveness of our proposed architectures, but also serves as compelling evidence that the force data
obtained through the sensorized surgical glove contains valuable information regarding surgical skill.

Keywords: surgical skill classification; microsurgery; neurosurgery; force data; deep learning

1. Introduction
1.1. Background

Microsurgery uses miniaturized instruments and an operating microscope to achieve
fine surgical tasks such as anastomosis of blood vessels or nerves. Microsurgery originated
in the late 19th century in the field of vascular surgery, with the first end-to-end anastomosis
of a blood vessel performed using a fine silk suture [1]. However, these initial surgeries
had many complications due to the formation of thrombi during the procedure and poor
visualization of tissues using crude magnification systems. The discovery of the antico-
agulant heparin in 1916 and the development of the operating microscope in the 1920s
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revolutionized the success of microsurgery and expanded its application to other surgical
fields including plastic surgery, ophthalmology, and neurosurgery [1]. Microsurgery now
forms a key component of many operative procedures, but it has an abrupt learning curve
for novice surgeons to achieve clinical competency [2].

Surgical skill level is an important determinant in reducing post-operative complica-
tions [3]. Surgical skills are traditionally developed through years of surgical training in
an apprenticeship model. Trainee surgeons gradually advance their psychomotor surgical
skills while moving towards independent practice. However, the intraoperative feedback
provided by this model is highly variable, unstructured, and prone to bias [4]. The appren-
ticeship model also requires reflection on the part of the surgeon, and the learning from this
can be limited by inaccurate self-assessment. Indeed, there has been a move in recent years
away from the traditional apprenticeship model and towards competency-based surgical
training [5]. It focuses on the development of a surgeon’s technical competencies and
capabilities through regular summative assessments and not time in training [5]. Through
this, surgical skills developed through simulated training have become a major component
of surgical training and have been shown to transfer to performance intraoperatively [6].

To provide objective feedback to surgeons in training, many surgical skill assessment
tools have been developed in microsurgery [7]. These assessment tools are designed to pro-
vide objective feedback to surgeons through assessments using surgical simulator models
prior to exposure to real surgery. Anonymized assessments are then reviewed retrospec-
tively by a senior surgeon to provide objective feedback. However, these assessment tools
do not provide real-time feedback to surgeons and therefore cannot be used intraoper-
atively. Furthermore, they require an experienced microsurgeon to rate the participant
which is time-consuming and costly, as microsurgery is a skill developed over many years
of practice.

A potential solution to standardizing the development of surgical skills is to provide
automated and objective feedback using machine learning (ML). At its core, surgery in-
volves the manipulation of tissue to treat disease, primarily guided by force feedback.
Novice surgeons are known to struggle with choosing the appropriate force to exert during
surgical procedures and this is linked to over half of surgical errors [8].

Errors associated with inappropriate application of force during surgery include
the unintended dissection of tissues or damage of blood vessels leading to bleeding [9].
Therefore, tasks that serve to assess competence (and distinguish expert surgeons from
novices) should concern the consistent application of force throughout the task with little
variability, such as the dissection of symmetrical structures, and where misapplied forces
produce a distinguishable, displeasing or asymmetric result.

Tool–tissue interaction forces are known to be a key component of surgical success [10].
Indeed, novice surgeons are known to exert significantly higher forces and with greater
force variability than expert surgeons [9]. Additionally, in previous studies, the force data
were derived indirectly from robots or surgical instruments and not from the surgeons’
hands [11–16]. A novel approach developed by our group was the use of a sensorized
surgical glove able to measure a range of intraoperative forces (0–10 N) and differentiate
between novice and expert surgeons [17]. This sensorized glove is low in cost and all
components can be heated to >200 °C, allowing for routine medical sterilization between
surgical cases [18]. However, the potential of employing ML to analyze data from the
sensorized glove for deeper insights into surgical skills remains unexplored. This study
aims to leverage ML methods for the first time for classifying surgical skill levels using
intraoperative force data from a microsurgical task. Such a system can facilitate surgical
training and education at a low cost.

Problem Definition

This study centers on the application of deep learning techniques for the automated
assessment of surgical skills based on force data in the context of microsurgery. Our primary
objective is to treat skill assessment as a classification task, where the neural network
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classifies a surgical execution as either ‘Expert’ or ‘Novice’. To accomplish this, we conduct
an extensive and in-depth comparison of various deep learning models, encompassing Long
Short-Term Memory (LSTM), Gate Recurrent Unit (GRU), Bidirectional LSTMs, Temporal
Convolutional Networks (TCN), Transformer and custom Convolutional Long Short-Term
Memory Deep Neural Network (CLDNN) architectures.

With the aim of achieving robust performance, we undertake an exploration of data
augmentation techniques, with a specific focus on our top-performing models. This investi-
gation aims to determine whether data augmentation can mitigate the challenges posed by
the relatively small dataset and enhance the models’ classification performance.

1.2. Related Work

Force exhibits a strong correlation with experience levels in minimally invasive
surgery [19,20], making it a highly efficient and effective data source for automated surgical
skill assessment [11,21]. Rosen et al. develop Markov models of forces and torques for
skill assessment in laparoscopy [11]. Horeman et al. use principal components derived
from force parameters like maximal absolute force, mean force, and force variability to
distinguish between experts and novices, confirming the significant impact of force on
suture tasks [21]. Brown et al. utilize contact forces and robot arm accelerations as inputs to
a Random Forest classifier to predict skill levels for a peg transfer task [22]. Rafii-Tari et al.
propose hidden Markov models based on operator motions and catheter–tissue interaction
forces for skill assessment in robotic endovascular catheterization [23]. However, these
approaches typically demand substantial time and computational resources for tasks such
as feature engineering, parameter optimization, and model development [24]. Furthermore,
they necessitate the collection of complete observations for each trial, which hinders the
feasibility of conducting real-time skill assessments [25].

Recently, deep learning-based models have shown promise in surgical skill assess-
ment. Fawaz et al. design a one-dimensional Convolutional Neural Network (CNN) based
on kinematic data to assess skill levels on the suturing and needle-passing tasks of the
JIGSAWS dataset [26]. Nguyen et al. employ accelerometer measurements and a neural
network with parallel branches, combining a 1D CNN and an LSTM, to distinguish between
three levels of surgical expertise [27]. Similarly, Wang and Majewicz Fey present an online
skill assessment framework by utilizing 1D CNN to map multivariate motion kinematics
data to individual skill levels [25]. Furthermore, Anh et al. provide a comprehensive
summary and investigation of kinematics-based frameworks, including CNNs, Recurrent
Neural Networks (RNNs), and autoencoders, all designed for real-time surgical skill assess-
ment, with remarkable performance observed in suturing, knot-tying, and needle-passing
tasks [28]. Other studies use image and video data to perform automated skill assessments.
For example, Lajkó et al. introduce a 2D endoscopic image-based deep learning benchmark
to enable the creation and application of surgical skill assessment in the minimally inva-
sive surgery training environment [29]. Funke et al. propose a video-based surgical skill
assessment framework by using an inflated 3D CNN to assign video segments to different
skill levels [30]. Soleymani et al. propose a method using ResNet-50 for feature extraction
from video data, followed by TCN for temporal modeling, achieving notable performance
in surgical skill classification on the JIGSAWS dataset [31]. Furthermore, Kiyasseh et al.
introduce a video-based framework for simultaneous recognition of skill levels, as well
as surgical phases and gestures in Robot-Assisted Radical Prostatectomies, leveraging a
pre-trained Vision Transformer in a self-supervised manner achieving robust performance
across various experimental setups [32]. However, to the best of our knowledge, there is
currently no established deep learning benchmark study for surgical skill assessment based
on force data in the field of microsurgery.

1.3. Contributions

The main contributions of this paper include the following aspects:
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• Our work represents the original effort to address Force-based automated Skill Classi-
fication (FSC) in microsurgery.

• We establish a benchmark for FSC, including six prominent deep learning architec-
tures and six data augmentation techniques. This benchmark is accompanied by
a comprehensive analysis, both in quantitative and qualitative aspects, to provide
valuable insights for future research in this domain.

• We build a novel FSC dataset, comprising 236 trials conducted by 13 surgeons, which
includes time-series force data with corresponding skill level annotations. Two dataset
split settings, namely random split and Leave-One-User-Out (LOUO), are applied to
train the proposed benchmark, presenting the first demonstration of how to use and
evaluate this new dataset.

• Experimental results on the proposed dataset show that the temporal convolutional
network with time warp data augmentation achieves the highest 97.46% accuracy
for the random split setting, and the convolutional long short-term deep neural
network with time warp data augmentation reaches the best 96.48% accuracy for the
LOUO setting.

2. Materials and Methods
2.1. Dataset
2.1.1. Surgical Task and Participants

The study recruited 13 surgeons from a single tertiary university hospital during
surgical skill courses. Surgeons were categorised as ’Novice’ if they completed 5 surgical
cases or ’Expert’ if they achieved the Certificate of Completion of Training (CCT) [33,34].
All surgeons in this study were right-handed. No power calculation was used, but the
sample size was based on previous similar studies in the field [9,34–37]. The Strengthening
the Reporting of Observational Studies in Epidemiology (STROBE) reporting guidelines
were followed [38].

Participants were asked to wear the sensorized surgical glove with the piezoresistive
foam sensor mounted on the thumb (Figure 1a) and to perform a validated preclinical
microsurgical task ’Star’s the limit’ [17,39]. A standardized star was drawn on a grape using
a stencil with a 5 mm edge length. Participants were required to incise within the black line
of the drawn star and peel the star-shaped skin off the grape whilst minimizing damage
to the grape flesh (Figure 2). Microscissors and forceps were provided to the participants.
Each participant repeated the task 20 times. The OPMI PENTERO or KINEVO 900 (Carl
Zeiss Co., Ltd., Jena, Germany) operating microscopes were used with focal lengths of
200–500 mm and 200–625 mm, respectively. Surgeons were blinded to the real-time forces
because this was a proof-of-concept study examining the feasibility of sensorized surgical
gloves. No feedback or teaching was provided to the participants during the task. If
participants were not able to finish within 5 min, they were told to stop, and the next
repetition would begin.
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Figure 1. (a) Prototype of the sensorized surgical glove. (b) CAD model of the sensorized
surgical glove.

Figure 2. (a,b) Demonstration of the validated dissection task ’Star’s the limit’ with dissection of the
grape skin in the shape of a star.

2.1.2. Hardware Description
Materials

Carbon nanofiber (CNF) (D × L—100 nm × 20–200 µm, Sigma Aldrich, St. Louis, MO,
USA), Copper tape (10 mm × 33 m, RS Components Ltd., Northamptonshire, UK), Ethanol
(absolute, Sigma Aldrich), Instant adhesive (Loctite 401, Henkel Adhesives, Düsseldorf,
Germany), Melamine foam (Doktor Power Ltd., JML, London, UK), Polyimide (kapton)
tape (2.54 cm width, Cole-Parmer, Vernon Hills, IL, USA), and Tannic acid (Sigma Aldrich)
were all used as received.

Sensor Fabrication

The design of these sensors was aimed towards achieving cost efficiency, ease of
manufacturing, customisability, softness and flexibility. To meet these requirements, a
conductive porous foam (melamine) was used as the sensing element. The conductive
foam consists of conducting nanofibres embedded in a porous framework. When pressure
is applied to the foam, the conducting nanofibres within the foam move closer together,
thus increasing the material’s electrical conductivity [35].

Sensor fabrication consisted in first dipping the coating in a suspension of electrically
conducting CNF into the interconnected microporous framework of melamine foam. CNF
(0.6 wt.%) was dispersed in a tannic acid (0.5 wt.%) solution in distilled water by bath
sonicating (FB15053, 200 W, Fisher, Hampton, NH, USA) for 20 min. Next, melamine foam
(precleaned by washing with ethanol) was cut into any desired dimensions, for instance,
those that fit a fingertip of the glove (L ×W × H: 10 mm × 8 mm × 3 mm) and soaked
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into the carbon nanofiber suspension for 2 min before drying in an oven at 80 °C. The dried
foams were then sandwiched between two copper foils attached to wires serving as the
electrodes. A complete piezoresistive sensor was obtained after packaging with polyimide
(kapton) tapes [35].

Sensorized Glove Fabrication

The piezoresistive sensors were directly mounted onto the fingertips of surgical
gloves (Figure 1) using an instant adhesive (Loctite 401) along with the thin silicone wires
(TUOFENG 30 AWG, 0.05 mm2) connected to the electrodes.

Sensor Calibration

A force calibration setup was developed to convert the resistance measurements from
the piezoresistive sensors into force readings. The test setup and protocol used a motorised
translation stage (PT1-Z8, Thorlabs, Newton, NJ, USA), a force gauge (M5-5 Mark10) and a
multimeter (SDM3055) working simultaneously by means of a custom virtual instrument
(VI) developed using LabVIEW (National Instruments, Austin, TX, USA). We increased
the force applied in digitally controlled, high-resolution steps of 0.1–0.5 N while recording
resistance. After force calibration testing, force was plotted against resistance for each
sensor used and a polynomial equation was fitted so that force data were provided from
the measured change in resistance.

2.1.3. Data Preprocessing

At times, we encountered connectivity issues with the sensors, causing them to dis-
connect during the surgical task. In a few other cases, the sensors malfunctioned and could
not accurately record the true forces. As a result, we had to remove those problematic
trials, which left us with fewer than 20 attempts for some surgeons. We also replaced
any negative force values with zeros and applied standard scaling to preprocess the data
before using them in our models. This step effectively eliminated any instability introduced
by the sensor, ensuring that it does not affect the performance of the models. Examples
of force data captured from an expert and a novice surgeon are shown in Figure 3. Our
initial experimentation also included a Butterworth filter to cut off high frequencies (where
noise is observed), but the performance was similar. Therefore, we excluded it to make the
preprocessing step simpler.

Figure 3. Force data from (a) an expert and (b) a novice surgeon.

2.2. Classification Models
2.2.1. Long Short-Term Memory

Long Short-Term Memory (LSTM) is a famous variant of RNN specifically designed
for processing and mode sequential data. With its input, output and forget gates, LSTM
achieves a remarkable ability to deal with the vanishing gradient problem. In this work,
we construct a ‘LSTM’ network, which consists of four LSTM layers with 64 hidden states
and one linear layer. After modeling the input time-series force data with a focus on
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long-term dependencies using the four LSTM layers, the final classification results are
obtained through the linear layer.

2.2.2. Bidirectional Long Short-Term Memory

Bidirectional Long Short-Term Memory (Bi-LSTM) comprises two independent LSTM
units, one dedicated to forward processing (from the beginning to the end of the sequence)
and the other to backward processing. This distinctive architecture facilitates the concurrent
management of both historical and prospective information, empowering the network to
acquire and leverage contextual insights from past and future temporal directions. The ‘Bi-
LSTM’, composed of four layers of bidirectional LSTM with 64 hidden states, is constructed
for our experiments.

2.2.3. Gate Recurrent Unit

The Gated Recurrent Unit (GRU) is a gating mechanism that can be targeted as a
variant of the LSTM without an output gate. Compared to LSTM, GRU is recognized for its
lower parameter and memory demands, leading to decreased computational complexity.
This characteristic renders it especially well-suited for deployment in embedded devices
and mobile applications. Similarly to ‘LSTM’, we build four-layer deep GRUs with 64
hidden states and a linear layer, denoted as ‘GRU’.

2.2.4. Convolutional Long Short-Term Memory Deep Neural Network

Convolutional Long Short-Term Memory Deep Neural Network (CLDNN) combines
the inductive bias of CNNs and the long-term modelling capabilities of LSTM networks to
extract features more effectively from a space and time perspective. Consequently, CLDNN
has achieved notable success in audio and signal domains. However, CLDNN remains
to be explored for force-based neurosurgical skill classification tasks. To this end, we
design a CLDNN, denoted as ‘CLDNN’, comprising two Conv1D-ReLU-MaxPool1D layers,
followed by four LSTM layers and two linear layers. Detailed architecture is illustrated in
Figure 4, and the dimensions of output features f(1), f(2), f(3), f(4), f(5), f(6), f(7), f(8) are (64,
T/2), (128, T/4), (T/4, 64), (T/4, 64), (T/4, 64), (T/4, 64), (64), (64), respectively.

Figure 4. Overall architecture of the proposed convolutional long short-term memory deep neural
network ‘CLDNN’.

2.2.5. Temporal Convolution Network

Temporal Convolutional Networks (TCNs) offer an efficient way to capture long-range
dependencies in time-series data due to their 1D kernels, while they keep the computational
costs manageable. They are often favored by researchers because they tend to be more
interpretable than other models. TCNs have also shown promising performance in surgical
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skill assessment tasks [40,41], as well as in surgical activity recognition [42], which is a task
closely related to skill assessment.

In this paper, we employ the TCN originally proposed by Anastasiou et al. [40] and
adapt it for our task. As illustrated in Figure 5, we use standard 1D convolutions (four
layers with output dimensions of {64, 32, 16, 16}; kernel size = 25; and stride = 1) followed
by 1D max pooling (kernel size = 3, stride = 1) and batch normalization layers. The feature
vector with dimensions F(4) × T is then averaged across the temporal dimension and fed
to a linear layer with a sigmoid activation function to predict surgical skill.

Figure 5. Overall architecture of the proposed temporal convolutional network.

2.2.6. Transformer Network

Transformer networks are known for their ability to capture complex global depen-
dencies in sequence data due to the self-attention mechanism. Although Transformers
were originally designed for natural language processing tasks, they have been adapted to
time-series modeling, with recent applications in the surgical domain [40,42–44].

In this work, we design a simple Transformer network with the following structure,
as illustrated in Figure 6. To start with, the force data, represented as a matrix with
dimensions of 1× T, are first passed through a 1D convolutional layer. This layer has
an output dimension of 16, a kernel size of 1, and a stride of 1, effectively encoding the
data into a higher representation, denoted as f(1). Next, f(1) is inputted into a multi-head
attention block with 8 heads. This helps in capturing long-range dependencies within the
data. The resulting output from the attention block is normalized using batch normalization
and subsequently averaged along the temporal dimension. This process results in a new
feature vector, f (2), which has dimensions of 1× F(2). This vector is fed into a linear layer
with an output dimension of 16, and a ReLU activation function. Finally, we apply batch
normalization and use another linear layer, this time using a sigmoid activation function,
to predict the surgical skill.
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Figure 6. Overall architecture of the proposed Transformer.

2.3. Data Augmentation
2.3.1. Fast Fourier Transform

Fast Fourier Transform (FFT) converts time-domain data into a frequency-domain
representation, allowing us a more clear discerning of the different frequency components
within time-series data. It plays a significant role in the analysis of force data, aiding in the
comprehension of mechanical behaviors such as vibration, motion, and deformation [45,46].
Considering the real-valued nature of the force data, we employ the Real-valued Fast
Fourier Transform (RFFT) [47] to calculate the one-dimensional discrete Fourier transform
of the force sequences. The result of RFFT is a complex valued function of frequency.
Subsequently, we combine the obtained real and imaginary components from the RFFT
result with the force sequences to form a 3××T′ matrix, where T′ signifies the temporal
dimension, and then this matrix serves as the input training data for the network.

2.3.2. Quantization

Quantization aims to quantize time series to a level set, as shown in Figure 7. Values
in a time series are rounded to the nearest level in the level set. Quantization can help
improve data quality by removing minor noise in the data. In the field of sensor data, noise
is common, and quantization contributes to making the data more stable and reliable. In
this study, we randomly quantize the force data to ten level sets with a probability of 50%
for data augmentation.

Figure 7. Quantization data augmentation with ten level sets.

2.3.3. Drift

To introduce additional noise disturbances, we apply gradual and random shifts to
the values of time-series force data to perform drift data augmentation, as illustrated in
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Figure 8. We execute drift operations with a 50% probability and specify a maximum drift
range of (0.1, 0.5) with five drift points, signifying the random selection of five points where
their values are augmented by additional 10% to 50% based on their original values. These
five points function as anchor points, and a spline interpolation function is employed to
adjust the values of the remaining data.

Figure 8. Drift data augmentation with four drift points.

2.3.4. Time Warp

Time warp introduces timeline distortions to the input, enhancing model robustness in
handling data with diverse time scales and speed variations, as shown in Figure 9. During
this augmentation, we randomly select five ranges within the sample to double their speed.
This time warp augmentation is executed with a 50% probability.

Figure 9. Time warp data augmentation with one selected range.

2.3.5. Gaussian Noise

Adding Gaussian noise to the input aims to introduce diversity to the training data,
thus helping with regularization, making the model more robust, and reducing overfitting.
We use additive noise generated from a normal distribution with zero mean and a standard
deviation of 0.1.

2.3.6. Temporal Jittering

We implemented this augmentation method by breaking down the input training
sequences into 30 segments, with each segment comprising 10 consecutive time steps.
Subsequently, we changed the order of these segments with random shuffling, as illustrated
in Figure 10.

Figure 10. Temporal Jittering data augmentation method.
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3. Experiments and Results
3.1. Evaluation Protocol

Given the small size of our dataset, we opted for a cross-validation approach to ensure
a fair evaluation of the models. We employed two cross-validation strategies: a random
sixfold split and a Leave-One-User-Out (LOUO) split, similar to the approach proposed by
Ahmidi et al. [48].

In the random split, we created six folds, ensuring each fold contained an equal
number of trials from various surgeons, thus mitigating bias. In contrast, in the LOUO
scheme, we structured six folds, with each fold containing all the trials from a single expert
surgeon and a single novice surgeon. The data of Expert 2 are merged with those of Expert
7, as these were the ones with the fewest trials. During each iteration, five folds were used
for training, and one fold was set aside for testing. The results were then averaged across
these folds.

The random cross-validation method assessed the models’ adaptability to different data
distributions, thereby minimizing bias. Conversely, LOUO evaluated the models’ generaliz-
ability to previously unseen surgeons, a crucial consideration for real-world applications.

For model evaluation, we employed standard classification metrics, which include
accuracy, precision, recall, and the F1-score. These metrics are defined as follows:

accuracy =
TP + TN

TP + TN + FP + FN
, (1)

precision =
TP

TP + FP
, (2)

recall =
TP

TP + FN
, (3)

F1-score =
2TP

2TP + FP + FN
, (4)

where TP, TN, FP, and FN are the number of True Positive, True Negative, False Positive,
and False Negative values, respectively.

3.2. Implementation Details

Experiments are conducted using PyTorch on a GeForce RTX 4090Ti GPU. The maxi-
mum training epoch is 100 with a batch size of 32. We utilize categorical cross-entropy as
the loss function and adopt the Adam optimizer with a fixed learning rate of 1 × 10−4 for
all networks. During the training phase, we utilize sequences consisting of 300 consecutive
time steps. When dealing with trials that have more than 300 time steps, we randomly
select a 300-step sequence from within the trial’s duration. On the other hand, for trials
with fewer than 300 time steps, we pad the sequence with zeros. Therefore, the input force
data of one trial is re-sampled to 1 × 300. However, during testing, we retain the original
temporal resolution of the trial sequences to ensure that the whole execution is evaluated.
As for the labels, we use ’1’ to encode expert surgeons and ‘0’ for novice surgeons. We save
the trained model with the minimum validation cross-entropy loss for testing.

3.3. Performance Analysis

The results obtained from the various models discussed in Section 2.2 are summarised
in Tables 1 and 2. Notably, our investigation identifies TCN and CLDNN as the top-
performing models, achieving impressive accuracy rates. Compared with other networks,
TCN achieves the highest accuracy of 97.45% in the random-split scheme, while CLDNN
follows with an accuracy of 93.65%. In the LOUO scheme, TCN achieves the second-best
accuracy of 88.95%, and CLDNN reaches the highest at 96.19%.

It is worth noting that TCN exhibits superior performance in the random-split cross-
validation, surpassing the other models with an accuracy gap of 3.8% points over the
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second-best model, CLDNN. Conversely, CLDNN demonstrates a significant advantage in
the LOUO cross-validation, outperforming TCN by a substantial margin of 7.24% points.
Remarkably, these models consistently maintain the best performance across all evaluated
metrics and cross-validation schemes.

Table 1. Classification results for all models on the random split cross-validation scheme. Results are
averaged across all 6 folds. The best two results are in bold and underlined.

Method Accuracy F1-Score Precision Recall

GRU 75.46 ± 5.05 76.08 ± 4.17 73.96 ± 9.74 80.36 ± 8.74
LSTM 78.86 ± 7.40 76.91 ± 5.30 88.58 ± 16.58 71.15 ± 9.90
Bi-LSTM 80.51 ± 4.06 77.98 ± 4.42 87.45 ± 7.49 71.72 ± 9.43
CLDNN 93.65 ± 5.39 93.51 ± 5.29 92.63 ± 6.84 94.56 ± 4.44
TCN 97.45 ± 3.63 97.51 ± 3.37 97.54 ± 3.70 97.54 ± 3.70
Transformer 90.67 ± 3.20 89.77 ± 3.93 94.71 ± 6.21 85.71 ± 5.29

Table 2. Classification results for all models on the LOUO cross-validation scheme. Results are
averaged across all 6 folds. The best two results are in bold and underlined.

Method Accuracy F1-Score Precision Recall

GRU 77.57 ± 10.88 74.55 ± 15.91 78.62 ± 13.30 76.97 ± 22.72
LSTM 76.67 ± 14.33 72.43 ± 21.46 78.50 ± 14.50 74.56 ± 26.36
Bi-LSTM 84.92 ± 9.94 80.65 ± 15.06 90.39 ± 11.34 76.37 ± 21.24
CLDNN 96.19 ± 3.22 95.54 ± 4.36 98.33 ± 3.73 93.44 ± 8.24
TCN 88.95 ± 14.80 88.44 ± 14.63 90.00 ± 18.26 92.16 ± 17.54
Transformer 86.68 ± 13.37 83.42 ± 19.73 88.2 ± 16.11 86.95 ± 25.89

GRU and LSTM models exhibit the weakest performance in both cross-validation
setups. However, an interesting observation is that using a Bi-LSTM architecture signif-
icantly enhances performance in the LOUO scheme. This highlights the importance of
bidirectional data flow in capturing long-range dependencies within force data.

While the Transformer network outperforms the GRU, LSTM, and Bi-LSTM models,
it is still worse than the TCN and the CLDNN in all but one metric (precision). Trans-
former’s performance appears to be limited by data scarcity, aligning with the established
understanding that Transformers benefit from larger datasets.

Notably, TCN stands out with the smallest standard deviation among all models in the
random split scheme, indicating its consistency across the six folds. In contrast, in the LOUO
scheme, all models exhibit high standard deviations, signifying substantial performance
variability depending on the selected training and testing folds. An exception to this is
the CLDNN model, which maintains a small standard deviation of ±3.22% for accuracy
(second best at ±9.94%), ±4.36% for the F1-score (second best at ±14.63%), ±3.73% for
precision (second best at ±11.34%), and ±8.24% for recall (second best at ±17.54%).

In Figures 11 and 12, we provide the confusion matrices for the TCN and CLDNN
models, respectively. The top row of both figures displays the confusion matrices for the
random split cross-validation scheme, highlighting the best-performing fold on the left
and the worst-performing fold on the right. In contrast, the bottom row presents the same
information but for the LOUO scheme.

An interesting observation is that in the random split scheme, for both models, the
False Positive (FP) and False Negative (FN) rates are almost evenly balanced. However,
in the LOUO scheme, particularly for the TCN model, the FN rates are noticeably higher.
This discrepancy indicates that the models tend to misclassify expert trials as novice trials
more frequently in the LOUO scheme.

It is crucial to emphasize that while TCN demonstrates superior performance in the
random split scheme, CLDNN’s performance, as indicated by multiple metrics and its
consistency in standard deviation, establishes it as the more reliable model. Furthermore,
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it performs better in the most challenging cross-validation scheme, LOUO, making it
more applicable in real-world applications. CLDNN’s success could be attributed to the
combination of two distinct sequence modeling techniques, temporal convolutions and
LSTMs, offering a more comprehensive approach to utilizing convolutional inductive biases
and capturing long-range dependencies, which are essential for surgical skill assessment.

Figure 11. Confusion matrices for the TCN model. (a) Results on the best-performing fold of the
random split. (b) Results on the worst-performing fold of the random split. (c) Results on the
best-performing fold of the LOUO cross-validation scheme. (d) Results on the worst-performing fold
of the LOUO cross-validation scheme.

Figure 12. Confusion matrices for the CLDNN model. (a) Results on the best-performing fold of
the random split. (b) Results on the worst-performing fold of the random split. (c) Results on the
best-performing fold of the LOUO cross-validation scheme. (d) Results on the worst-performing fold
of the LOUO cross-validation scheme.
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3.4. Data Augmentation Analysis

We further investigate the effects of different data augmentations on the two top-
performing models, CLDNN and TCN. Tables 3 and 4 show the model performance with
six data augmentation methods for random split and LOUO settings, respectively.

For the random split setting, as depicted in Table 3, TCN timewarp attains the highest
mean accuracy at 97.46% with the lowest standard deviation of ±2.56% and the second-
highest mean F1-score at 97.40% with the lowest standard deviation of ±2.35% among
six folds. It indicates that despite TCN already achieving high performance under the
random split setting, time warp augmentation still offers certain benefits, particularly in
reducing standard deviation. In addition, CLDNN with FFT augmentation (CLDNN-FFT)
achieves a superior F1 score of 93.63 ± 4.24% and maintains a comparable accuracy of
93.24 ± 4.73%. Furthermore, it is worth noting that all data augmentation algorithms, with
the exception of Gaussian noise for CLDNN and drift for TCN, contribute to reducing the
standard deviation of accuracy and the F1-score. This observation underscores that under
the random split setting, data augmentation effectively fortifies the model’s robustness to
some degree.

For the LOUO setting, as shown in Table 4, CLDN timewarp achieves the highest
overall performance with an accuracy of 96.48 ± 2.74% and an F1 score of 95.89 ± 3.73%.
In comparison to CLDNN without augmentation, CLDNN timewarp demonstrates an
improvement of 0.29 ± 0.48% in accuracy and 0.35 ± 0.63% in the F1 score. Additionally,
quantization yields a modest enhancement in the mean accuracy and the mean F1 score
of CLDNN. Furthermore, it is pleasant to observe that all data augmentation methods are
beneficial for the average accuracy of TCN, and all but two methods (quantization and
temporal jittering) are helpful for the average F1 score of TCN. Compared with TCN without
augmentation, TCN-FFT obtains the most significant improvements, demonstrating an
accuracy enhancement of 6.01 ± 9.45% and an F1 score improvement of 5.66 ± 7.66%.

Table 3. Classification results for all data augmentations on the random split cross-validation scheme.
Results are averaged across all 6 folds. The best two results are in bold and underlined.

Method Accuracy (%) F1-Score (%) Precision (%) Recall (%)

CLDNN (no augmentations) 93.65 ± 5.39 93.51 ± 5.29 92.63 ± 6.84 94.56 ± 4.44
CLDNN-FFT 93.24 ± 4.73 93.63 ± 4.24 91.21 ± 6.69 96.49 ± 3.74
CLDNN-drift 92.36 ± 2.12 92.03 ± 2.68 91.70 ± 6.54 92.88 ± 4.43
CLDNN-quantize 93.23 ± 4.48 93.43 ± 4.16 92.46 ± 8.08 95.03 ± 4.00
CLDNN-timewarp 93.21 ± 3.15 92.81 ± 3.65 96.52 ± 3.64 89.67 ± 6.33
CLDNN-Gaussian noise 92.79 ± 4.94 92.50 ± 5.39 93.13 ± 7.45 92.99 ± 9.37
CLDNN-temporal jittering 91.12 ± 3.11 90.73 ± 3.42 90.28 ± 7.25 91.87 ± 5.70

TCN (no augmentations) 97.45 ± 3.63 97.51 ± 3.37 97.54 ± 3.70 97.54 ± 3.70
TCN-FFT 95.75 ± 2.85 95.39 ± 2.85 96.73 ± 4.64 94.28 ± 3.65
TCN-drift 97.02 ± 3.75 97.04 ± 3.56 97.49 ± 3.73 96.61 ± 3.66
TCN-quantize 96.61 ± 2.83 96.35 ± 2.93 97.56 ± 3.60 95.32 ± 4.20
TCN-timewarp 97.46 ± 2.56 97.40 ± 2.35 97.61 ± 3.56 97.29 ± 2.75
TCN-Gaussian noise 97.45 ± 2.56 97.40 ± 2.35 97.61 ± 3.56 97.29 ± 2.75
TCN-temporal jittering 95.33 ± 3.12 94.88 ± 3.04 96.45 ± 3.76 93.48 ± 3.87
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Table 4. Classification results for all data augmentations on the LOUO cross-validation scheme.
Results are averaged across all 6 folds. The best two results are in bold and underlined.

Method Accuracy (%) F1-Score (%) Precision (%) Recall (%)

CLDNN (no augmentations) 96.19 ± 3.22 95.54 ± 4.36 98.33 ± 3.73 93.44 ± 8.24
CLDNN-FFT 90.19 ± 7.77 88.29 ± 10.09 93.47 ± 10.05 86.55 ± 16.39
CLDNN-drift 94.59 ± 5.42 94.21 ± 5.38 94.44 ± 9.21 94.70 ± 5.32
CLDNN-quantization 96.36 ± 4.43 95.56 ± 5.72 97.44 ± 5.73 93.92 ± 6.88
CLDNN-timewarp 96.48 ± 2.74 95.89 ± 3.73 97.73 ± 3.33 94.22 ± 5.21
CLDNN-Gaussian noise 88.67 ± 9.47 86.68 ± 12.47 90.78 ± 13.87 87.66 ± 18.97
CLDNN-temporal swapping 92.39 ± 6.45 92.40 ± 6.77 88.35 ± 10.44 97.44 ± 3.63

TCN (no augmentations) 88.95 ± 14.80 88.44 ± 14.63 90.00 ± 18.26 92.16 ± 17.54
TCN-FFT 94.96 ± 5.35 94.10 ± 6.97 94.84 ± 7.33 93.72 ± 8.59
TCN-drift 89.46 ± 13.85 88.73 ± 14.20 90.33 ± 17.53 92.16 ± 17.54
TCN-quantization 89.57 ± 13.06 87.55 ± 16.36 91.09 ± 15.88 90.20 ± 21.92
TCN-timewarp 90.36 ± 13.26 90.29 ± 12.37 90.33 ± 17.53 94.12 ± 13.15
TCN-Gaussian noise 90.59 ± 10.88 88.55 ± 14.11 91.48 ± 13.70 89.89 ± 19.36
TCN-temporal jittering 89.32 ± 12.74 86.62 ± 17.82 91.52 ± 14.95 88.74 ± 23.93

It can be seen from Tables 3 and 4 that under the more challenging and realistic
LOUO setting, data augmentation methods show a more significant improvement in model
performance compared with the random split setting, which demonstrates the importance
of data augmentation in clinical applications.

3.5. Qualitative Analysis

To gain deeper insights into the reasoning behind the predictions made by our top-
performing models, i.e., CLDNN and TCN, we employ a technique that involves extracting
activations from the final layer just before the linear layers for each model. These activations
are subsequently superimposed onto the original input sequence, effectively pinpointing
areas within the execution where the network exhibits higher attention to inform its predic-
tions. In essence, this process generates feature vectors with dimensions f × T′, where f
represents the feature dimension and T′ signifies the temporal dimension. In particular, for
the TCN model, these activations correspond to the feature vector denoted as F(4), while
for the CLDNN model, they correspond to F(7). Initially, we average the feature dimension,
resulting in a compact vector of dimensions 1× T′. We then normalize these values to
a range between zero and one. Subsequently, this vector is upsampled to align with the
original sequence’s temporal resolution T.

Following the upsampling stage, we utilize the resulting array to represent color
intensity, overlaying it onto the force data plot, as demonstrated in Figure 13. In this
visualization, warmer colors signify regions where the network focuses more to make its
final prediction, while cooler tones indicate areas of relatively lower network attention.

Figure 13 showcases these visualizations produced for surgical executions conducted
by both expert and novice surgeons, using both the TCN and CLDNN models. Specifically,
Figure 13a,c illustrate visualizations for an expert surgeon using the TCN and CLDNN mod-
els, respectively, while Figure 13b,d display visualizations for a novice surgeon. Notably,
in the visualizations for novices, it is apparent that the networks exhibit higher activation
in regions characterized by sharp force peaks and sudden turning points. These patterns
could be linked to surgical skill, as rapid changes and precise responses may correlate with
competency. In contrast, the visualizations for experts reveal that the networks are more
activated in regions where lower forces are observed. This observation suggests that the
networks are strategically focusing on specific regions within the surgical executions to
make skill level predictions.

It is important to note that subtle differences exist between the plots generated by
TCN and CLDNN. These can be attributed to variations in the way in which each network
computes these activations (1D convolutions vs LSTM). Another factor contributing to the



Sensors 2023, 23, 8947 16 of 21

difference is that TCN maintains the original temporal resolution throughout the network,
whereas in CLDNN, the feature vector F(7) undergoes significant downsampling due to
pooling layers, resulting in reduced resolution. Consequently, this affects the visualization
presented in the final plot.

(a) (b)

(c) (d)

Figure 13. Force plots showing the areas where the network focuses to make a prediction. Warmer
colors signify higher attention. (a) Expert surgeon predicted as ‘Expert’ by the TCN. (b) Novice
surgeon predicted as ‘Novice’ by the TCN. (c) Expert surgeon predicted as ‘Expert’ by the CLDNN.
(d) Novice surgeon predicted as ‘Novice’ by the CLDNN.

3.6. Limitations
3.6.1. Hardware and Study Limitations

A limitation is related to the piezoresistive sensor. As this is a newly developed device,
the sensor might not be optimally placed to measure all forces for all instruments. For
instance, one novice surgeon was applying a very light touch on the force sensor throughout
the tests, which could clearly be seen when examining the way they were holding the
instrument. They were applying the force by exerting pressure on the instrument using the
index instead of the thumb, which emphasizes the fact that the design of the sensorized
gloves must be customized and adapted to the vast spectrum of techniques and ways each
surgeon has of holding the instruments.

Further, our sensor was located at a single point on the surgical glove (Figure 1). In
order to solve this issue, we developed new designs of the glove to accommodate for the
different ways each clinician holds and positions the microscissors in the right-hand thumb.
Over time and through iterative improvement, the sensor placement is being continuously
optimized. For example, a body-mounted sensor could be constructed to reduce the need
to be connected to a fixed device by wire. There is a concern that some surgeons may be
left-handed. As the current gloves are easily customized, it is straightforward to place
the sensor on the left-hand glove, enabling data collection from left-handed surgeons.
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In addition, the next glove iteration could integrate wireless sensors, reduce form factor,
and simplify the methods and materials used for sensor-to-glove attachment to make it
easier and quicker to reconfigure the device accommodating right-handed and left-handed
participants.

Another issue regarding the sensor and its connection to the data acquisition device
is the fact that the sensor occasionally disconnects when the surgeon wearing the glove
makes sudden ample movements. When this takes place, the cables disconnect and the
data for that particular test are not recorded properly. To overcome this, longer cables have
been employed for the glove to facilitate surgeons’ operations. Nevertheless, we are in the
process of designing a wireless node that can be mounted on the wrist of the glove to send
the data wirelessly to the laptop. This solution has the potential to ultimately solve the
disconnection problem.

Moreover, for highly invasive and more complex surgeries, the current piezoresistive
sensor may omit valuable micro-information due to the surgeon’s force feedback having
an even larger and more precise range and fluctuation. To address this, we are working to
optimize the piezoresistive conductive material to achieve better reproductivity accuracy
and extend the force range. We are also refining the signal acquisition and processing
circuitry to reduce noise and latency, thereby obtaining more precise force data, especially
in scenarios where the force falls below 3 N.

Additionally, it is unclear whether the profile of the sensors can impair the haptic
feedback for the operating surgeon, which could interfere with a real-world operation.

Furthermore, although the grape dissection task was a useful starting point, it is low
fidelity and does not simulate complications, which in real life might lead to increased
force exertion as the operating surgeon is under pressure. In addition, although our dataset
includes 13 surgeons to provide adequate variability for validating our pilot study, it
is collected from a single centre. Therefore, further work should use smart gloves in
high-fidelity simulation models and collect data from surgeons in different geographical
locations/hospitals to increase data diversity and further validate the findings of this study.

Lastly, it is important to acknowledge the limited sample size of our dataset. While
this pilot study successfully demonstrates the feasibility of modeling differences between
experts and novices using deep learning on a fundamental yet frequently performed
microsurgical task, it is important to gather additional data for a more robust validation of
our approaches.

3.6.2. Algorithm Limitations

The findings illustrated in Figures 11 and 12 point to the challenges encountered by
both models when evaluating the LOUO cross-validation scheme. It becomes apparent
that this difficulty is characterized by higher FN rates, indicating a tendency to misclassify
surgeons as novices. The complexity of LOUO as a cross-validation scheme lies in its re-
quirement for models to effectively generalize to previously unseen surgeons. Furthermore,
in the context of small datasets, as is the case here, the validation samples may diverge from
the data distribution observed in the training set. This divergence heightens the likelihood
of misclassification errors.

It is worth noting that, excluding CLDNN, all other models exhibit an additional
limitation in their LOUO results, which are detailed in Table 2. These models exhibit a
large standard deviation across different folds, emphasizing their sensitivity to the specific
distribution of training and validation data within each fold. This dependency on data
distribution introduces variability in their performance, further complicating the LOUO
evaluation process.

Another potential limitation is that not all data augmentation methods bring significant
performance improvements to deep learning models for FSC in microsurgery. While
the main reason is that the proposed models already achieve high performance, thereby
leaving little room for data augmentation to take effect, it remains crucial to acknowledge
the essential role of choosing appropriate data augmentation techniques when utilizing
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force data for automated surgical skill classification. According to our data augmentation
analysis in Section 3.4, time warp and FFT augmentations could be given priority and
considered for implementation.

Lastly, although, to the best of our knowledge, there are no gold standard tools to vali-
date the classification result of our models, we can refer to the work by Horsfall et al. [35],
where they showed that for the same dataset, there was a significant difference (p = 0.002)
between the median forces applied by experts and novices.

4. Conclusions

This work aims to address FSC tasks in microsurgery. To investigate great deep
learning models and data augmentation techniques for force data, we construct a novel
FSC dataset, which is collected by sensorized surgical gloves. Based on this dataset, we
explore and summarize six state-of-the-art deep learning model frameworks (LSTM, Bi-
LSTM, GRU, CLDNN, TCN, and Transformer) and six data augmentation algorithms (FFT,
quantization, drift, time warp, Gaussian noise, and temporal jittering) through comprehen-
sive quantitative, qualitative, and visual analyses. Two different types of cross-validation
schemes, i.e., random split and LOUO, are implemented to provide a full evaluation of
model performance. For the random split setting, TCN outperforms the other five deep
learning models in all four metrics (accuracy, F1-score, precision, and recall). Furthermore,
the implementation of time warp data augmentation with TCN results in an additional
accuracy improvement, reaching 97.46%, and reduces standard deviations across all four
metrics. For the LOUO setting, CLDNN excels in all four metrics with values of 96.19%,
95.54%, 98.33%, and 93.44%. Time warp augmentation further improves the accuracy and
the F1-score of CLDNN by 0.29% and 0.35%, respectively, while reducing the standard
deviations for all metrics.

Our experimental results suggest that CLDNN and TCN are well-suited for FSC
tasks, with time warp being a preferable choice when considering data augmentation
techniques. The FSC algorithms developed in this study have the potential to bring
significant benefits to microsurgery training and practice, particularly in terms of real time,
objectivity, and transferability.

Although microsurgery can be complicated, we believe that force data alongside
other data inputs (e.g., video) embed valuable information on surgeon performance that
can be used to develop learning-based models and derive discriminative features for
automated skill assessment. Our study is a pilot to investigate this hypothesis, revealing
that differences in the force exerted between experts and novices during a simple yet
routinely performed microsurgical suturing task can indeed be modeled with deep learning
architecture. Ultimately, this is validated by the obtained accuracy rates and F1-scores
surpassing 95%. Future research will focus on utilizing multimodal data for automated
surgical skill assessment.
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