

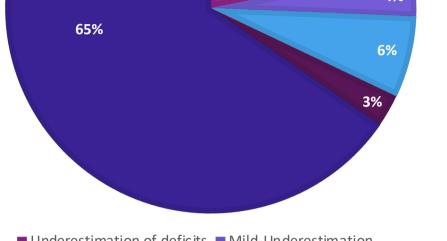
# Over- and underestimation of language difficulties in left unilateral brain damaged patients

Teresa Facchetti<sup>1</sup>, Michael Dean<sup>2</sup>, Nicoletta Beschin<sup>3</sup>, Gianna Cocchini<sup>1</sup>, Imogen Scott<sup>1</sup>

<sup>1</sup> Psychology Department, Goldsmiths University of London, London, UK <sup>2</sup> Division of Psychology and Language Sciences, University College London, London, UK <sup>3</sup> Neuropsychological Service, Rehabilitation Unit, ASST Valle Olona, Somma Lombardo Hospital, Italy

| INTRODUCTION                                                                                                                                                                                                                                  | RESULTS                                                                                | RESULTS                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Patients with aphasia may underestimate their<br/>language deficits (i.e., anosognosia). Recent<br/>research suggests that awareness of these<br/>deficits exists on a spectrum (over-<br/>/underestimation of deficits);</li> </ul> | Over-underestimation of language deficits in left unilateral brain<br>damaged patients | <ul> <li>We implemented recalibrated cut-offs through<br/>Bootstrap resampling (1,000 iterations). With<br/>the new conservative cut- offs we found a<br/>reduced number of cases of distorted<br/>awareness;</li> </ul> |
|                                                                                                                                                                                                                                               | Differences between the Significancy<br>aware/unaware group                            |                                                                                                                                                                                                                          |
| The Dunning-Kruger effect (DKE) parallels<br>anosognosia in the general population. The DKE<br>suggests that people with limited ability                                                                                                      | Age NS                                                                                 | Underestimation of deficits decreased from<br>21.8% to 14.1%, and and overestimation of                                                                                                                                  |
|                                                                                                                                                                                                                                               | 4% Lesion onset (months) Unaware group had                                             | deficits decreased from 6.4% to 2.6% ( <i>Figure 4</i> );                                                                                                                                                                |

- suggests that people with limited ability overestimate their abilities, while people with high ability tend to underestimate themselves;
- In neurological conditions such as aphasia, severe cases may underestimate their deficits, while milder cases tend to overestimate;
- It's not clear whether the DK is a psychological phenomenon or a statistical artifact;
- The influence of "regression to the mean" within the DKE highlights its statistical nature and its potential to be a confound in patient studies, leading to inaccurate assessments of deficits;
- Indeed, including 'extreme performers' during tolerance levels analyses may have an impact on cut-offs and later diagnosis of distorted awareness.


### Aims of the study

(1

To assess bidirectional misestimation in awareness of language impairments following unilateral brain damage;

(2)

To determine whether the patients' actual language abilities could predict the extent of misestimation error;



Underestimation of deficits Mild-Underestimation Overestimation of deficits Mild-Overestimation Aware

Figure 1: Percentages of distortions of awareness in our sample

- 1. Underestimation (i.e., anosognosia) was the main tendency in our sample (*Fisher Test*, p < 0.001, **Figure 1**);
- 2. No significant difference in the extent of error between underestimation and overestimation (*Welch's tests on absolute value of the scores:* t(71.4) = 1.83, p = 0.07, Cohen's d = 0.41).

### **Relationship between self-estimation error and aphasia degree**

1. Severe aphasic patients had the highest scores (i.e., underestimation of 12 \_\_\_\_\_ deficits). Mild and moderate aphasic patients showed no clear 8 pattern of self-estimation error (*Figure 2*);

- more recent injuries (M=5.23, SD = 6.46) compared to the aware group (M=20.8,SD = 46.2), t(5.9) = -2.44, p = 0.01, Cohen's d = 0.47).
- NS Language group
- Type of brain lesion NS

Underestimation remains the main tendency in the sample (*Fisher Test*, p<0.001, *Figure 4*).

# **KEY POINTS & DISCUSSION**

- Self-estimation error persists even when extreme cases are taken into account;
- We did not find clear and predominant evidence that the DKE effect and regression to the mean have a significant impact on the assessment of awareness in aphasic patients;
- Underestimation of deficits (e.g., anosognosia) was the main tendency in our sample;
- Patients under-/overestimate their language skills to the same extent;
- This is particularly important given the composition of our sample, which included patients with unilateral brain injury, a population that has often been overlooked in the topic of anosognosia for aphasia.

 $\left(3\right)$ 

In doing so, we investigated the role of statistical biases in impaired awareness and re-evaluated the established cut-offs of the VATA-L.

# **MATERIAL AND METHODS**

### **Participants**

| Demographics              |                                                                                                                                     |  |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|
| Ν                         | 78 (36 females, 42 males; 66<br>were tested in Italy, 12 were<br>tested in the UK).                                                 |  |
| Age                       | Mean=60.2, SD=15.5, range 19-<br>86                                                                                                 |  |
| Handiness                 | N=73 (right-handed), N=3 (left-<br>handed), N=2 (ambidextrous)                                                                      |  |
| Nature of lesion          | <ul> <li>Vascular causes (N=66);<br/>Ischemia (N=46),<br/>haemorrhage (N=20);</li> <li>TBI (N=7);</li> <li>Missing (N=5)</li> </ul> |  |
| Time from lesion (months) | Mean=16.3, SD=39.7, range=1-<br>192                                                                                                 |  |

**Inclusion criteria** 

- There is only a trend between aphasia degree and self-estimation error  $(R^2 = 0.046, F(1, 68) =$ 3.33, p = 0.07; *Figure 3*);
- 3. The relationship is not significant when individuals with the most severe and mild forms of been aphasia have excluded  $(R^2 = 0.04,$ F(1,52)=2.17,t(52)=-1.47, *p=0.147).*

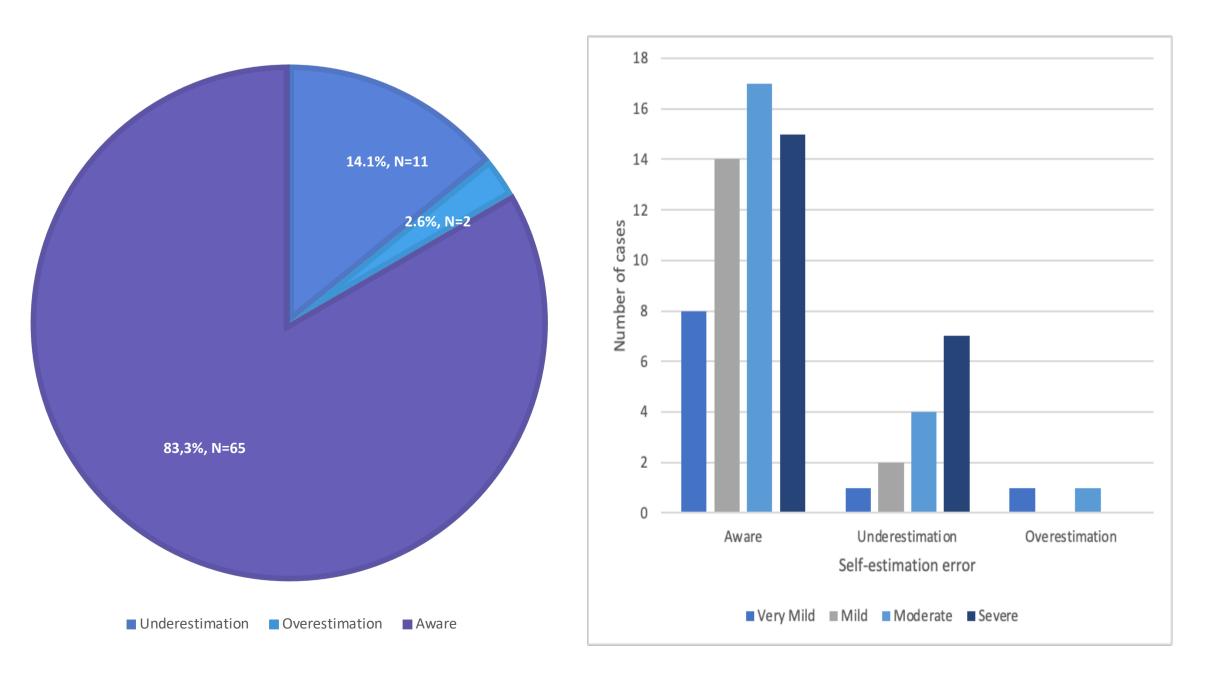



Figure 2: Number of cases of distortions of awareness in our sample divided by awareness level and aphasia degree

VATAL AphasiaDegree

Figure 3: Relationship between aphasia degree and selfestimation error (VATAL) including extreme cases

Addressing the impact of 'extreme performers' during confidence level analyses



# LIMITATIONS

- Although the power sensitivity analysis suggests that our sample was large enough to reliably detect the observed effect sizes, a larger sample may still be desirable;
- small sample size in this The relatively study could have led to the Dunning Kruger effect's absence. It's therefore worth exploring whether regressive estimates might pose a more significant challenge in larger datasets.

# REFERENCES

- 1. Burson, K.A., Larrick, R.P., & Klayman, J. (2006). Skilled or unskilled, but still unaware of it: how perceptions of difficulty drive miscalibration in relative comparisons. Journal of Personality and Social Psychology, 90(1), 60-77.
- 2. Cocchini G., Gregg N., Beschin N., Dean M., & Della Sala S. (2010). VATA-L: Visual Analogue Test Assessing Anosognosia For Language Impairment. The clinical neuropsychologist, 24, 1379-1399.
- 3. Cocchini G., Beschin N., Della Sala S. (2012). Assessing anosognosia: a critical review. Acta Neuropsychologica. 10:3, 419-443.
- 4. Della Sala, S. et al. (2022). 'Vata-ADL: The visual analogue test for anosognosia for activities of daily living', Archives of Clinical Neuropsychology, 37(6), pp. 1185-1198.
- 5. Dunning, D. et al. (2003). 'Why people fail to recognize their own incompetence,' Current Directions in Psychological Science, 12(3), pp. 83–87.
- 6. Ehrlinger, J., Johnson, K., Banner, M., Dunning, D., Kruger, J., 2008.

- Confirmation of an acquired left-hemisphere brain injury through magnetic resonance imaging (MRI) or computerised tomography (CT);
- diagnosis of aphasia confirmed by the healthcare team, and;
- No history of neurological conditions. c)

### **Procedures**

Language Assessment: For Italian speakers: the Aachen Aphasia Test (AAT; Luzzati, Willmes, and De Bleser, 1996); For English speakers: Western Aphasia Battery – Revised (WAB-R; Kertesz, 1982).

Awareness Measurement: Visual-Analogue Test Assessing Anosognosia for Language Impairment (VATA-L; Cocchini et al., 2010.).

Figure 4: Percentages of distortions of awareness in our sample with conservative cutoffs

*Figure 5: Number of cases of distortions of awareness in* our sample divided by awareness level and aphasia degree

To address statistical biases, we excluded 12 individuals with minimal language impairment and 11 individuals with severe language impairment;

- Why the unskilled are unaware: Further explorations of (absent) self-insight among the incompetent. Organizational Behaviour and Human Decision Processes. 105, 98–121.
- 7. Fowler E.A., Della Sala S., McIntosh R.D. (2018). Over- and underestimation of motor ability after a stroke: Implications for Anosognosia. Neuropsychologia.
- 8. Kertesz, A. (2010). Anosognosia in aphasia. In G. Prigatano (Ed.), The study of anosognosia. New York, NY: Oxford University Press.
- 9. Krueger, J., & Mueller, R. A. (2002). Unskilled, unaware, or both? The better- than-average heuristic and statistical regression predict errors in estimates of one's own performance. Journal of Personality and Social Psychology, 82(2), 180–188.
- 10. Ortmann, A. & Krajc, M. (2008). Are the unskilled really that unaware? An alternative explanation. Journal of Economic Psychology. 29. 724-738. 10.2139/ssrn.1114332.
- 11. Prigatano G.P. (2010). The study of anosognosia. Oxford Press.
- 12. Vuilleumier P. (2004). Anosognosia: the neurology of beliefs and uncertainties. Cortex; a journal devoted to the study of the nervous system and behaviour and behaviour, 40(1), 9-17.
- 13. Williams, P. G., Rau, H. K., Suchy, Y., Thorgusen, S. R., & Smith, T. W. (2017).On the validity of self-report measures of cognitive ability: Attention control scale associations with cognitive performance, emotional adjustment, and personality. Psychological 29(5), 519-530. Assessment,