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Gaussian Processes for hearing threshold
estimation using Auditory Brainstem Responses

Chesnaye M.A., Simpson D.M., Schlittenlacher J. & Bell S.L.

Abstract— The Auditory Brainstem Response (ABR)
plays an important role in diagnosing and managing hear-
ing loss, but can be challenging and time-consuming to
measure. Test times are especially long when multiple ABR
measurements are needed, e.g., when estimating hearing
threshold at a range of frequencies. While many detection
methods have been developed to reduce ABR test times,
the majority were designed to detect the ABR at a single
stimulus level and do not consider correlations in ABR
waveforms across levels. These correlations hold valuable
information, and can be exploited for more efficient hearing
threshold estimation. This was achieved in the current work
using a Gaussian Process (GP), i.e., a Bayesian approach
method for non-linear regression. The function to estimate
with the GP was the ABR’s amplitude across stimulus lev-
els, from which hearing threshold was ultimately inferred.
Active learning rules were also designed to automatically
adjust the stimulus level and efficiently locate hearing
threshold. Simulation results show test time reductions of
up to ∼50% for the GP compared to a sequentially applied
Hotelling’s T2 test, which does not consider correlations
across ABR waveforms. A case study was also included to
briefly assess the GP approach in ABR data from an adult
volunteer.

Index Terms— Auditory brainstem responses, Gaussian
Process, active learning, hearing threshold estimation

I. INTRODUCTION

The Auditory Brainstem Response (ABR) is a brief change
in brain activity following the onset of an acoustic stimulus [1].
It is usually measured non-invasively using scalp electrodes
(i.e. electroencephalography, or EEG), and comprises a series
of peak and trough voltage amplitudes that fall within a short
time interval following stimulus onset. It was initially reported
back in 1971 [2], and was soon recognised as an effective
tool for conducting hearing tests [3] and diagnosing auditory
tumours [4]. Nowadays, the ABR plays a central role in
evaluating hearing in newborns and others who may not be
able to provide behavioural responses [5] and can be used to
diagnose a wider range of neurological disorders [6].

The focus for the current work is on ABR hearing threshold
estimation, where ABR hearing threshold is defined as the
lowest stimulus level that evokes an ABR. The main target
group is newborns with suspected hearing loss, i.e. those
who failed the initial screening test. In the United Kingdom,
this includes approximately 16,000 newborns per annum [7].
The overarching aim for ABR hearing threshold estimation
is to specify hearing loss characteristics and facilitate the

subsequent management of hearing loss, e.g. by fitting a
hearing aid.

Due to time constraints in the clinic, ABR hearing thresh-
olds are usually estimated for just the frequencies deemed
essential for speech comprehension, which include 500, 1000
2000 and 4000 Hz [8]. Even when estimating just 8 frequen-
cies (4 per ear), average test times were previously estimated to
be in the 30 to 60 minute range for sleeping newborns [9,10].
For newborns who were restless, test times were slightly
longer, and testing occasionally had to be stopped, resulting
in incomplete information for the subsequent management of
hearing loss [10]. More efficient methods for ABR hearing
threshold estimation are thus desirable, as this would allow
more information to be obtained within the available test time,
ultimately facilitating diagnosis and treatment of hearing loss.

Long test times for ABR hearing threshold estimation are
primarily due to poor signal-to-noise ratios (SNRs) of the
ABR. With a typical peak-to-trough amplitude (PTTa) of
around 1 µV or less (e.g. [11, 12]), the ABR tends to be hidden
in the much larger EEG background activity, which can be
in the ∼10 µV range or more, even after pre-processing and
artefact rejection [13]. In order to detect the ABR reliably,
it‘s SNR therefore first needs to be improved, achieved by
presenting many stimuli to the subject (up to several thousand)
and averaging across the short time intervals following stim-
ulus onset. An experienced clinician is then given the task to
visually inspect the averaged waveform to determine whether
an ABR is present or absent [5].

While visual inspection can potentially be quite sensitive,
studies have shown that results can vary both within and be-
tween examiners [14, 15]. This might be due to differences in
expertise and equipment, or variations in concentration levels
and fatigue. Either way, findings suggest that visual inspection
introduces a subjective, error-prone element to the analysis,
potentially compromising the accuracy and efficiency of the
test. Accordingly, researchers have focussed on automating
ABR detection procedures, leading to a plethora of statistical
approaches and machine learning techniques for response
classification and/or determining the presence or absence of
ABRs [e.g., 16-45, just to name a few].

With respect to objective methods for ABR hearing thresh-
old estimation in the clinic, these typically comprise three
main components: (1) a statistical test or machine learning
technique for determining the presence or absence of an ABR,
(2) a sequential test strategy for specifying when and how
often to analyse data whilst also rigorously controlling error
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rates, especially false positives (i.e., detection of ABR when
none are present), and (3) a protocol for adjusting the stimulus
level and homing in on hearing threshold. The vast majority
of research has focussed on (1), i.e., the test statistic and/or
machine learning technique [e.g. 16-38], which is arguably
also the most impactful regarding test accuracy and efficiency.
A limitation, however, is that most methods implicitly assume
independence between stimulus levels, meaning information
from previously measured waveforms is discarded. This likely
leads to a sub-optimal test performance, as ABRs are known
to be correlated across stimulus levels and frequencies [1].
Although some researchers have leveraged these correlations
through “curve-fitting” strategies [26-28] (see also the Dis-
cussion), these approaches are typically applied as a post-
hoc analysis (i.e., after all data has been collected), and thus
disregard the sequential testing aspect involved in real-time
hearing threshold estimation in the clinic.

With respect to (2), i.e., sequential testing, this is important
for providing prompt feedback to clinicians, and helps to keep
test time low as data collection can be stopped as soon as
an ABR is deemed present or absent. The challenge is that
repeated hypothesis testing increases the probability of making
an error, known as an inflated false-positive rate (FPR) [46]. In
order to prevent inflated FPRs, and preserve the significance
level of the test, the critical thresholds for response detection
need to be adjusted, for which various methods have been
proposed [39-44]. However, in order to find these critical
thresholds, limitations need to be imposed on how long and/or
how often data can be analysed, which is problematic for ABR
detection due to the ABR’s unknown SNR. In particular, any
pre-determined sample size will tend to result in either an over-
or an under-powered test, leading to prolonged test times and
reduced test sensitivities, respectively.

Finally, with respect to (3), i.e., the stimulus selection
protocol, this is needed to efficiently switch between levels,
and quickly home in on hearing threshold. The most common
approach currently used is an “X-down-Y-up” strategy, where
the X and Y refer to the dB change in stimulus level following
a detection and a non-detection, respectively [45]. A potential
drawback for this approach is its susceptibility to false-
positives, which can have a large impact on test accuracy (see
also the Discussion).

The main goal for the current work was to develop an
automated approach for objective ABR hearing threshold
estimation, and to overcome some key limitations underlying
existing methods. The approach revolves around the Gaussian
Process (GP), which is a Bayesian approach for non-linear
regression [47]. The function to estimate by the GP was
furthermore the ABR’s amplitude-intensity growth function,
i.e., ABR amplitude as a function of the stimulus level. Active
learning rules were also designed to automatically switch
between stimulus levels and quickly home in on hearing
threshold.

The GP is attractive, firstly because it provides a rigorous
framework for learning and exploiting the correlation structure
underlying the ABR data. Secondly, as a Bayesian approach
that does not utilize repeated Frequentist hypothesis testing,
advanced sequential test strategies for preventing inflated FPRs

are no longer needed, which greatly simplifies the sequential
analysis and provides much needed flexibility in terms of how
long and how often data can be analysed. Thirdly, the GP
provides a single framework for evaluating data from multiple
stimulus levels, which helps to mitigate the impact of any
single false-positive or data outlier (see also the Discussion).
Finally, the GP is not confined to sequential “up-down”
stimulus selection protocols, and novel active learning rules
for automatically adjusting the stimulus level may offer new
opportunities for improving the efficiency and accuracy of the
test.

In what follows, the GP with application to ABR hearing
threshold estimation is described in more detail (Sections II
and III). A sequentially applied Hotelling’s T 2 (HT2) test is
also presented (Section IV), which does not consider corre-
lations across ABR waveforms. The FPR for the sequential
HT2 test was controlled, per stimulus level, using a sequential
test strategy from [42,43], called the Convolutional Group
Sequential Test (CGST; see also Section IV). The CGST
previously demonstrated an efficient test performance for ABR
detection [42], and thus provides a challenging benchmark to
compare against. The sequential HT2 test was also combined
with a 10-down-10-up test strategy (i.e., the stimulus was
adjusted in 10 dB steps) for automatically homing in on
hearing threshold. The performance of the GP and the se-
quential HT2 test was evaluated extensively in simulated data,
which emulates a wide range of sensorineural and conductive
hearing loss configurations (Section V). Simulated data were
chosen in this study as this allows large, well-controlled data
sets to be generated, providing a powerful assessment of test
performance for a wide range of test conditions. As a proof
of concept, the GP approach was also briefly evaluated in
ABR data recorded from an adult volunteer (Section VI).
Finally, various GP test parameters are considered in the
Discussion, along with alternative methods from the literature,
study limitations, and directions for future work.

II. GAUSSIAN PROCESSES

This section begins with an informal description of the
Gaussian Process (GP) supported by illustrations provided in
Fig. 1. The informal description is aimed at readers without
expertise in the field, and aims to build an intuitive under-
standing of the GP. Following the informal description is a
brief overview of the GP’s mathematical framework.

A. Understanding Gaussian Processes
The GP can be viewed as a model of our beliefs, and more

specifically, a model of our beliefs regarding some function
of interest, denoted by f(x). In the context of ABR hearing
threshold estimation, f(x) refers to the ABR wave V PTTa
growth function, defined as the voltage difference between the
ABR wave V peak and trough (e.g. [48]) as a function of
stimulus level x. It is worth emphasizing here that the GP
aims to model the true (i.e., noise-free) PTTa function values,
not the observed (noisy) PTTa values measured from data.

The GP models our beliefs of f(x) using a multivariate
normal (MVN) distribution, which comprises just two compo-
nents: (1) a vector of means, and (2) a covariance matrix. The
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TABLE I
A NOTATION TABLE FOR THE MOST IMPORTANT SYMBOLS USED

THROUGHOUT THIS WORK.
Symbol Description
f(x) function to be estimated by the GP
xn the nth stimulus level to test at
XP vector containing P locations (stimulus levels) along which

f(x) is estimated
XT vector containing T stimulus levels to test at
OT vector containing T observed PTTa values
σ2

T vector containing the T variances associated with OT

µP prior mean PTTa values along XP

µT prior mean PTTa values along XT

ΣP prior covariance matrix for PTTa values along XP

ΣT prior covariance matrix for PTTa values along XT

ΣPT prior covariance matrix for PTTa values along XP and XT

ΣTP prior covariance matrix for PTTa values along XT and XP

µ̄P posterior mean PTTa values along XP

Σ̄P posterior covariance matrix for PTTa values along XP

Dn the coherently averaged epoch at the nth stimulus level
Gn the number of recorded epochs at the nth stimulus level
an biased estimate of the PTTa value at the nth stimulus level
on unbiased estimate of the PTTa value at the nth stimulus level
Ti the ith PTTa target for the GP to locate
xTi

the estimated stimulus level for evoking Ti

δi the required level of certainty (the standard deviation of
the GP posterior) before xTi

is deemed located

vector of means represents our belief regarding the most likely
PTTa value at each stimulus level, and the covariance matrix
captures the level of uncertainty surrounding the mean values.
The covariance matrix also encodes expectations of “function
smoothness”, i.e., the rate at which PTTa values are expected
to change with x (further clarified below).

To give an example, consider Fig. 1, panel (a), which
shows a simplified depiction of a GP prior. The GP prior
describes the space within which f(x) is expected to reside
before having observed data. The thick dashed line in panel
(a) represents the vector of means, which was set to zero for
all stimulus levels, essentially representing the assumption that
subject is deaf. The shaded region then represents uncertainty
surrounding these mean values, and was defined by ±2.575
standard deviations from the mean, representing the mean’s
99% confidence intervals. Note that the standard deviations are
given by the main diagonal of the covariance matrix. The f(x)
function values that the GP aims to estimate are also shown
in panel (a) as a gray dotted line. Note that the GP prior in
Fig. 1, panel (a) covers a relatively large space, representing
our initial uncertainty regarding the true f(x) function values.

As data becomes available, our understanding of f(x)
evolves, which is taken into account by transforming the
GP prior into a GP posterior. This process considers the
observed data, but also prior assumptions regarding function
smoothness. To clarify, consider Fig. 1, panel (b) where a
PTTa of ∼0.62 µV was observed at 70 dB Hearing Level
(HL, albeit simulated). How this data impacts on the GP
posterior depends firstly on how reliable (i.e. how noisy) it
is. In this case, the ∼0.62 µV PTTa value was relatively
noisy, which implies that there is still uncertainty regarding
the true (noise-free) f(70) value. The 99% confidence intervals
for the GP posterior at f(70) in panel (b) are therefore still

relatively wide. How the ∼0.62 µV observation impacts on the
posterior also depends on the assumed covariance structure.
The latter is represented by the off-diagonal elements of the
covariance matrix, and leads to information being “smeared”
across stimulus levels. The observation at 70 dB HL, for
example, impacted not only on our expectations for f(70),
but also on our expectations for the adjacent stimulus levels.

The assumed covariance structure is an important compo-
nent of the GP, and provides the foundation for the GP’s
efficacy at conducting non-linear regression. If the covariance
structure is assumed in advance, it should therefore be chosen
carefully. Alternatively, the covariance structure can be learned
from the data, which is further considered in Section III.

Finally, panels (c) and (d) in Fig. 1 show two additional GP
Posteriors. These panels aim to illustrate the active learning
rules (how to choose the next stimulus level) and stopping
criteria, and are further considered in Section III under “Il-
lustrative example”. To briefly explain here also: The active
learning rules first aim to obtain a roughly monotonic estimate
of f(x) (Fig. 1, panel c), after which the focus shifts to
reducing uncertainty along the 0.1 ≤ f(x) ≤ 0.5 µV interval,
but prioritising the lower amplitude region. Fig. 1, panel (d)
shows the final GP posterior from which hearing threshold
was inferred. Further details are presented in Section III.

B. Mathematical framework of Gaussian Processes

This section defines the mathematical framework underlying
the GP [47, 49]. In theory, the GP provides a means to estimate
f(x) for all conceivable values of x, resulting in an infinite
set of function values for the GP to estimate. In practice, the
GP is of course confined to estimating f(x) at just a finite
set of locations. These locations will henceforth be referred
to as the “prediction locations”, and are denoted by XP with
elements xj for j=1, 2, ..., P .

As mentioned previously, the GP starts with an initial MVN
distribution called the prior, which is fully defined by just two
components: a P -dimensional vector of means, denoted by
µP , and a P x P dimensional covariance matrix, denoted by
ΣP , defined as:

µP = E[f(XP )] (1)

ΣP = E[(f(XP )− µP )(f(XP )− µP )
′] (2)

where ′ denotes transpose. The µP and ΣP components
can be specified through a “mean function” and a “covariance
function”, respectively, and are further considered in Section
III.

After having defined the prior, data is collected by probing
f(x) at a set of T locations. These locations are referred to
as the “test locations”, and are denoted by XT with elements
xn for n = 1, 2, ..., T . Note that XT may differ from XP .
Probing f(x) at XT gives a T -dimensional column vector
of observations, say OT with elements on for n = 1, 2, ...,
T . The GP then uses prior assumptions and information from
OT to transform the MVN prior into a MVN posterior, thus
reshaping the space within which f(XP ) is expected to reside.
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Fig. 1. An illustration of the Gaussian Process (GP) for peak-to-trough amplitude (PTTa) growth function estimation. The GP is characterized by a
multivariate normal (MVN) distribution, which defines the space in which the growth function, denoted by f(x), is expected to reside. Before having
observed data, this space may be vast, reflecting our initial uncertainty about the true f(x) function values. As data is collected and uncertainty
regarding f(x) is reduced, the MVN space is transformed, reflecting our improved understanding of f(x). This transformation considers prior
assumptions as well as the observed data. Panel (a): A simplified depiction of a GP prior, i.e., the MVN space before having observed data. The
thick dashed line shows the MVN mean and the shaded regions are defined by the 99% confidence intervals of the (marginal) MVN distribution.
The f(x) function, to be estimated by the GP, is also shown as a dotted line. Panel (b): A simplified depiction of a GP posterior, i.e., the MVN space
after observing a PTTa value of 0.62 µV at 70 dB HL. Panel (c): The GP posterior after also having observed a PTTa of 0.98 µV at 90 dB HL,
and Panel (d): The GP posterior after all stopping criteria were met. Details regarding the stopping criteria, the prior assumptions, and the active
learning rules for stimulus selection are presented in Section III.

It is worth noting that the MVN posterior is defined across the
same XP locations as the MVN prior.

In order to actually derive the posterior, the following ad-
ditional components should be defined: (1) the T -dimensional
column mean vector for the test locations, denoted by µT , (2)
the T x T dimensional covariance matrix for the test locations,
denoted by ΣT , (3) the T x P dimensional cross-covariance
matrix for the test locations and the predictions locations,
denoted by ΣTP , and similarly (4), the P x T dimensional
cross-covariance matrix for the prediction locations and the
test locations, denoted by ΣPT . These components are all
specified through the aforementioned mean and covariance
functions, and are further considered in Section III.

If the OT observations are noisy, then the last step before
deriving the posterior is to add an additional component to
the diagonal of ΣT . In particular, the main diagonal of ΣT is
respecified as diag(ΣT ) + σ2

T where diag denotes the main
matrix diagonal, and σ2

T is a T -dimensional vector containing
the estimated variances associated with the OT measurements
[47].

Finally, the equations for generating the MVN posterior are
given by [47]:

µ̄P = µP +ΣPTΣ
−1
T (OT − µT ) (3)

and

Σ̄P = ΣP −ΣTPΣ
−1
T ΣPT (4)

where Σ−1
T is the inverse of ΣT . These equations are

the result of deducing a conditional MVN distribution from
a joint MVN distribution [49]. Note that µ̄P and Σ̄P are
repeatedly recalculated as new data arrives, which involves
adding entries to OT and σ2

T , and recomputing ΣT , ΣTP

and ΣPT .

III. ABR HEARING THRESHOLD ESTIMATION USING
GAUSSIAN PROCESSES

The overarching aim for the GP in the current work was to
infer hearing threshold from the GP-estimated PTTa growth
function. The following sections provide a more detailed
description of the PTTa (Section III.A) along with the mean
and covariance functions for specifying the priors (Section
III.B). The active learning rules for adjusting the stimulus level
are then also presented (Section III.C) along with the criteria
for deciding when to stop data collection and infer hearing
threshold (Section III.C).
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A. Peak-to-trough amplitude estimation

This section describes the approach for estimating the PTTa
values, which comprise the elements of OT , i.e., the on values
for n = 1, 2, ..., T . As the on estimates are noisy, they need
to be provided with an estimate of variance. These variances
comprise the elements of σ2

T , i.e., the σ2
n values for n =

1, 2, ..., T .
As mentioned previously, the ABR has a poor SNR, and

many waveforms need to be averaged before an ABR can
reliably be detected. These waveforms are referred to as
epochs, and are given by the brief EEG intervals following
the stimuli. At each stimulus level, the recorded epochs can
be considered as a matrix:

Dn =


d1,1 d1,2 · · · d1,L
d2,1 d2,2 · · · d2,L

...
...

. . .
...

dGn,1 dGn,2 · · · dGn,L


where di,j denotes the jth sample of the ith epoch, L is

the number of EEG samples within each epoch, and Gn is
the number of epochs (the ensemble size) recorded at the nth

stimulus level. Averaging down each of the L columns of Dn

gives the coherently averaged epoch, say D̄n, from which a
PTTa can be estimated.

Estimating the PTTa requires identifying wave V peak and
trough, and then computing the difference [48]. The challenge
is that peak and trough latencies (i.e., time following stimulus
onset) vary depending on factors such as the stimulus level,
measurement technique, and filtering parameters. Thus, to
ensure that the peak and trough can be located, a relatively
wide search window is needed. However, employing a
wide search window increases the likelihood of detecting
artefactual maxima and minima, which introduces noise to
the estimate and reduces the SNR. In short, it is desirable
to keep the search window as short as possible, but to still
provide sufficient coverage to ensure robust peak and trough
detection. This was facilitated by a sliding window approach.

Sliding window approach
The sliding window approach begins by defining two adjacent
4 ms windows: One for locating the peak and one for locating
the trough. These windows are then slid across D̄n in steps
of 2 ms. At each window location, a peak and trough are
computed using:

Pi = max
j∈[Ai]

D̄n(j) (5)

and

Ti = min
j∈[Bi]

D̄n(j) (6)

where Ai and Bi contain the indices corresponding to the
windows for locating the peak and trough, respectively, at step
i. For each window location, a peak-to-trough difference is
computed, and the final PTTa value, say an, is given by the
largest of these differences:

an = max
i∈[I]

(Pi − Ti) (7)

where I contains the indices for the sliding window
positions. A total of five sliding window positions were
evalauted (I = [1, 2, 3, 4, 5]), with the starting positions of
the first window set at [2, 4, 6, 8, 10] ms, respectively (see
Fig. 2 for an exanple). It is worth noting that this approach
assumes the peak precedes the trough, and that the interval
between peak and trough is less than 8 ms.

Fig. 2. An illustration of the sliding window approach for peak and
trough detection. The approach involves defining two adjacent 4 ms
windows - one for locating the peak and another for locating the trough
- which are slid across D̄n in steps of 2 ms. At each step, a peak
and trough are estimated using Eq. (5) and (6), and a peak-to-trough
difference is computed. The final peak-to-trough amplitude equals the
largest of these differences and is found using Eq. (7). For the current
example, the largest peak-to-trough difference was observed for the
3rd window location: The A3 indices for locating the peak span the
6-10 ms interval, and the largest value along this interval was P3 =
0.26µV, which is indicated in the figure by an asterisk. The B3 indices
for locating the trough span the 10-14 ms interval, and the smallest
amplitude along this interval was T3 = −0.24µV, which is indicated
in the figure by a circle. The estimated peak-to-trough amplitude in this
example was 0.53 µV.

The PTTa bias
The GP assumes that the OT measurements are potentially
noisy, but unbiased observations of f(xn). However, this
assumption does not hold due to the residual background
activity in D̄n, which biases an towards over-estimated PTTa
values. In particular, the expected value for an is given by:

E[an] = f(xn) + E[bn] (8)

where E[bn] represents the bias at stimulus level xn. It
should be stressed that although E[bn] is introduced by the
residual background activity in D̄n, it is dependent on the
SNR of D̄n, which is essentially due to the search process
that is involved in peak and trough detection. Since the SNR
varies throughout the test, the E[an] estimates also vary, which
adversely affects the regression analysis conducted by the GP.

One way to obtain an unbiased estimate of f(xn) might
be to estimate E[bn] and subtract this from an. However, this
is challenging, as the SNR is unknown. This incentivized
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a maximum likelihood approach for unbiased PTTa estimation.

Unbiased PTTa estimation
The maximum likelihood approach aims to replace the biased
an estimates with unbiased estimates, denoted by on. The on
values were estimated using:

on = arg max
R∈[R]

ϕ(an | R) (9)

where ϕ(an | R) is the distribution underlying an, evaluated
at location an, and under the assumption that data contained
an ABR with a true (i.e., noise-free) PTTa equal to R. The
R vector furthermore contains all noise-free PTTa values to
evaluate. In short, the (biased) an estimate is replaced with
the most likely (unbiased) value in R. The main challenge
for this approach is to find the ϕ(an | R) distributions, which
were approximated using a bootstrap.

The bootstrap
The bootstrap is a random resampling with replacement pro-
cedure, which was previously adapted in [18] to approximate
null distributions for ABR test statistics. In the current work,
however, the aim was to approximate not just the null distri-
bution, but all ϕ(a | R) distributions (for all R ∈ [R]) where
a denotes the axis along which the distribution is defined.

Starting with the null distribution, this was approximated
by randomly resampling (with replacement) blocks of EEG
measurements from the original recording with no regards to
where the stimuli occur [18]. Averaging across the resampled
blocks then gives an “incoherent average”, as time-locking
between the resampled blocks and the stimulus triggers has
been disrupted. It is assumed that any residual power of the
ABR in the incoherent average is negligible, and hence that the
incoherent average represents data under the null hypothesis,
representing “no ABR present”. Repeating the procedure many
times, and calculating a PTTa value from each incoherent
average, then gives a distribution of PTTa values, which is
assumed to be an approximation of the null distribution.

Approximating the alternative distributions requires a minor
tweak, which consists of adding an ABR template waveform
(presented in Section V) with a PTTa of R to the incoherent
averages, prior to estimating the noisy PTTa values.

With respect to the number of bootstrap repetitions, it is
important to strike a balance between achieving sufficiently
accurate approximations, and managing computational
burden. In the current work, the number of repetitions was
set to 2000, as this previously led to accurate results when
evaluating test specificity for ABR detection [22] and was
sufficiently fast.

The Gaussianity assumption
An important assumption underlying the GP is that the on
estimates are Gaussian-distributed, which suggests that the on
values can potentially be negative. How to simulate negative
PTTa values, however, is not clear, which implies that the
bootstrapped distributions cannot be generated along the R <
0 interval. As a result, the on estimates also cannot be negative,
which violates the Gaussianity assumption. Non-negative on

estimates bias the GP towards over-estimated f(x) function
values, which complicates the hearing threshold estimation
procedure.

In order to prevent Gaussianity violations, the bootstrapped
distributions along the R < 0 interval were extrapolated from
those along the R > 0 interval. In particular, it was assumed
that the distributions along R < 0 were shifted versions of
those along R > 0. More formally:

ϕ(a | −R) = ϕ(a+ 2∆R | R) (10)

where ∆R is the difference between (1) the median value
of ϕ(a | 0), i.e., the bootstrapped distribution under H0,
and (2) the median value of ϕ(a | R), i.e., the bootstrapped
distribution when data contained an ABR with a PTTa equal
to R. The distributions along R < 0 were hence assumed to
be equivalent to those along R > 0, just shifted by 2∆R.

Measurement error
Finally, the GP requires each on estimate to be provided
with a variance, previously denoted by σ2

n. If the distribution
underlying on is known, then estimating σ2

n is relatively
straightforward. Fortunately, this distribution was already ap-
proximated when estimating on in Eq. (9), and is given by:

Φn(R) = ϕ(an | R) (11)

where R can once again assume values as defined in R.
After approximating Φn(R), σ2

n is estimated using:

σ2
n =

[
Qn(0.8413)−Qn(0.1587)

2

]2
(12)

where Qn(0.1587) and Qn(0.8413) denote the 0.1587 and
0.8413 quantiles, respectively, of Φn(R). These quantiles
correspond to ±1 standard deviations from the mean of a
Guassian distribution.

B. The mean and covariance functions

As mentioned previously, the GP starts with an initial MVN
space, called the GP prior, which requires a mean vector and a
covariance matrix to be defined. Starting with the mean vector,
this was defined under the assumption of no “ABR present”,
and was therefore set to zero for all stimulus levels, giving
µP = 0 and µT = 0. This essentially represents the belief
that subject is deaf, which might be considered a clinically
conservative starting position, i.e., it may be safer to err on
the side of caution and assume that a careful diagnosis of
hearing loss is required, rather than assume subject has normal
hearing. The main incentive for assuming a zero mean prior,
however, was to facilitate monotonic estimates of f(x), which
help to reduce ambiguity in hearing threshold location (further
clarified in Section III.C).

With respect to the covariance matrix, this is typically
defined using a function, also known as a covariance kernel.
In the current work, it was assumed that f(x) function values
for adjacent stimulus levels were similar, and that similarity
decreased as the distance between stimulus levels increased.
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More specifically, covariance was assumed to decay exponen-
tially with the distance in x, which can be modelled using the
widely-used exponential covariance kernel [49]. Accordingly,
the ΣP , ΣT , ΣT,P , and ΣP,T covariance matrices were
defined as:

ΣP = s · exp−
(XP −X′

P )2

θ (13)

ΣT = s · exp−
(XT −X′

T )2

θ (14)

ΣP,T = s · exp−
(XP −X′

T )2

θ (15)

ΣT,P = s · exp−
(XT −X′

P )2

θ (16)

where s is the “scale parameter” and θ is the “length scale
parameter”.

Starting with the scale parameter, this defines the variance
of the MVN distribution, and can be used to specify the
range within which the f(x) function values are expected to
lie before having observed data. In the current work, it was
assumed that 99.9% of the f(x) values were less than 1.25 µV,
which was roughly motivated by results from [11, 12]. Two-
sided 99.9% confidence intervals coincide with ±3.09 standard
deviations from the mean, giving s = ( 1.253.09 )

2 = 0.1636 µV.
With respect to the length scale parameter θ, this controls

the rate at which covariance between PTTa values decays
as the distance in x increases, and is related to “function
smoothness”, i.e. how quickly the f(x) function values are
expected to change with x. As each subject is expected to have
his/her own PTTa growth function, the optimal length scale is
expected to vary between individuals. Therefore, instead of
assuming θ in advance, θ was treated as a random variable
and was estimated from the data using standard maximum
likelihood estimation [49]. Pilot simulations (specifics not pre-
sented) suggest a favorable test performance when confining
θ to the [1000, 2000] interval. A uniform prior for θ was
therefore defined on the [1000, 2000] interval.

C. Active learning rules, stopping criteria, and hearing
threshold estimation

The overarching aim for the GP is to estimate hearing
threshold, which is assumed to be located at the largest x value
where f(x) = 0, henceforth denoted by xHT . The challenge in
locating xHT is that f(x) is zero not just at a single location,
but at all inaudible stimulus levels. Consequently, there is a
risk that the GP converges on an f(x) = 0 location that is
below xHT , leading to an under-estimated hearing threshold.

One way to mitigate the risk of converging on false hearing
threshold estimates is to approach f(xHT ) from above, i.e.,
from the f(x) > 0 interval. To facilitate this, active learning
rules were designed to first arrive at a monotonic estimate of
f(x), which then provides directional guidance on the f(x) =
0 location. This was achieved by first locating several non-zero
PTTa targets, i.e., locating the xTi

values where f(xTi
) = Ti,

where Ti denotes the PTTa targets for i = 1, 2, ..., I . The xTi

values are furthermore estimated one at a time, starting with
the largest Ti target, and only moving on to the smaller targets
after locating the larger ones.

The aim for the active learning rules was thus to automati-
cally adjust the next stimulus level, and efficiently locate the
xTi

values. The stimulus level was adjusted every 500 epochs
(approximately every 10 seconds), and was set to the most
likely x where f(x) = Ti, albeit under the condition that Ti

had not yet been located. More specifically, the next level to
test at was given by:

xn = arg max
xj∈X

N(Ti, µ̄xj
, σ̄2

xj
) (17)

where X denotes all potential test locations, and
N(Ti, µ̄xj

, σ̄2
xj
) is a univariate GP posterior, defined at

a single prediction location, given by xj . Note that this
univariate GP posterior is derived using Eq. (3) and (4). Note
again that the GP was only allowed to test at xn if Ti was
not yet located. The Ti target was deemed located when the
standard deviation of the GP posterior at location xn was less
than δi, i.e., for σ̄2

n < δi where δi is specified by the user. If
this condition was met, then the GP was allowed to estimate
the next target, and xn was instead found for target Ti−1.
After locating all Ti targets, hearing threshold was estimated
using Eq. (17) with Ti set to zero.

1) A caveat: profound hearing loss: In the case of profound
hearing loss, it is conceivable that all f(x) function values are
smaller than the largest Ti target. In this case, the GP may
waste time attempting to locate a target that does not exist.
To prevent this, the GP posterior was first inspected at the
maximum permitted stimulus level, say xmax, and if the most
likely PTTa value at xmax was smaller than the current Ti

target, then xn was set to xmax. The most likely PTTa value
at xmax, say Rmax, was found using:

Rmax = arg max
R∈[R]

N(R, µ̄xmax
, σ̄2

xmax
) (18)

where N(R, µ̄xmax
, σ̄2

xmax
) again denotes a univariate GP

posterior (derived using Eq. 3 and 4), defined at a single
prediction location, now equal to xmax.

D. An illustrative example

This section aims to demonstrate the active learning rules,
and reconsiders the illustrations provided in Fig. 1 in more
detail. Data for this example were simulated, and are described
in Section V. The initial stimulus level was set to x1 = 70 dB
HL, and the targets for the GP were set to T1 = 0.5, T2 = 0.3,
T3 = 0.2, T4 = 0.15 and T5 = 0.1 µV with corresponding δi
thresholds of δ1 = 0.3, δ2 = 0.2, δ3 = 0.1, δ4 = 0.075, and
δ5 = 0.05 µV, and xmax = 90 dB HL. The GP furthermore
aimed to estimate f(x) along the [-10, 90] dB HL interval with
a 1 dB resolution, i.e., the XP prediction locations comprised
101 integers ranging from -10 to 90. The GP was also allowed
to test any level along this interval, but maintaining the 1 dB
resolution. The mean and covariance functions were specified
as described in Section III, and were used to construct the
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GP prior, a simplified depiction of which is shown in Fig. 1,
panel (a). The simulated PTTa growth function (i.e., the f(x)
function) is also shown as a dotted line.

After specifying the GP prior, 500 epochs were collected
(albeit simulated) at level x1 = 70 dB HL. A coherent average
was then computed along with a (biased) PTTa value of a1 =
0.92 µV, which was replaced with an (unbiased) estimate of
o1 = 0.62 µV, as described in Section III.A. The standard
deviation of o1 was estimated to be σ1 = 0.26 µV. The GP
prior was thus updated using OT = o1 = 0.62 and σ2

T =
σ2
1 = 0.262 = 0.0676, giving the GP posterior shown in Fig.

1, panel (b).
Next, the GP posterior was inspected to determine the

next stimulus level. As explained previously, the GP’s initial
priority is to obtain a roughly monotonic estimate of f(x),
as this provides directional guidance when locating the Ti

targets. To facilitate a monotonic estimate, the most likely
PTTa at xmax was first estimated using Eq. (18), giving
Rmax = 0.29 µV. Since Rmax < T1, this suggests that
the GP should collect data at xmax to facilitate a monotonic
estimate. However, it is also important to consider the level
of confidence associated with the Rmax estimate. If the GP
exhibits uncertainty regarding this estimate, then additional
data at xmax is indeed deemed necessary, whereas if the GP
is sufficiently confident regarding its estimate, then it is instead
allowed to locate the next target. In this example, the standard
deviation of the GP posterior at xmax was σ̄xmax

= 0.33
µV, and thus σ̄xmax

> δ1 = 0.3 µV, indicating too much
uncertainty regarding the Rmax estimate. The next stimulus
level to test at was therefore set to x2 = xmax = 90 dB HL.

An additional 500 epochs were thus simulated using a
stimulus level of 90 dB HL, and an unbiased PTTa of
o2 = 0.96 µV was estimated along with a standard deviation
of σ2 = 0.24 µV. The MVN prior was again updated in
accordance with prior assumptions and OT = [o1, o2] and
σ2

T = [σ2
1 , σ

2
2], giving the GP posterior shown in Fig. 1,

panel (c). The posterior was then inspected to determine the
next stimulus level. The most likely PTTa at xmax was now
Rmax = 0.73 µV, thus exceeding the T1 target of 0.5 µV,
which suggests that a roughly monotonic estimate of f(x) has
now been obtained. The GP therefore proceeds to estimate the
most likely location for T1 using Eq. (17), giving xT1 = 67
dB HL. However, the standard deviation of the GP posterior
at xT1

is σ̄xT1
= 0.21 µV, i.e., the GP is already moderately

confident regarding its f(67) prediction, which suggests that
the T1 target might already be deemed located. Indeed, for this
example, the σ̄xT1

< δ1 = 0.3 µV condition was met. The GP
therefore proceeds to estimate the T2 = 0.2 µV target. The
most likely x where f(x) = T2 was xT2

= 54 dB HL, and
σ̄xT2

= 0.27 µV. The σ̄xT2
< δ2 = 0.2 µV condition was not

met, which implies that the GP is not sufficiently confident
regarding its f(54) prediction, and hence that additional data
collection at this level is necessary. The next stimulus level to
test at was therefore x2 = xT2 = 54 dB HL.

Fast forwarding a bit, Fig. 1, panel (d) shows the GP
posterior after 44 iterations, with each iteration incorporating
an additional 500 epochs into the data set. It is worth noting
that there are a total of 16 data points as some stimulus levels

were revisited. The final xTi
estimates were 52, 42, 38, 36, and

34 dB HL, for i = 1, 2, 3, 4, 5, respectively. The corresponding
standard deviations of the GP posterior at these locations were
0.11, 0.071, 0.055, 0.049, and 0.047 µV, respectively. The
stopping criterion was thus met for all i and data collection
was stopped. Finally, hearing threshold was estimated using
Eq. (17) using Ti = 0, giving xHT = 29 dB HL.

IV. A SEQUENTIAL HOTELLING’S T 2 TEST TO COMPARE
AGAINST

When evaluating the performance of the GP, it is important
to establish a benchmark to compare against. The HT2 test was
therefore also included in the assessment, which previously
outperformed various alternative methods for ABR detection
[19]. However, as mentioned in the introduction, fully au-
tomated ABR hearing threshold estimation also requires a
sequential test strategy for determining when to analyse data
and for controlling the error rates, along with a stimulus
selection protocol for choosing the next level and homing in
on hearing threshold. These components are described in the
sections below.

A. The test statistic
When used for ABR detection, the HT2 test evaluates the

hypothesis that the expected value for the coherently averaged
epoch is zero. More specifically, the null hypothesis is defiend
as H0 : v̄i = 0 for i = 1, 2, ..., Q, where v̄i denotes the
ith “mean voltage mean”. As the name suggests, a voltage
mean is defined as a mean voltage value, taken across a short
interval of EEG data. In particular, each 0-15 ms epoch was
compressed into Q = 25 voltage means by averaging across
0.6 ms intervals [42], giving a Gn x Q dimensional matrix of
features, say V , where Gn is the number of epochs recorded
at stimulus level xn. The v̄i values are then computed by
averaging down the Q columns of V . The T 2 statistic itself
is given by [50]:

T 2 = Gn[v̄1, v̄2, ..., v̄Q]S
−1[v̄1, v̄2, ..., v̄Q]

′ (19)

where S−1 is the inverse of the covariance matrix of V ,
and ′ denotes transpose. The T 2 statistic can be transformed
into an F-statistic using T 2(Gn−Q)

Q(Gn−1) , which is F-distributed with
Q and Gn −Q degrees of freedom under H0 [50].

B. The sequential test strategy
In practice, the accuring ABR data is usually analysed

repeatedly, as this allows data collected to be stopped as soon
as an ABR is deemed present or absent, thus keeping test time
low. The caveat is that the probability of false positives (i.e.
detecting an ABR when none is present) increases with the
number of hypothesis tests carried out [46]. Various sequential
test procedures have therefore been proposed, which aim
to control the FPR by carefully constructing the critical
thresholds for response detection [39-44]. In this study, the
Convolutional Group Sequential Test (CGST) from [43] was
adopted, which allows two-sided critical thresholds to be
constructed, i.e., thresholds for inferring both ABR present
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and ABR absent. This is important for hearing threshold
estimation where inference is needed on both “ABR present”
and “ABR absent”. It is also worth mentioning that the CGST
previously demonstrated reductions in test time of 40-45%
relative to a conventional “single shot” test where data is
analyzed just once [42]. However, extensive comparisons
between sequential ABR detection methods are lacking in
the literature, and the CGST may not be the optimal approach.

1) The Convolutional Group Sequential Test: When using the
CGST, data is analyzed in disjoint blocks of observations.
For example, when analysing 6000 epochs with a 3-staged
sequential test, epochs 1-2000 might be analysed at stage
one, epochs 2001-4000 at stage two, and epochs 4001-6000
at stage three. Data analyzed in previous stages thus cannot
be re-analyzed in subsequent stages as the CGST assumes
independence between stages.

At each stage, a p value is computed by the HT2 test. These
p values are potentially transformed, and then summed with p
values from previous stages. In the current study, p values were
log-transformed and combined using Fisher’s method, which
was chosen as it previously outperformed various alternative
combination functions in terms of Bahadur efficiency [51].
The log-transformed sum of p values is henceforth referred to
as the “summary statistic” and is defined as:

Sk =

K∑
k=1

−2log(pk) (20)

where pk is the p value generated at stage k. After each
stage, a decision can be made regarding the presence or
absence of an ABR: If Sk > Ck, then H0 is rejected and
“ABR present” is concluded, whereas if Sk < Bk, then H0 is
accepted and “ABR absent” is concluded. If neither condition
is met, then the trial proceeds to the next stage, up to a
maximum of K stages.

The main challenge is to find the Ck and Bk critical thresh-
olds for controlling the stage-wise FPRs and true-negative
rates (TNRs). The stage-wise FPRs are denoted by α1, α2, ... ,
αK , and are chosen freely by the user at the outset, albeit under
the condition that

∑K
k=1 αk = α where α is the desired FPR

for the full sequential test. The stage-wise TNRs are denoted
by β1, β2, ... , βK , and are also chosen by the user at the
outset, under the condition that

∑K
k=1 βk = β where β is the

TNR for the full sequential test.
The CGST thus aims to find Ck and Bk (for k =

1, 2, ...,K), such that stage-wise FPRs equal α1, α2, ... , αK ,
and the stage-wise TNRs equal β1, β2, ... , βK . The approach
builds on work from [46], and revolves around numerically
convolving truncated probability density functions. A compre-
hensive description of the full procedure is outside the scope
of the current work, but a detailed overview is given in [43]
and [42]. What is important to note, however, is that several
parameters need to be specified at the outset, including the
total number of stages K, along with the αk and βk values
for k = 1, 2, ...,K. The stage-wise ensemble sizes, denoted
by Nk, are typically also pre-specified.

In the current study, the number of stages was set to K = 5,
and the αk and βk parameters were set to αk = 0.01

K and βk =
1−0.01

K for all k, chosen based on results from [42]. This led
to the stage-wise critical thresholds presented in Table I. The
Nk values were furthermore set to 2000, giving a maximum
ensemble size of 10,000 epochs after K = 5 stages, which was
determined based on pilot simulations (details not presented).

TABLE II
THE STAGE-WISE CRITICAL THRESHOLDS FOR THE SEQUENTIAL

HOTELLING’S T2 TEST.
k = 1 k = 2 k = 3 k = 4 k = 5

Ck 12.429 16.011 19.111 21.844 24.552
Bk 0.441 2.347 5.444 10.059 24.552

C. The stimulus selection protocol

In order to home in on hearing threshold with the sequential
HT2 test, the stimulus level was adjusted in ±10 dB steps,
i.e., a 10-down-10-up approach was adopted. Specifically, if
H0 was rejected and an ABR was deemed present, then the
stimulus level was decreased by 10 dB, whereas if H0 was
accepted and an ABR was deemed absent, then the stimulus
level was decreased by 10 dB. Data collection was stopped
once H0 was both accepted and rejected, after which hearing
threshold was estimated by taking the average of the highest
H0 acceptance level and the lowest H0 rejection level.

V. EVALUATING TEST PERFORMANCE IN SIMULATIONS

This section evaluates the performance of the GP in
simulated data and draws comparisons with the sequential
HT2 test.

A. Data

The simulated data comprised (1) an ABR template for
simulating a response, (2) coloured noise for emulating
the EEG background activity, and (3) sinusoid ramps for
simulating the PTTa growth functions.

1) ABR template for simulating a response: The template
for simulating an ABR was created by averaging ABR
measurements from 12 normal-hearing adults. The subject
data comprised a 33.33 Hz click-evoked ABR threshold
series, previously described in [18]. Prior to constructing
the template, data were band-pass filtered from 30-1500 Hz
using a 6th-order Butterworth filter, and artefact rejection
was applied using a ±10 µV threshold. All coherent averages
were inspected visually to confirm that a clear ABR was
present. The resulting ABR template is shown in Fig. 3, panel
(a). It is worth noting that that averaging measurements from
multiple test subjects may have attenuated the high-frequency
content in the template waveform, effectively simulating a
low pass filter.
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Fig. 3. The models for generating the simulated data. Panel (a) shows the ABR template for simulating a response, which was constructed by
averaging ABR measurements from multiple subjects. Panel (b) shows an example of the power spectral density (PSD) function that underlies the
colored noise, emulating the EEG background activity. Panel (c) shows 5 examples of simulated PTTa growth functions, generated using sinusoidal
ramps (equations 21 and 22). For these particular PTTa growth functions, the hearing threshold (HT) was set to either 0, 15, 30, 50 or 70 dB HL,
and the maximum amplitude at saturation (denoted by “A” in the legend) was set to 0.8, 1.1, 0.9, 0.6 or 0.9 µV. In two cases, a conductive hearing
loss was simulated (denoted by “C”) and in two cases a sensorineural hearing loss (denoted by “S”).

2) Coloured noise for simulating the background activity:
Coloured noise with spectral content similar to subject-
recorded EEG was generated by filtering Gaussian white
noise with all-pole filters, where the poles of the filters were
given by the parameters of 60th-order auto-regressive (AR)
models. The AR models were estimated from recordings of
EEG background activity (no stimulus used) from [13] with
a new model being fit to each recording. Prior to fitting the
AR models, data were again band-pass filtered from 30-1500
Hz using a 6th-order Butterworth filter, and artefact rejection
was applied using a ±10 µV threshold. The resulting colored
noise was also band-pass filtered from 30-1500 Hz. This
resulted in SNRs ranging from approximately −36 dB to
-20 dB, depending on the amplitude of the ABR template as
well as variations in the simulated noise. An example of the
spectrum underlying randomly generated noise is shown in
Fig. 3, panel (b).

3) Sinusoidal ramps for simulating PTTa growth functions:
PTTa growth functions were simulated using sinusoidal ramps.
The aim was to generate a wide range of growth functions
that represent various degrees of sensorineural and conductive
hearing loss. Each ramp was defined along the [0, 0.5π]
interval, which was assumed to correspond to stimulus levels
along the [-10, 90] dB HL interval. In particular, PTTa growth
functions were simulated using:

f(x) = A · sin(x́) (21)

where A is the PTTa in µV at saturation, representing the
largest PTTa value along the growth curve, and x́ represents
the stimulus level, but scaled to the [0, 0.5π] interval. The
latter was computed using:

x́ = r ·max{0, x− xHT } (22)

where xHT represents the hearing threshold and r is
the stepwise change along the [0, 0.5π] interval per unit
increase in level x. When emulating a conductive hearing
loss, r = 0.5π

90 , whereas for a sensorineural hearing loss,

r = 0.5π
90−xHT

. Note that the sensorineural hearing loss
compresses the ramp to the [xHT , 90] dB HL interval,
whereas the conductive hearing loss shifts the ramp back and
forth along x based on xHT . These choices were motivated
by findings from the literature, which show similar trends
in PTTa growth functions for these types of hearing loss
[12]. Some examples of simulated PTTa growth functions are
shown in Fig. 3, panel (c).

B. Test conditions

Sequential HT2 test: The performance of the sequential HT2

test was evaluated for a range of stimulus starting levels. As the
name suggests, the starting level refers to the initial stimulus
level at which testing begins, which was varied from 0 to 90
dB HL, in steps of 10 dB HL. The aim was to investigate
the impact of the starting level within the “10-down-10-up”
protocol, but also to ensure that the GP was not compared to
a sub-optimal sequential HT2 test.

For each starting level, a total of 10,000 hearing threshold
estimation trials were simulated. In each simulated trial, a
conductive or a sensorineural hearing loss was randomly
chosen, each with a 50% chance, and both xHT and A were
randomly resampled from uniform distributions, defined along
the [0, 70] dB HL and [0.75, 1.25] µV intervals, respectively.

GP approach: For the GP approach, the Ti target values were
specified as T1 = 0.5, T2 = 0.3, T3 = 0.2, T4 = 0.15,
and T5 = 0.1 µV, and the corresponding δi threshold values
were set to δ1 = 0.2 and δ2 = δ3 = δ4 = 0.1. Test
performance was then evaluated for different δ5 choices, which
was varied from 0.03 to 0.1 µV in increments of 0.005. The
δ5 threshold was varied as it was assumed to be the most
impactful on test performance. In particular, if the predictions
for f(x) = 0.1 µV are accurate, then extrapolating down to
f(x) = 0 µV will presumably also yield an accurate hearing
threshold estimate. For each δ5 value, a total of 10,000 hearing
threshold estimation trials were simulated following the same
procedure as described previously for the Sequential HT2 test.
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The starting level was always set to 70 dB HL and data were
analysed every 500 epochs.

C. Results

This section presents the simulation results for the
Sequential HT2 test and the GP approach. Test performance
was evaluated in terms of test time, as well as the “hearing
threshold estimation error”, defined as the estimated hearing
threshold minus the true simulated hearing threshold.

1) Sequential HT2 test: Results are presented in Fig. 4,
panels (a) and (b). Panel (a) shows the median test time,
along with the 0.68, 0.95, and 0.99 quantiles of the test times,
plotted as a function of the starting level. Panel (b) shows
the hearing threshold estimation errors, presented in the same
format as panel (a).

For the sequential HT2 test, the best test performances
were observed when initiating the 10-down-10-up approach
at a relatively high stimulus level of approximately 60 dB
HL. In particular, test times were shortest when starting the
test at around 50 or 60 dB HL, and test accuracies were
highest when starting the test at 50 dB HL and above. The
longer test times for the lower starting levels indicate that
more data was generally needed to determine the absence of
an ABR compared to determining the presence of an ABR.
With respect to the reduced test accuracies for lower starting
levels, this is due to false-positives. In approximately 1% of
the cases, false-positives led to estimation errors of over 45 dB.

2) The GP approach: Results are presented in Fig. 4, panels
(c) and (d). Panel (c) shows the median test time, along with
the 0.68, 0.95, and 0.99 quantiles of the test times, now plotted
as a function of the δ5 threshold. Panel (d) shows the hearing
threshold estimation errors, presented in the same format as
panel (c).

As expected, both test time and test accuracy increased
as more stringent stopping criteria (smaller δ5) were used.
Contrary to the sequential HT2 test, which showed median
estimation errors of 17 dB, the GP was more or less unbiased,
i.e. the median estimation error was ∼0 for all δ5 values.
The spread of the errors, however, increased with the δ5
stopping criterion. Assuming a hearing threshold estimation
error of approximately ±10 dB is acceptable, then a suitable
choice for δ5 would be ∼0.035 µV, which led to 99% error
quantiles of [-12, 7] dB and a median test time of ∼7 minutes.

3) Comparing methods: To obtain a fair comparison be-
tween methods, it is helpful to equate their test times and
compare their errors, or vice versa. The sequential HT2 with
a starting level of 60 dB HL had a median test time of ∼7
minutes along with 99% error quantiles of [4, 32] dB, or a 28
dB error range. For the GP, a similar ∼7 minute median test
time was obtained when using δ5 = 0.035 µV, which led to
99% error quantiles of [-12, 7] dB, corresponding to a 19 dB
error range. The GP thus demonstrated a reduction of 9 dB
in the error range compared to the sequential HT2 test while
maintaining a similar test time. The GP furthermore obtained a

∼28 dB error range when using δ5 = 0.055 µV, which led to a
median test time of approximately 3.5 minutes. This represents
a roughly 50% reduction in median test time compared to the
sequential HT2 test while maintaining a similar error range.

VI. CASE STUDY

This section aims to establish a proof of concept for the
GP approach in subject data, and evaluates test performance
in ABR recordings from an adult volunteer with normal
hearing.

1) Data: ABRs were evoked using a 4 kHz chirp as
stimulus. The stimulus was presented through ER-2 insert
phones, and was calibrated using a Brüel and Kjaer type 2112
sound level meter with the output of the sound level meter
routed to an oscilloscope to allow measurement of peak-to-
peak amplitude. The peak-to-peak amplitude for a 94 dB SPL
calibration piston was first measured as a reference point.
Chirp calibration in dB HL was then carried out with reference
to the 0 dB HL peak-to-peak amplitude values given in the
International Organization for Standardization (ISO) 389-6:
2007 along with the UK National Hearing Screening Protocol
(NHSP) recommended stimulus reference levels for ABRs
(correction factors were applied to the stimuli output levels
to obtain dB HL).

During the test, the subject reclined in a comfortable chair
and was asked to relax with eyes closed. Chirp stimuli
were generated in Matlab and routed via an RME Fireface
Soundcard to ER2 insert phones placed in the subject’s ears.
The chirp stimulus was presented at a rate of 47.17 Hz at
a range of dB sensation levels (SLs), i.e., relative to sub-
jects’ behavioural hearing threshold. The behavioural hearing
threshold was estimated to be 5 dB HL, and was found
using a standard 10-down-5-up test procedure, i.e., the chirp
intensity was decreased in steps of 10 dB for every correct
response, and increased by 5 dB for every missed response.
The chirp was then presented from -20 to 50 dB SL, in
steps of 10 dB SL, corresponding to dB HLs ranging from
-15 to 55 dB HL. ABR measurements were recorded at 48
kHz using an Interacoustics Eclipse system with electrodes
placed at the vertex (active electrode), the nape of the neck
(reference) and mid-forehead (ground). Electrode impedances
remained below 5 kΩ throughout the recording. The Eclipse
data was routed back to Matlab via the RME Fireface where
it was band-pass filtered from 30-1500 Hz using a 6th-order
Butterworth filter. Artefact rejection was also applied using a
±20 µV rejection level. Approximately 10,000 artefact-free
epochs were recorded at each stimulus level. This study was
approved by the Faculty Ethics Committee at the University
of Southampton (ERGO II 56025.A3).

2) Analysis: The GP was applied offline to the recorded
ABR data, but emulating the online data collection procedure.
The GP’s starting level was set to 55 dB HL, and data were
analysed every 500 epochs. Note that the GP’s test locations
were limited to stimulus levels that were available in data, i.e.,
−15 to 55 dB HLs in 10 dB HL increments. The GP’s prior
mean and covariance functions were specified as described in
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Fig. 4. Results from the simulations. Panel (a) shows the test times for the sequential Hotelling’s T2 test, plotted as a function of the initial stimulus
level. The thick dashed lines show the median values, and the shaded areas indicate the regions where 68%, 95%, and 99% of the observed values
fell. Panel (b) shows the test accuracies for the sequential Hotelling’s T2 test. Test accuracy is given by the “dB error,” defined as the estimated
hearing threshold minus the true hearing threshold. The thick dashed line represents the median dB error, and the shaded areas again represent
the regions where 68%, 95%, and 99% of the observed values fell. Panels (c) and (d) show the test times and dB errors for the GP, shown in the
same format as panels (a) and (b), presented as a function of the δ5 stopping criterion. The δ5 threshold represents the required level of certainty
in the GP’s predicted values before data collection can be stopped, with smaller δ5 values indicating more stringent requirements for the GP’s
predictions.

Section III, and the targets for the GP were set to T1 = 0.5,
T2 = 0.3, T3 = 0.2, T4 = 0.15, and T5 = 0.1 µV, with
corresponding δi thresholds of δ1 = 0.2, δ2 = 0.1, δ3 = 0.1,
δ4 = 0.1, and δ5 = 0.05 µV.

In order to establish a rough benchmark to compare
against, data were also inspected visually by an examiner
who followed guidelines provided by the British Society of
Audiology [5]. Although developed for infant testing, rather
than adults, these guidelines provide a rigorous set of rules for
response detection, and thus help to mitigate examiner bias
and ensure accurate test outcomes. The examiner initiated
the test at 55 dB HL, and inspected the accruing data in
increments of 500 epochs until an ABR was deemed present
or absent. If an ABR was deemed present, the stimulus level
was reduced by 10 dB HL. This repeated until an ABR was
deemed absent, after which hearing threshold was assumed
to be located at the lowest stimulus level where an ABR was
detected.

3) Results: The GP’s predictions for the PTTa growth
function are presented in Fig. 5: Panel (a) shows a simplified
depiction of the GP prior, representing the GP’s predictions
before observing data. Panel (b) then shows the GP posterior
after having located T1 = 0.5 µV, Panel (c) after having
located T2 = 0.4, T3 = 0.2, and T4 = 0.15 µV, and panel

(d) shows the GP posterior after all targets were located.
The final GP-estimated hearing threshold was 5 dB HL, and
was equal to the behavioural hearing threshold, indicating an
estimation error of 0 dB. The total test time was furthermore
360.4 seconds, or ∼6 minutes.

With respect to the visual inspection results, the examiner
concluded “ABR present” at stimulus levels 55, 45, 35, 25,
and 15 dB HL, and concluded “ABR absent” at 5 dB HL.
The ABR waveforms inspected by the examiner are shown
in Fig. 6. Assuming hearing threshold is located between the
lowest level that an ABR was deemed present and the highest
level that an ABR was deemed absent, then the estimated
hearing threshold was 10 dB HL, i.e., 5 dB HL above the
behavioural threshold. However, test time for the audiologist
was 741.7 seconds, or ∼12.6 minutes. In this test subject, the
GP thus demonstrated a slightly higher test accuracy whilst
also reducing test time by approximately 50%. In future work,
a more extensive assessment will be carried out to more
thoroughly evaluate the GP’s performance.

VII. DISCUSSION

The GP is a flexible and potentially powerful nonparametric
approach for smoothing, interpolation, and pattern discovery
[49, 50, 52]. It was originally established in the field of
geostatistics [53], and has since been applied in many areas,
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Fig. 5. The GP’s predictions for the PTTa growth function for an adult volunteer with normal hearing. Panel (a) shows the GP prior, representing
the GP’s predictions before having observed data. Panel (b) shows the GP posterior after having observed data at 55 dB HL. At this point in the
test, the GP has already located its first target, equal to T1 = 0.5 µV. Panel (c) shows the GP posterior after having observed additional data at
45, 25, 15 and 5 dB HL. The GP has now also located targets T2 = 0.4, T3 = 0.2, and T4 = 0.15 µV. Finally, panel (d) shows the GP posterior
after all targets were located. The estimated hearing threshold for this subject was 5 dB HL, and was equal to the behavioural hearing threshold.
The total test time was ∼6 minutes, which was relatively long as data were noisy. Results are further considered in the main text.

Fig. 6. Auditory Brainstem Response (ABR) waveforms that were visually inspected by an examiner when estimating hearing threshold in an adult
volunteer with normal hearing. An ABR was deemed present at 55, 45, 35, 25, and 15 dB HL, and absent at 5 dB HL. Hearing threshold was
assumed to be located between 5 and 15 dB HL, giving an estimated threshold of 10 dB HL, which closely aligned with the behavioural hearing
threshold of 5 dB HL.

including finance [54], astronomy [55], genomics [56], imag-
ing [57], epidemiology [58] and general optimisation [59], just
to name a few areas. The GP has recently also shown potential
in the related field of behavioural hearing testing where it
was used to estimate subjects’ audiogram using behavioural
Pure Tone Audiometry [60]. Results from [60] show rapid
approximations of the audiogram, in 4 minutes or less, which
contrasts with the 15-20 minutes for the standard clinical
protocol, i.e. a 70 to 80% reduction in test time was obtained.
A similar test time reduction would be transformative for ABR
measurements, and was the primary incentive for exploring the

GP approach in the current work.

Results from the current study show reductions in test time
of ∼50% for the GP relative to the sequential HT2 test. The
reduction in test time is substantial, but still smaller than that
observed for behavioural audiogram estimation in [60], which
begs the question as to whether further test time reductions
can be obtained. An important distinction between the current
study and [60] is that the GP in [60] considered correlations
across both stimulus levels and frequencies, whereas the GP
in the current work considered correlations across stimulus
levels only. Although both studies differ substantially in data
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and methodology, and thus cannot be compared directly, it is
envisaged that further reductions in test time might be obtained
by also incorporating correlations across stimulus frequencies.

Additional reductions in test time might also be obtained
by considering all peaks and troughs within the ABR, as
opposed to just the wave V PTTa. The correlation structure
underlying these peaks and troughs is, however, intricate, with
some peak-trough complexes shifting in latency and/or appear-
ing/disappearing as a function of the stimulus level [1]. In the
current work, it was therefore opted to simplify the approach,
and to compress the ABR into a single PTTa value, effectively
discarding the peak-trough correlation structure. This may
have contributed towards a sub-optimal test performance.

On a related note, the PTTa statistic is known to be less
sensitive than some other ABR test statistics (e.g. [18]),
which suggests that it may be preferable to apply the GP
to these alternative, more powerful statistics. Unfortunately,
the assumptions underlying the GP are grossly violated for
most ABR test statistics, the T 2 statistic included. These
violations are essentially the same as (but more severe than)
those described in Section III for the PTTa. The T 2 statistic,
for example, increases indefinitely with the SNR. This is of
course not to say that the GP cannot be applied to other
ABR test statistics, but that work is needed to find suitable
data transformations, such that the data conforms to the GP’s
assumptions.

With respect to the active learning rules, these were de-
signed to locate various non-zero PTTa values along f(x),
after which the GP posterior was used to extrapolate down
towards f(x) = 0. As discussed previously, locating the
larger PTTa targets helps to facilitate a monotonic estimate
of f(x), which then provides directional guidance on where
the remaining targets, as well as hearing threshold, are located.
This, however, raises the question as to how the PTTa targets
should be chosen. One factor to consider is the distance
between hearing threshold and the smallest Ti target, which
determines the distance across which the GP has to extrapolate
across when estimating f(x) = 0. When this distance is large,
relatively small random errors could be inflated, leading to
relatively large hearing threshold estimation errors. In future
work, the choice for the PTTa targets may need to be tweaked
and/or optimised for a cohort of test subjects, and ideally for
the main target population, i.e. infants with suspected hearing
loss.

An alternative strategy is to not extrapolate towards f(x) =
0, but to simply assume that hearing threshold is located at a
fixed distance below some minimum PTTa target, say Tmin.
For example, it might be assumed that hearing threshold is
10 dB lower than the x value where f(x) = Tmin = 0.1
µV. The accuracy of this approach depends on inter-subject
variations in the dB difference between hearing threshold and
the x value where f(x) = Tmin. A rough indication of this
variance might be found in the literature: In [11], PTTa values
were ∼0.16 µV for 10 dB nHL clicks, and ∼0.05 µV for
10 dB nHL tone pips, whereas in [12], PTTa values were
∼0.25 µV for 10 dB nHL 1 kHz tones. This suggests a
moderate amount of variation in PTTa values evoked by 10 dB
nHL stimuli, which might be due to variations in individual

PTTa growth functions, or differences in stimulus parameters,
recording conditions, and/or data analysis techniques, which
impedes direct comparisons across studies. It is also worth
noting that the reported PTTa values might be over-estimated
due to the PTTa bias, but potentially also under-estimated as
they represent group averages, i.e. it is feasible that ABRs
were not present in all test subjects, especially at low levels,
which may have resulted in under-estimated mean PTTa values
close to hearing threshold.

With respect to the choice for the prior, this can have a large
impact on the performance of the GP, and should be chosen
carefully, especially the covariance function [49]. Starting with
the prior mean, this was defined under the assumption of “ABR
absent”, and was set to zero for all stimulus levels. Doing so
facilitates monotonic estimates of f(x), and ultimately helps
to provide directional guidance on hearing threshold location.
It is worth noting that additional simulations were carried out
using non-zero prior means (details not presented), which often
led to non-monotonic estimates of f(x), and in less efficient
decision making when adjusting the stimulus levels.

As for the covariance function, this was specified using the
exponential kernel: the scale parameter s was chosen based
on prior knowledge from the literature [11,12], whereas the θ
parameter was treated as a random variable and was estimated
(per recording) using MLE. The θ values were also confined to
the [1000, 2000] interval, chosen based on pilot simulations.
As noted in [29] and [45], θ relates to the number of expected
zero-crossings (or changes in direction, i.e., from increasing
to decreasing, or vice versa) through 1

θ−0.5 . The 1000 and
2000 boundaries thus correspond to a change in direction
along f(x) every 1

1000−0.5 = 31.6 dB HL and 1
5000−0.5 = 70.7

dB HL, respectively. These values were motivated by pilot
simulations, and visual inspection suggests that the resulting
function smoothness is roughly in line with PTTa growth
function smoothness observed in the literature.

A. Comparisons with existing methods

The GP is an approach for conducting regression, and is
therefore related to various “curve-fitting” methods, which
have previously also been evaluated for ABR hearing threshold
estimation [26-28]. Similar to the GP in the current work, these
methods aim to estimate some form of the ABR’s amplitude-
intensity growth function, from which hearing threshold is ulti-
mately inferred. In [27], the ABR’s amplitude-intensity growth
function was represented by a “root-mean-square growth func-
tion”, and was estimated using sigmoid functions, whereas in
[28], the amplitude-intensity growth function was represented
by a ”cross-correlation coefficient growth curve”, and was es-
timated using power functions and sigmoid functions. Finally,
in [26], a self-supervised random forest regression model was
used to predict sound intensity levels, followed by the fitting
of a piece-wise function consisting of a constant element and
a 4th order polynomial.

One difference between the curve-fitting methods from [26-
28] and the GP, is that methods from [26-28] assume a specific
functional form for f(x). If this assumption does not hold, then
the accuracy of the estimated hearing thresholds may suffer.
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This contrasts with the GP, which does not confine f(x) to
a specific functional form, but instead imposes smoothness
constraints on the f(x) function values. This offers greater
flexibility in estimating f(x), and allows the GP to converge
on a wide range PTTa growth functions. This is important,
as PTTa growth functions can vary considerably across indi-
viduals due to differences in hearing loss characteristics [1],
e.g., depending on whether subject has a conductive or a
sensorineural hearing loss. However, this flexibility comes at
a cost, as the GP now needs to consider a wide range of
potential f(x) function values, which introduces additional
uncertainty in the GP’s estimates. In short, it is desirable to
maximally constrain the estimates for the f(x) function values,
while still maintaining sufficient flexibility to converge on all
possible PTTa growth functions. Whether the GP is the optimal
approach to achieve this remains to be seen in future work.

A second difference between the curve-fitting methods from
[26-28] and the GP, is that the GP was applied sequentially to
the accruing data, whereas methods from [26-28] were applied
in a post-hoc analysis. Sequential data analysis is an important
component for ABR-related applications in the clinic, as it
provides prompt feedback to clinicians, and generally helps to
reduce test time. However, as mentioned previously, the risk
is that sequential testing inflates the FPR, and adjusted critical
decision boundaries are required to control the signficance
level of the test.

B. False-positives
In the current work, FPRs for the sequential HT2 test

were controlled using the CGST approach [43]. It should be
stressed, however, that while the CGST controls the FPR at
each stimulus level, it does not prevent false-positives from
occurring entirely. Results from Fig. 4, panel (b) indicate
that the impact of these false-positives can be severe, in some
cases leading to hearing threshold estimation errors of over
45 dB. This is concerning, especially when diagnosing and
treating hearing loss in new borns where errors can lead
to undiagnosed hearing loss, or worse, hearing damage due
to over-amplified hearing aid settings. Although these large
errors are rare, the severity of the repurcussions may be why
fully automated ABR hearing threshold estimation are not yet
trusted for fully autonomous use in the clinic, and supervision
by an experienced clinician is still necessary to ensure accurate
diagnoses and effective treatment of hearing loss.

To advance automated ABR hearing threshold estimation in
the clinic, it is thus important to not only reduce test time, but
to also ensure that large estimation errors do not occur. One
way to mitigate these errors is to consider data from multiple
stimulus levels simultaneously, and to exploit the correlations
across ABR waveforms. By doing so, the impact of any
single false-positive on the final estimated hearing threshold
is increasingly “diluted” as data accrues across levels. This is
likely also why large estimation errors were less common for
the GP approach than for the sequential HT2 test.

C. Limitations and future work
Perhaps the main limitation of the current study is that the

GP approach was evaluated using simulations, with only an

illustrative example in ABR data from an adult volunteer.
As mentioned previously, simulated data is attractive as it
allows large data sets to be constructed under controlled test
conditions, i.e., data sets where both hearing thresholds and
PTTa growth functions are known. However, there may be
substantial differences between the simulated data and data
encountered in the clinic. The extent to which results in
this study generalize to clinical settings thus remains to be
determined. Work is currently underway to further evaluate
the GP approach in a cohort of normal-hearing and hearing-
impaired subjects.

Another limitation of the current study is related to the
active learning rules, which were not thoroughly optimized.
This includes the choice of the Ti targets and δi thresholds, but
also the concept of first estimating various non-zero regions
along the PTTa growth function, which might not be the most
efficient approach. Numerous active learning rule sets can be
envisaged, and it is highly probable that the rules employed
in this study are sub-optimal. Optimized active learning rules
may also depend on the population being tested, and should
be an important topic for future studies.

Further limitations are related to the GP itself, which does
not consider the monotonicty property of the PTTa growth
function. This property holds valuable information, and inte-
grating it into the estimation procedure may help to further
reduce uncertainty regarding the f(x) estimates. Leveraging
the monotonicity property may also help to mitigate the impact
of false-positives and/or data outliers, which were observed to
occasionally degrade hearing threshold estimation accuracy.

An additional limitation for the GP is that it assumes a
single covariance structure for all PTTa values, i.e., it assumes
that the rate at which PTTa values change is constant across
all stimulus levels, which is not the case. For example, PTTa
values are zero for all inaudible stimulus levels, and are thus
fully correlated. Similarly, for very loud sounds, the PTTa
value may saturate, also leading to highly correlated values.
Sounds that transition from inaudible to moderately loud, on
the other hand, may lead to relatively rapidly changes in PTTa
values, and hence relatively weak correlation. In short, the rate
at which PTTa values change is level-dependent, but this is
not taken into account by the GP. This has implications when
estimating the length scale parameter and may ultimately lead
to over- or under-smoothing in the GP-estimated growth func-
tions, and potentially reduced test accuracies and/or increased
test times.

VIII. CONCLUSION

This work presented a GP approach with active learning
rules for automatic ABR hearing threshold estimation.
Simulation results show a ∼50% reduction in median test
time for the GP relative to a sequentially applied Hotelling’s
T2 test while maintaining similar test accuracy. In general,
the GP is a flexible and potentially powerful approach for
non-parameteric regression, but requires data to conform to
its underlying assumptions. When applied to ABR PTTa
data, computationally intensive data transformations using
a bootstrap approach were needed to ensure that the GP’s
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assumptions were met. The GP approach in the current
work also requires a suitable choice for test parameters,
including the Ti targets, the δi thresholds, and the GP priors.
In future work, these parameters should be evaluated and
optimised in a large cohort of test subjects, and ideally for the
main target population, i.e., infants with hearing loss. This
work nevertheless suggest that the GP has much potential
for improving objective ABR hearing threshold estimation,
and results warrant further investigation of GPs in future work.

Repository
Matlab code for the Gaussian Processes is available at:
https://github.com/mchesnaye/IEEE-Gaussian-processes-for-
ABR-hearing-threshold-estimation-
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