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ABSTRACT 

This paper describes a novel process towards the application 
of multi-objective optimization as the form-finding process 
for the integration of computational design, fabrication, and 
construction sequences. The design and construction of a 
doubly curved large-scale prototype made of textile-
reinforced GRC shotcrete with a robotically fabricated in-
situ reinforcement system serves as the case study for the 
proposed methodology. Global geometry form-finding 
process takes into consideration the location and geometrical 
properties of the in-situ reinforcement rebar system, robotic 
rod-bending constraints, structural performance, and 
functional objectives. These criteria are integrated through 
the application of a multi-objective optimization method in 
order to formulate multiple trade-off solutions that possess 
multiple constraints (fitness objectives) which are primarily 
in conflict with each other and are intended towards 
automation in fabrication. The primary contribution of the 
research is the demonstration of a multi-objective 
optimization methodology that incorporates geometrical 
form-finding, material and fabrication constraints, and FEA 
as design drivers during the early stages of design. This 
optimization method can be further extended and utilized 
across a multitude of scales in order to save energy, 
materials, and cost in architectural projects.  
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1 INTRODUCTION 

The research presented in this paper outlines a novel 
methodology for the application of multi-objective 
optimization as the form-finding process towards the 
integration of computational design, fabrication, and 

construction sequences. The design and construction of a 
doubly curved large-scale prototype made of textile-
reinforced GRC shotcrete with a robotically fabricated in-
situ reinforcement system serves as the case study for the 
proposed methodology. One of the primary considerations of 
the research is to allow for the geometrical freedom to create 
a range of complex doubly curved geometries with the 
employment of functional, fabrication-related, and structural 
constraints. 

Concrete, being one of the most extensive building materials 
in construction, can be utilized to create architectural forms 
with complex geometry. The formal flexibility of concrete 
raises the question of the application of formwork during the 
construction process. Furthermore, custom-made 
reinforcement strategies need to be developed both for the 
formwork and the reinforcement of the structure. While it is 
viable to produce formwork with complex geometries via 
advanced digital and robotic fabrication tools, a key 
consideration area is the reduction of form-work waste 
material in manufacturing methods. The potential to 
incorporate this constraint in the preliminary design process 
as a design driver will pose advantages in waste optimization 
as well as production costs. Recent investigations on textile 
stay-in-place formwork [6] and 3d-printed stay-in-place 
formwork demonstrate the advantages of employing this 
method by correlating the geometric flexibility of the 
formwork with the structural capacity of concrete [15].  

Advances in the biological sciences and computation in 
recent years paved the way to mimic the principles of 
evolutionary science to solve common real-world problems. 
This problem-solving methodology comprises search and 
optimization procedures of single or multiple objectives. 
Evolutionary multi-objective optimization strategies have 
been utilized widely since the late 20th century as problem-
solving methods. In the 1930s, Sewell Wright was one of the 
first figures who attempted to apply biological evolutionary 
principles as optimization processes in solving complex 
problems [20]. Halfway through the 20th century, John 
Holland [7], Rechenberg and Schwefel [17] and Fogel et al. 
[5] respectively developed genetic algorithms (GA), 
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evolutionary strategies (ES), and evolutionary programming 
(EP) independently from one another. Their findings 
eventually led to the creation of a unified field of 
Evolutionary Computation in the late 20th century [1]. 

A multi-objective optimization methodology that 
incorporates geometrical form-finding, material and 
fabrication constraints, and FEA as design drivers during the 
early stages of design is demonstrated through in this paper. 
This optimization method can further be utilized across 
different scales in order to save energy, materials, and cost 
in architectural projects. The incorporation of geometrical, 
material, and fabrication constraints with criteria related to 
robotic fabrication presents an integrative morphogenetic 
design methodology [16].  

The one-to-one scale prototype presented in this paper is a 
case study to test the proposed methodology with the design 
and construction of a complex doubly curved prototype. The 
prototype, an urban furniture piece that accommodates 
seating areas, is made of textile reinforced GRC shotcrete 
with an integrated solution for a reinforcement system that is 
fabricated via robotic rod bending [3]. The dimensions of the 
structure are 1,580 mm. width, 3,850 mm. length, with a 
height that varies between 750 – 1,500 mm. The location of 
the case study is the outdoor area of Santral Istanbul Campus 
of Istanbul Bilgi University. 

2 EVOLUTION AS A DESIGN METHODOLOGY 

In the biological sciences, Genotype is a set of genes or 
instructions (codes) that performs as a blueprint for the 
development of the Phenotype. Phenotype is the physical 
expression (formal and behavioral manifestation) of the 
Genotype. In the field of evolutionary computation, and 
more specifically in the context of architecture and design 
disciplines, a genotype is equivalent to a set of instructions 
or codes that will produce the geometry, namely the 
phenotype.  

An evolutionary model, as described by Ernst Mayr, includes 
a two-step process; random variation within the genotype of 
a phenotype, and the selection of the phenotype through 
environmental pressures [14]. In line with evolutionary 
processes in nature, the application of evolutionary 
computation in design is founded upon these two primary 
components of variation in the code responsible for 
generating the geometry (genotype) and the selection of the 
geometry (phenotype) that fits better in the environmental 
conditions. In the context of the application of evolutionary 
computation in design, the environment is equivalent to a set 
of fitness objectives (e.g. design constraints to be met). 
Evolutionary algorithm goes through a basic loop. It starts 
with the generation of an initial random population of 
solutions. It continues with modifications of genomes 
through random variations, followed by the evaluation of 
solutions based on their objective performance. The 
algorithm concludes with the selection of a group of 
solutions that correspond to a predefined selection 
mechanism [4] (Figure1). Through this iterative process of 

generation, evaluation and selection, each phenotype will be 
evaluated based on a set of fitness objectives. Therefore, the 
formulation of the environment, that is the design problem 
and the calculation of the fitness objectives, in this process is 
essential for constructing a successful evolutionary model to 
produce meaningful design options. 

Figure 1. WallaceiX Core Algorithm (NSGA-II) pseudocode. 
(developed by [2]). 

In recent years, evolutionary optimization processes have 
gained recognition in architecture and related design 
disciplines both in academia and practice.  

Research conducted by Ayman Hassaan et al. explored the 
application of evolutionary optimization in the design phase 
by studying geometric formations of a facade at the early 
stages of design [10]. Yun Kyu Yi implemented NSGA-II 
algorithm in optimizing building facades with a similar 
objective to the previous research, nevertheless with a 
different design methodology [21]. In the building scale, the 
studies carried out by Machairas et al. employ genetic 
algorithms to address a set of conflicting objectives such as 
energy, comfort, and cost in early design phase [9]. In larger 
and more complex design domains, Makki et al. applied an 
evolutionary model to generate variations of urban forms that 
address a set of conflicting objectives [13].   

Bionic Partition is amongst other projects carried out by the 
Living, serving as an example of the application of 
evolutionary optimization techniques in practice. Functional 
and structural constraints have been amongst objectives that 
they sought to address [19].  

3 EXPERIMENT SETUP 

The presented experiment utilizes multi-objective Non-
Dominated Sorting Genetic Algorithm II (NSGA-II) 
developed by Deb. et al. [2] as the base algorithm upon which 
the evolutionary simulation is developed. Rhinoceros3D, 
Grasshopper3D and its plugin ‘Wallacei’ [11] are used to run 
the simulation, analyze the results thoroughly, and select the 
option to be further developed and fabricated.  In the 
conducted experiment, the algorithm parameters within the 
evolutionary simulation have been set to the following 
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values. (Table 1) (For a thorough description of the 
terminology used in the simulation see [12]). 

Parameter Short Description Value 

Generation Size Number of individuals per 

generation 

30 

Generation 
Count 

Number of generations in 

the simulation 

100 

Crossover 
Probability 

Percentage of solutions 

that reproduce in each 

generation 

0.9 

Mutation 
Probability 

The percentage of mutation 

1/ (number of variables) 

1/n 

Crossover 
distribution index 

Probability of similarity of 

the offspring to the parents 

20 

Mutation 
Distribution 
Index 

Probability of similarity of 

the offspring to the parents 

20 

Random Seed Random seed in the 

simulation 

1 

Table 1. The algorithm parameters can be modified in WallaceiX 
UI first tab. Full description of each setting can be obtained from 

Wallacei Primer [12]. 

In order to test the construction of a complex doubly curved 
prototype, which is made through the application of textile-
reinforced GRC shotcrete on an in-situ skeleton acting as the 
reinforcement system, a preliminary design idea was 
proposed by the students of the AAVS Istanbul 2019 
workshop to serve as a piece of urban furniture with seating 
areas. In order to successfully fabricate the proposed design 
idea, a set of design objectives were addressed to calibrate 
the initial designed form and adjust it for fabrication and 
construction purposes. Three design objectives were 
specified to regulate and optimize the initial form-finding 
process in three categories. These include structural 
optimization to minimize structural displacements, 
functional optimization to accommodate for suitable seating 
areas, and cost optimization to regulate the amount of 
material used for the in-situ skeleton. The objective of the 
experiment is to integrate the above stated objectives in the 
early stages of design in order to realize a full-scale prototype 
with the given design choices and constraints.  

The preliminary design idea was built algorithmically in 
Grasshopper 3D (visual scripting platform of Rhino3D) to 
establish the foundation of modelling the environment and 
subsequently the calculation of the fitness objectives (Figure 
2). The predefined domains extracted from the fabrication 
constraints, such as the required curvature of the surface for 
shotcrete process and the accessibility of the surface by the 
shotcrete operator, were assigned to the motion vector of the 
control points of the curves by which the overall morphology 
is generated. Accordingly, the genotype of the experiment 

was formed of 49 genes which modify the motion vectors of 
the control points of the phenotype. As the result, the size of 
the design space is calculated to be 9.6 * 1075. Three fitness 
objectives were defined to drive the optimization process to 
calibrate the preliminary design idea. They are: 

 Structural Optimization: Minimizing the structural 
displacement through FEA. 

 Functional Optimization: Creating a flat surface to serve 
as a seating area on the form. 

 Cost Optimization: Minimizing the length of the rods to be 
used for creating the in-situ skeleton. 

 

Figure 2. The genotype and the fitness objectives of the 
experiment. 

The first fitness objective was set to minimize the structural 
displacement of the global geometry through FEA (Finite 
Element Analysis). As the final prototype was set to be 
fabricated with textile-reinforced GRC shotcrete application 
on an in-situ skeleton, the structural model of the phenotype 
was built as a concrete shell with an approximately 40 mm. 
thickness. In order to calculate the structural displacement of 
the generated phenotypes, an FEA analysis was conducted 
through Karamba3d, a plugin for Grasshopper3d [8]. The 
numerical value of the calculated structural displacement (in 
centimeters) was set to be the first fitness objective of the 
optimization process (Figure 2).  

The second fitness objective was determined to evolve the 
phenotype towards developing flat surfaces to serve as 
seating areas. A set of control points on the surface of the 
geometry in a specified spatial domain of the phenotype was 
selected. The relative differences between the Z coordinates 
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of the selected points was calculated. The fitness objective 
was computed to minimize this calculated difference. 
Thereby, the points on the surface can be moved towards the 
same horizontal plane, and accordingly the phenotype will 
develop areas with a flat region suitable for seating (Figure 
2). 

The third fitness objective was assigned to drive the 
optimization process to the direction of evolving phenotypes 
to use as fewer metal rods as possible for the in-situ 
reinforcement system. The length of the bent rods (in meters) 
was computed as the third design objective to be minimized 
(Figure 2).  

Due to the complexity of the form, robotic rod bending 
technique was selected for fabricating the in-situ skeleton 
onto which textile reinforcement would be placed, followed 
by the application of GRC shotcrete. Therefore, the angle of 
the rods to be bent by the industrial robotic arm was an 
essential factor to consider in the design process. In the 
iterative process of evolutionary optimization, fitness 
objective two (developing flat areas) and fitness objective 
three (minimizing the length of rods) would alter the angle 
of the rods freely if no constraint had been put in place. In 
order to automate and streamline the robotic rod bending 
process, the genes that were controlling the control points of 
the constructive lines of the phenotype (Figure 2), as well as 
their location were restricted in a domain which could only 
produce desirable bending angles. The angles that were 
divisible by 15 (i.e. 15°, 30°, 45°, 60° etc.) were set as the 
possible options that the rods could bend and evolve. The 
algorithmic approach that was used to constrain the 
generated angles through the iterative optimization process 
falls outside of the domain of this paper and will be explained 
in the context of another publication thoroughly. 

Given the time constraints of the workshop, the optimization 
problem was limited to 30 individuals per generation with a 
total number of 100 generations (in total 3,000 generated 
solutions). The primary purpose of the conducted experiment 
was to calibrate the preliminary design proposed by the AA 
Istanbul visiting school 2019 students, structurally, 
functionally and materially, all independently from each 
other through a multi-objective optimization process.  

4 EXPERIMENT RESULT AND SELECTED OPTION 

By running the multi-objective evolutionary simulation for 
the main design problem, 3,000 genotypes/phenotypes with 
three fitness values per solution were produced. The visual 
analysis and recognition of the fitness performance of each 
individual, and the selection of the candidate solution for 
fabrication can be a highly inefficient process, subject to the 
visual preferences of the user. Therefore, analysis of the data 
associated with each phenotype plays a crucial role in the 
selection of the candidate solution to be further developed 
and fabricated.   

The evaluation of the multi-objective optimization process 
commenced with a set of analyses to examine how the 

evolutionary simulation addressed the fitness objectives and 
how successful it performed in its entirety. Figure 3 
illustrates the Parallel Coordinate Plot where each line 
represents an individual in the simulation and each axis is 
indicative of one objective.   

 

Figure 3. Parallel Coordinate Plot represents the overall 
performance of the optimization simulation. The graph was drawn 

by Wallacei Analytics Component. 

The color gradient from red to blue illustrates the progression 
from former to later generations. Wallacei X, the 
evolutionary solver used for the experiment presented in this 
paper (the evolutionary solver of Wallacei plugin) optimizes 
the fitness objectives by minimizing the inputted values 
through search and optimization based on evolutionary 
principles. By introducing variations in the genotype and 
random mutations, individuals with lower numerical fitness 
values are considered the fittest in each iteration of the 
evolutionary simulation. These individuals are selected for 
the next round of the iteration by variation through 
crossovers, mutations, and selection. Figure 4 demonstrates 
that the fitness objectives have been successfully optimized 
towards the end of the simulation, as can be depicted by the 
blue lines appearing towards the bottom section of the plot. 
It is understood that the evolutionary process could generate 
individuals with high performance in all three fitness 
objectives in comparison to the preliminary design idea 
proposed.  

Figure 4 compares the performance of the optimization run 
for all three fitness objectives independently and side by side. 
It comprises four graphs, Standard Deviation Graphs, Fitness 
Value Graphs, Standard Deviation Trendline (per 
generation) and Mean Fitness Value Trendline (per 
generation). Standard Deviation graphs illustrate that as the 
simulation advances, the population starts to improve for all 
fitness objectives. The progression of the SD graphs towards 
left is an indication of the mean fitness value’s decrease per 

generation, thereby illustrating that the overall fitness 
objective is optimized. This can be cross-checked with the 
Mean Value Trend Line graphs on the bottom right which 
demonstrate the decrease in the mean fitness values per 
generation and subsequently increase in fitness performance 
by generating optimized solutions. SD value trendlines 
describe the decrease in the value of standard deviation per 
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generation which shows that the population is converging 
towards the optimized solutions by the end of the simulation 
run. Fitness Values Graphs illustrate that the later 
generations, illustrated in blue, are accumulated towards the 
bottom of the graphs, since they have less numerical values, 
and therefore describe the success of the evolutionary 
simulation run for all fitness objectives.    

One of the challenges of the application of evolutionary 
principles through multi-objective optimization processes in 
design is the selection phase where a candidate or a set of 
candidate solutions need to be chosen for the subsequent 
stages of project development. In the context of this paper, 
one single solution was set to be selected to be further 
developed and fabricated accordingly.  

For the purpose of selecting a candidate solution amongst the 
population of generated options, the population was filtered 
down into a smaller solution set to examine methodically and 
select the candidate design to be further developed and 
constructed. The population of 3,000 individuals was filtered 
to a sub-set of 86 individuals. These individuals comprised 
Pareto front solutions of the entire simulation (81 
individuals), best performing individuals for each fitness 
objectives (3 individuals), an individual that perform as 
equal as possible for all three objectives (1 individual), and 
finally the individual that has the highest average rank 
amongst all population (1 individual) (For further description 
on the last two selection strategies, please refer to [12] and 
[13]). Due to the morphological similarities of these 
individuals, their comparison had to be accompanied by the 
data associated with each individual (Figure 5).  

Individual number 24 in generation 89 which is the solution 
with the highest average rank amongst all population was 
selected to be further developed and fabricated (Figure 6). 
Table 2 shows the information of 10 out of 86 chosen 
individuals in detail. The selected individual, highlighted in 
orange, is amongst the highest performing individuals in the 
population. The diamond charts plotted next to each 
individual in the table demonstrate how well the individual 
performs for each fitness objective. In the diamond chart, 
each fitness objective is plotted on one axis where the center 
indicates best performance and the edges designate worst 
performance respectively. The selected induvial is ranked 
high for all objectives equally. 

5 POST-RATIONALIZATION FOR ROBOTIC ROD 
BENDING 

There were several post-rationalization adjustments that 
required to be applied to the selected individual to streamline 

the fabrication process through automated robotic rod 
bending, such as the application of longitudinal rods, the 
calculation of spring-back in the rods, and a computational 
process to include the spring-back values in the algorithm in 
order to reach the target angles without tolerances.  

 

 

 

Figure 4. The graphs were obtained from the second tab of 
WallaceiX user interface.  

 

  

175



 

Figure 5. The subset of the population that was exported from WallaceiX. All the solutions are laid out on a grid containing the data 
associated with each individual. All solutions are compared morphologically and numerically side by side. The figure shows only 18 out of 

81 exported individuals.

 

 

Figure 6. The selected individual with associated data pertaining 
to three fitness criteria. 

 

Firstly, a set of physical experiments have been conducted in 
order to test the spring-back of rods with a fixed diameter, 6 
mm., fixed length, 2,000 mm., and a fixed jig radius, X mm. 
The angles that have been tested for spring-back are 
multiples of 15 (i.e. 15°, 30°, 45°, 60° etc.) (See Section 3). 
These experiments have been carried out iteratively to 
accurately record the resulting bending angles against the 
target angles. It was observed that the deviation of each 
bending angle due to spring-back was approximately 12%. 
Hence, a linear regression analysis, which is a supervised 
machine learning algorithm, was opted for in order to derive 
a linear function between the resulting bending angles and 
target angles. The linear regression analysis was carried out 
in Lunchbox, a plugin for Grasshopper3d [22].   

Subsequently, robotic control for rod bending was developed 
by using a general robotic control software, Robots for 
Grasshopper [18], and Rhino 6. The computational process 
was streamlined with all the constraints related to rod 
qualities, namely the working area, the final bending shape 
of the rod, and spring-back values. A fully integrated 
algorithm was developed, defining every step, from the rod 
division in sets, order of manufacturing and bending angles. 
Every rod was then identified by the algorithm and this 
information was used for the correct position and angle of 
each rod.  
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Table 2. Detailed comparison of 10 selected individuals. 

6 DISCUSSION 

The research presented in this paper demonstrates the 
advantages of the application of an adaptable computational 
model, driven by an evolutionary multi-objective 
optimization process, to generate morphological variation in 
response to multiple design objectives. The success of the 
implemented method in rationalizing a free-form design idea 
into a manufacturable prototype proves to be an 
advantageous approach for solving complex design 
problems. Contrary to the conventional design process of 
improving a single design solution, the proposed method 
utilizes an iterative process of developing a population of 
design candidates, thereby allowing for greater 
morphological variation within the specific design domain.  

The adoption of fabrication-related and structural 
parameters, coupled with the geometrical freedom and 
constraints of a selected research agenda, in this case robotic 
rod bending, has the potential to address multiple 
performance criteria embedded in the high level of 
complexity of various design processes. Limitations related 
to the selected fabrication methods are not within the scope 
of this paper and will be further described in a separate 
publication. 

 

Figure 7. In-situ reinforcement system built with robotic rod 
bending, and the final prototype. 

The successful implementation of multi-objective 
optimization to address geometrical, structural, and material-
oriented constraints simultaneously as well as independently 
in the optimization process can be streamlined in various 
stages of design, from early design exploration as 
demonstrated in this paper through to fabrication and 
construction practices. This optimization method can be 
further extended and utilized across a multitude of scales in 
order to save energy, materials, and cost in architectural 
projects.  

The capacity to evolve a population of design candidates that 
vary in morphological diversity and performance is essential 
for design problems that cannot have a single optimal 
solution. This is particularly important when the design 
problem poses multiple conflicting fitness objectives, 
thereby presenting the necessity for a population of variable 
design solutions rather than a single individual or group of 
individuals. The degree of variation generated through the 
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employment of multi-objective optimization allows for 
greater flexibility when addressing the fitness objectives. 
Nevertheless, infinite variation serves little to no purpose, 
and informed design decisions need to be made when 
analyzing and selecting the final set of design candidates. 
Hence, coupling the geometry and data simultaneously 
during the analysis and evaluation stages of multi-objective 
optimization is a key step for attaining objectivity in this 
design methodology. Through the understanding of data that 
accompanies the geometry, the evolved solution set can 
become a robust and powerful alternative to a single, 
preference-based approach.  
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