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Abstract

Distributed deep learning (DDL) systems strongly depend on network per-
formance. Current electronic packet switched (EPS) network architectures
and technologies suffer from variable diameter topologies, low-bisection band-
width and over-subscription affecting the completion time of communication
and collective operations.

We introduce a near-exascale, full-bisection bandwidth, all-to-all, single-
hop, all-optical network architecture with nanosecond reconfiguration called
RAMP, which supports large-scale distributed and parallel computing sys-
tems (12.8 Tbps per node for up to 65,536 nodes).

For the first time, a custom RAMP-x MPI strategy and a network transcoder
are proposed to run MPI collective operations across the optical circuit
switched (OCS) network in a schedule-less and contention-less manner. RAMP
achieves 7.6-171× speed-up in completion time across all MPI operations
compared to realistic EPS and OCS counterparts. It can also deliver a 1.3-
16× and 7.8-58× reduction in Megatron and DLRM training time respec-
tively while offering 38-47× and 6.4-26.5× improvement in energy consump-
tion and cost respectively.

Keywords:

1. Introduction

In recent years, there has been tremendous growth in distributed deep
learning (DDL) Amodei and Hernandez (2018). As the computational com-
plexity of DDL is increasing at a faster rate than hardware improvements,
the performance requirement needs to be matched by distributing such jobs
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to more nodes. As all of these compute resources need to be interconnected,
a significant portion of the performance-scaling responsibilities resides in the
network. It has been argued Khani et al. (2021) Oyama et al. (2021) that
Tbps communication between compute nodes is required to maximise the
operational throughput and accommodate future applications. As most of
the communications are dominated by MPI (Message Passing Interface) col-
lective operations Clarke et al. (1994) Chunduri et al. (2018) (sec.2.3), the
combination of higher node capacity and better collective communication
strategies could lead to lower idling time and higher operational throughput,
resulting in lower neural network model training times.

Current HPC systems (e.g. NVIDIA Corporation (2021a)) used for DDL
training use electronic packet switching (EPS) with Tbps communication
(e.g. 2.4Tbps per GPU NVIDIA Corporation. (2020)) at the intra-system (8-
16 GPUs) NVIDIA Corporation (2021a) level and are limited to communicate
at hundreds of Gbps regime (e.g. 200Gbps per GPU NVIDIA Corporation.
(2020)) for the inter-rack/inter-system level, leading to high intra-to-inter
system oversubscription (e.g. 12:1 NVIDIA Corporation. (2020)). This is
due to network cost and power consumption constraints Khani et al. (2021);
Ballani et al. (2020). The network over-subscription forces the use of Ring-
based MPI collective operations NVIDIA Corporation: Optimized primitives
for inter-GPU communication. (2022) that take full advantage of the available
bandwidth but, at large scale, they lead to significant network overheads and
slow down the training time of large models. For these reasons, it is critical
to co-design novel Tbps all-to-all network architectures together with MPI
strategies. This is required to achieve better application performances and
meet future High-Performance Computing (HPC) and Data Center Network
(DCN) job requirements.

Motivated by these observations, we propose RAMP, a large-scale Deep
Neural Network (DNN) training system using a co-optimised nanosecond re-
configurable Optical Circuit Switching (OCS)-based network, MPI strategies
and network scheduling. The following are the novel aspects of this paper:

1. The co-design of four aspects: optical/opto-electronic network tech-
nologies (physical layer), network architecture (network-level), MPI-x
communication strategy (kernel-level) and network transcoder (system-
level).

2. Network level : RAMP OCS network architecture that supports all-to-
all, single hop, full-bisection bandwidth (not possible with prior archi-
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tectures) communication with ramped up (increased) end-node capacity
(12.8 Tbps), scale (65,536 nodes) and system capacity (0.84 Ebps).

3. Kernel level : We introduce custom MPI RAMP-x strategies (x =
gather, scatter, reduce, broadcast, etc.) for the proposed OCS-architecture
and compare it against Ring-x, Torus-x, Hierarchical-x strategies. The
strategies can be applied to any fully-connected network.

4. System level : We develop a novel system-level Network Transcoder that
maps all MPI collective operations in a schedule-less and contention-
less manner to optical network configurations.

5. We analyse the scalability, cost, power consumption and computational
speed-up of the proposed system/algorithms and compare it with EPS
counterparts.

6. We assess Megatron Shoeybi et al. (2019) and DLRM training times
with the RAMP system for different target losses and model sizes and
compare them with EPS and OCS baselines.

We perform extensive simulations to compare RAMP with a plethora of
EPS and OCS network topologies and technologies at the network level, MPI
collective operations and application level with two representative large-scale
distributed neural network models, Megatron and DLRM. We show that the
co-design of network technology and architecture of RAMP leads to a 38-
42× reduction in energy consumption and up to 12.4× reduction in cost per
bit with respect to current EPS systems. RAMP’s architecture offers both
significantly higher node-to-node I/O capacity and full bisection bandwidth
with inherent broadcast and nanosecond topology reconfiguration capability.
Compared to current electronic switched systems, the RAMP system achieves
an improvement from a factor of 7.6× (for reduce-scatter) to 171× (for all-to-
all) in completion times across different MPI operations. The values reflect
the improvement against the best-performing strategy for the best EPS and
OCS topologies at maximum scale using a 1GB message size. We assess the
individual contributions of network architectures, network bandwidth and
MPI operations on MPI collective completion times (in sec.8). The proposed
system is able to achieve a 1.01-16.7× speed-up and 7.8-58× faster iteration
time in Megatron and DLRM DDL training time, respectively, as well as
23.8-85 percentage points decrease in communication time contribution when
compared to the OCS and EPS baselines for maximum scalability systems.
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2. Background and motivation

Network and interconnect technologies are limiting factors for the perfor-
mance of High-Performance Computing (HPC) systems. Recent benchmarks
showed that only 5% of peak compute performance of HPC systems can be
achieved on practical workloads and network overhead represents one of the
main bottlenecks Zhu et al. (2021); Hemsoth (2016). Considering that im-
provements in hardware and application requirements are growing at a faster
pace than interconnect technologies Wiggers (2021); Ballani et al. (2020), the
network overhead becomes the significant bottleneck in the system.
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Figure 1: Network overhead of different large-scale Deep Neural Networks with a different
number of devices. Figure taken from Wang et al. (2022)

Previous research has shown that training large-scale deep neural network
(DNN) models lead to significant network overhead (40-60% even for using
as few as 128 nodes) Wang et al. (2022), Fig.1. The demand for bigger and
more predictive models is increasing at an exponential rate; the number of
neural network parameters is doubling every 3-6 months. This forces the use
of more workers and, in turn, leads to higher network overheads on training
times. Two key factors that affect the communication/network overhead are
the DDL partitioning strategy (sec.2.1) and the DDL scaling method (sec.2.2)
used.

At the core of these approaches are the MPI collective operations, which
are a set of operations needed to perform data processing across multiple de-
vices sec.2.3. The network overheads are caused by the use of over-subscribed
and low-bandwidth EPS networks that also force the use of sub-optimal
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strategies across a range of MPI collective operations (e.g all-gather, all-
to-all). Therefore, the network bandwidth, network connectivity and MPI
strategies of current systems must significantly improve in order to unlock
the scalability and performance of DDL systems.

Limitations of current EPS systems and proposed OCS architectures will
be explained in sec.2.4 and sec.2.5 respectively.

2.1. DDL partitioning methods

There are three main methods for partitioning a DL job: Data Parallelism
(DP), Model Parallelism (MP) and Hybrid Parallelism (HP), which is a com-
bination of DP and MP. DP consists of replicating the same model on multi-
ple workers, where each worker processes a different set of data (local batch).
In this way, the overall system can process a larger global batch while keep-
ing the iteration time of each worker constant. At the end of each training
step, the workers must share their weight updates (gradients). Using larger
batch sizes reduces the number of iterations required to converge, reducing
the overall training time.
MP consists of partitioning the DNN model between workers who act on
the same batch of data. This requires multiple activation/gradient commu-
nications between workers within a training iteration. The partitioned DNN
model generates multiple different local ML computations for each worker
(partitioned local computational graph). When dealing with large models,
MP is required as it reduces the memory footprint for a single worker.

2.2. Bandwidth Requirements for DDL applications

There are two main ways to scale DDL jobs: weak and strong scaling.
Weak scaling aims at increasing the throughput per training iteration in
terms of samples/sec by increasing the number of workers. This is mainly
performed using Data Parallelism (DP), which ensures a constant compu-
tation and communication time with scaling. These properties make it the
most commonly chosen distribution technique, as it does not require an in-
crease in node interconnect bandwidth at scale as the network overhead is
approximately constant with the number of workers. This means that, when
keeping batch size per worker large, Gbps per second communication might
suffice to handle the partitioning, making the weak scaling approach a feasi-
ble option for current oversubscribed EPS HPC/DDL systems. However, this
approach cannot scale indefinitely as the number of iterations to accuracy
does not always decrease with the increase in global batch size Shallue et al.
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(2018), leading to inefficient training. In addition, the memory footprint
of the model does not decrease with scale, making the technique unfeasible
to be used alone for large models, which are the main drive for application
growth.
Strong scaling is decreasing the overall time per iteration. It is mostly
achieved through Model Parallelism (MP). Achieving strong scaling is fun-
damental for the development of large models as it is capable of reducing the
memory footprint of DNNs Khani et al. (2021); Wang et al. (2022). Achiev-
ing strong scaling is challenging because increasing the number of workers
working on a specific batch leads to a decrease in computation time, which
in turn, leads to more frequent communication steps involving the transmis-
sion of constant/increasing messages. This requires a super-linear increase
of network bandwidth (multiple Tbps per node) and low latency communi-
cation. For this reason, current EPS systems can efficiently support strong
scaling only within a single node that hosts 8-16 devices (without incurring
significant network overhead).

MPI operation

All-Reduce, All-to-All, All-Gather, Reduce-Scatter, Broadcast, Scatter, Gather, Reduce, Barrier

COMM Ops. COMM Ops. COMM Ops. COMM Ops.

Step 1 Step 2 Step 3 Step n

MPI (Message Passing Interface) Completion time

ML Computation ML Computation

Distributed Deep Learning Workflow

ML Computation

100,000 of iterations

COMM Communication time Ops. Operation time

Figure 2: Example of DDL process, involving computation and MPI operations.

2.3. MPI operations for DDL
Both scaling approaches for distributed training rely on MPI collective

operations. MPI operations correspond to a series of communication steps
between multiple workers followed by local operations with the goal of per-
forming a distributed task. Depending on the strategy selected (e.g. Ring-
based strategies), it is possible to (partly) overlap computation and commu-
nication to decrease completion time. A DDL workload, as shown in Fig.2,
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can be viewed as a sequence of local ML computations (local partitioned
computational graph) and MPI operations between the workers to share in-
formation. Overlap between MPI communication and computation, when
application logic permits, leads to higher operational efficiency, however, for
strong scaling scenarios this is unlikely. For example, in most MP cases, there
is data dependency between subsequent operations (layers). In weak scaling,
the weight update information sharing is represented by an all-reduce oper-
ation between workers. In strong scaling, different models require different
types of activation sharing depending on their architecture and partitioning
strategy, leading to different MPI operations for different models. The most
widely used are all-reduce (e.g. Megatron Shoeybi et al. (2019)), all-to-all
(e.g DLRM Naumov et al. (2019), Switch Transformer Fedus et al. (2021))
and all-gather (MoE Jacobs et al. (1991)). Different collective operations
have different requirements on the network. Operations such as all-reduce
and all-gather, allow effective communication on oversubscribed and limited
connectivity systems (sec.8.2). On the other hand, data-intensive operations
such as all-to-all benefit from full bandwidth connectivity between all de-
vices (sec.8.2). For this reason, high and full-capacity connectivity between
all device pairs is needed to minimize collective completion times.

2.4. Limitation of EPS systems

One possible solution to achieve strong scaling and meet the network re-
quirements of fast-growing applications consists in increasing the capacity of
EPS systems. However, this approach leads to serious challenges. Increas-
ing the capacity of EPS in terms of I/O bandwidth and transistor density
is becoming hard to sustain due to physical limitationsBallani et al. (2020).
It has been argued that the cost and power of switches are unlikely to stay
constant above two generations, resulting in an increase in cost and power
and eventually hitting a wall in capacity with standard EPS Khani et al.
(2021). Higher capacity switches may still be created by hierarchical/Clos
construction of smaller ASICs, at the expense of cost, power and complexity
Ballani et al. (2020). Another option is creating parallel networks by repli-
cating copies of EPS systems to increase the overall bandwidth. However,
this type of solution leads to unsustainable power and cost as shown in sec-
tion 4.3. To allow higher capacity systems, limited connectivity networks,
such as Toruses and Meshes (e.g. Google TPU Pod Tao Wang (2021)), have
been proposed. However, these approaches lead to high-diameter topologies
and inefficient node bandwidth and resource utilisation.
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Figure 3: Diagram representing the process to accommodate an OCS request, with trans-
mission example by the different transceivers of node 0 for the described logical circuit.

2.5. OCS for Distributed Deep Learning (DDL) systems

Optical interconnects are capable of achieving high bandwidth low latency
communication at scale and are a promising technology to meet the future
requirements for DDL and HPC jobs.

Packet switching following one-way reservation (in the form of EPS) is
the underlying transportation method used in DCNs and HPCs. This is due
to the fact that it allows the creation of highly scalable networks, distributes
its forwarding rules to each node, handles diverse flows due to variable packet
size structures and has the ability to queue and manage flows along the path
Zervas and Benjamin (2019). However, packet-switched networks require
complex control methods such as admission and congestion, buffer/queue
management and complex addressing Zervas and Benjamin (2019). While
these can be handled by electronic chips such as ASICs in EPS systems
(with the limitations described in sec.2.4, the equivalent is not possible in
optical networks. This is due to the fact that optical technologies are not
able to replicate such functionalities due to limited and rigid data processing
capabilities (limited optical computing performance Zervas and Benjamin
(2019)) and storage (lack of high-capacity and high-bandwidth enough pho-
tonic memories Alexoudi et al. (2020)) Zervas and Benjamin (2019). For
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these reasons, Optical Packet Switching (OPS) cannot be considered a fea-
sible solution for HPC and DCN applications. Circuit switching, which was
widely used in electronic networks before EPS Benes (1965), can deliver
guaranteed and deterministic traffic without the need for any of the packet-
switching complex methods Zervas and Benjamin (2019); Benjamin et al.
(2020), making it compatible with optical technologies.

Optical circuit switching (OCS) has been proposed as a possible replace-
ment for EPS networks for DCN and HPC systems. This type of system
decouples the data to the control plane and it could lead to a significant re-
duction in cost and energy consumption while being capable to scale to high
bandwidth and low deterministic latency.

In OCS, the control and scheduling are separate from the data, leading
to different operations compared to EPS networks. A flowchart describing
the transmission for OCS systems is shown in Fig.3. As for EPS, the 1)
application is placed onto a subset of nodes of the physical graph and during
its lifetime will generate 2) communication requests between one or multiple
workers. However, these requests are handled differently, as they are first
converted into 3) logical circuits. The logical circuits contain all the sources
and destinations to which the requesting node is involved and represent the
overall flow of information in discrete time periods. The logical circuits gen-
erate a set of 4) source-destination requests to perform the communication.
These set of point-to-point requests are sent to a 5) network controller which
allocates the network resources in a synchronous manner. All devices have
to transmit synchronously, in a discrete period of time called timeslots. The
controller allocates the transceivers, path, wavelength and timeslots to allow
communication (5.a). Once the resources are allocated, the setup instruc-
tions are sent to the source and destination and their physical system 6.a) is
to be reconfigured. The time taken for slots and resource allocation by the
network controller (5.a) can be pipelined and does not affect the throughput
of the communication, as different data for previously scheduled requests are
transmitted in parallel. The time taken for the hardware to configure to allow
the transmission is called hardware reconfiguration/setup time or switching
time (6.a). During hardware setup no data can be transmitted, effectively
limiting the throughput. An example of how the communication looks like
for multiple nodes is shown as 6.b) in Fig.3, where the timeslots, path (des-
tinations) and wavelength have been allocated for different transceivers for
node 0 for the example logical circuit. The green shaded region represents
the hardware reconfiguration time and the white region is the payload trans-
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mission time. It needs to be noted that, due to the discrete and synchronous
nature of OCS, the overall timeslot might not be fully utilised for transmis-
sion. The total number of concurrent transfers per path in an optical network
depends on the total amount of wavelengths.

In spite of the multiple advantages that OCS brings, there are significant
challenges that prevent the implementation and adoption of these systems
for large-scale DCN and HPC.

1. One of the main challenges is the control plane, as it is now separate
from the data. Fast large-scale scheduling with low latency and high
throughput for the traffic is challenging at a large scale, leading to
multiple proposals to use schedule-less systems Ballani et al. (2020).
However, some promising results have been shown in the development
of large-scale scheduling systems Benjamin et al. (2020).

2. Fast hardware setup time is required to allow efficient data transmis-
sion. In fact, the timeslot duration and minimum message size are
directly dependent on it. The timeslot duration needs to be signifi-
cantly larger (> 10×) than the circuit reconfiguration time to limit
the overhead. This affects the utilisation, latency and goodput of the
network.

3. Synchronisation of transmission for all devices is required to avoid con-
tention. Recently proposed systems have been shown to be capable of
synchronising thousands of devices for OCS Inggs et al. (2015).

4. Change in paradigm to existing networks is required. Implementing
OCS systems would require a significant change in the communication
stack of existing systems, by removing all communication protocols and
switch-centric network representation.

However, due to the previously discussed limitations of EPS, OCS systems
need to be explored and these challenges resolved to meet future HPC and
DCN application requirements.

2.6. Previous OCS limitations

Recently, there have been other OCS network architectures proposed for
HPCs and DCNs. However, none of the previously proposed systems is capa-
ble of meeting all the requirements necessary for HPC and DDL applications.
Between these systems, two architectures based on 3D-MEMS/patch panels
OCS have been proposed: TopoOpt Wang et al. (2022) and SiP-ML OCS
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Khani et al. (2021). These topologies might allow full-bandwidth connectiv-
ity between nodes at large scale (1024 and 384 directly connected nodes).
However, they are affected by long circuit reconfiguration times, defined by
the switching technologies (>10ms and >s for 3D-MEMS and patch panels
respectively). These properties make in-application circuit reconfiguration
unfeasible as it would lead to significant overhead and they require static
circuit pre-allocation Wang et al. (2022). For this reason, for each logical
circuit in the application life span, a physical path should be allocated. This
limits the effective bandwidth available at any time between device pairs
and limits the number of devices that a node can be connected to (com-
munication degree). This might lead to low bandwidth communication and
high-diameter logical and physical topologies, which lead to inefficiencies.
To mitigate these problems for DDL applications, Khani et al. (2021); Wang
et al. (2022) developed custom partitioning methods which consider these
physical limitations. In Wang et al. (2022), it has been argued the need for
fast circuit reconfiguration networks for DDL applications.

Fast circuit reconfiguration OCS systems have been previously proposed
for DCN and HPC applications. For HPC and DDL applications SiP-ML
Ring Khani et al. (2021) and TeraRack Khani et al. (2020) have been pro-
posed. These systems use Micro Ring Resonators (MRRs) which lead to
∼25µs reconfiguration delay, which could allow in-application dynamic cir-
cuit reconfiguration while allowing high-capacity node-to-node connectivity.
However, both of these systems are limited by scale and connectivity. In
fact, both of these topologies are realised through a wavelength selection add
and drop ring connectivity, which limits the number of nodes available in the
system to the number of available wavelengths available for the transceiver
(namely 256 Khani et al. (2020)). In addition due to the optical ring’s physi-
cal topology (which allows communication with all nodes in the ring without
passing through the neighbouring compute hops), the number of optical hops
and network components between node pairs increases linearly with the di-
ameter between node pairs, significantly varying the signal quality between
source-destination pairs. The signal quality effectively determines the con-
nectivity of the system, limiting the connectivity of a node to its 16 closest
neighbours. Due to this property, all-to-all connectivity is not achievable and
complex multi-stage control and routing need to be implemented. In addi-
tion, these topologies are largely affected by a single point of failure, where if
a single hop is malfunctioning all communication passing through it is lost.

For DCN, multiple architectures which allowed large circuit reconfigura-
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tion at high scalability have been proposed. Between these, PULSE Benjamin
et al. (2020) and Sirius Ballani et al. (2020) are OCS systems which allow ns-
speed switching and large scalability (>10,000 nodes for PULSE, not specified
for Sirius). While these systems meet the requirements in terms of scalability
and reconfiguration, they are limited by node-pair capacity. In fact in these
networks, each node pair is connected by a single transceiver, which limits the
node-to-node capacity. In addition, these networks suffer from a single point
of failure, where a transceiver or network component malfunctioning leads to
one or multiple nodes being unable to communicate to racks and/or clusters.
Moreover, the single transceiver connectivity for a rack of devices limits the
devices each node can communicate with at the same time. In these types
of networks, another main challenge is scheduling. PULSE demonstrated a
promising scheduler that could handle thousands of devices while being reli-
able to skewed and varied traffic Benjamin et al. (2020), but it is not capable
to manage deterministic, long-lasting patterns such as the ones for collec-
tive operations. Sirius, on the other hand, uses a scheduless round-robin
approach for communication Ballani et al. (2020), with limited transmission
epoch duration, which makes it unsuitable for skewed and large flow traffic.

In addition, the MPI collective operation strategies considered by these
OCS architectures (Wang et al. (2022); Khani et al. (2021)) have been de-
veloped for EPS systems without taking into consideration the network ar-
chitecture characteristics. MPI collective operations for OCS systems should
take into consideration the physical properties of the network (e.g. path,
wavelength) such that the number of algorithmic steps and completion time
is minimised while avoiding contention. This also synchronous scheduling
and communication to take advantage of the deterministic latency proper-
ties. These characteristics are not present in EPS systems, as each packet can
be sent to any destination at any time, without pre-determined circuits and
latency (which both depend on the switch buffering and forwarding) Zervas
and Benjamin (2019).

3. RAMP Architecture

We introduce the RAMP architecture — the first large-scale, high-capacity,
full bandwidth architecture for DCN and HPC/DDL systems. It provides

1. High-capacity communication between node pairs (>12.8Tbps), mak-
ing it suitable for HPC and DDL application requirements.
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2. High scalability (>4096 nodes). Capable of handling increasingly com-
plex workloads.

3. Nanosecond level circuit reconfiguration through wavelength switch-
ing and broadcast-and-select space switching. The system takes ad-
vantage of Time-Division Multiplexing (TDM), Wavelength-Division
Multiplexing (WDM) and Space-Division Multiplexing (WDM). This
allows each node to communicate to any other node with virtually no
communication degree constraints; allows using collective operations
with logical graphs with significantly lower diameters without sacrific-
ing bandwidth Wang et al. (2022); allows the proposed architecture to
handle fast-changing circuits which are required for DCN traffic.

4. Port-level all-to-all connectivity and re-arrangeable or strictly non-
blocking communication. Any transceiver can transmit/receive infor-
mation to/from any node. Communication blocking probability de-
pends on the selection of the sub-network only.

5. Fully passive interconnect system. Removing complexity from the core
of the network and moving it to the edge.

6. Unrestricted multi-node communication and reliability, without any
single point of failure. Every node can talk to every other node using
multiple possible paths, and any failure for transceivers/network com-
ponents still allows all-to-all communication just at a slightly decreased
capacity.

These properties make RAMP the first architecture suitable for both HPC
and DCN systems.
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3.1. RAMP Data Plane

The RAMP data plane consists of parallel subnets arranged in communica-
tion groups and transceivers. There are x communication groups, where each
group contains J racks. The maximum number of racks per communication
group is J = x. Each rack contains Λ devices or nodes, where Λ is the total
number of available wavelength channels. Hence, the maximum number of
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nodes in one communication group is N = Λx. Each node is equipped with x
transceiver groups, each containing b transceivers sharing the same tunable
light source and the same control instruction but different spatial planes.
An increase in the b parameter leads to an increase in node capacity for the
same control complexity and reduced energy per bit at the cost of a larger
number of components. Further explanation in sec.4.2. Each transmitter is
connected to a 1 : x splitter, creating x possible paths per transmitter. Each
path is selected by activating the Semiconductor Optical Amplifier (SOA)
Alkharsan et al. (2022) attached to each port of the 1 : x splitter and con-
nected to a different sub-net and therefore, a different communication group.
In this way, each transmitter is able to communicate with every communi-
cation group. Each receiver is connected to a x : 1 combiner so that each
receiver can receive information from every communication group. Under the
proposed network configuration, the ith transmitter of any node can send in-
formation to the ith receiver of every node, enabling all-to-all transceiver-wise
communication. The topology requires a total of bx3 sub-nets, i.e. a sub-net
for a communication group pair per transceiver. Each node is equipped with
a single NIC handling all transceivers.

As shown in Table II in Fig. 3, the RAMP architecture scales up to Λx2

nodes, providing a total capacity of bBΛx2, where B is the effective line rate
of each transceiver. The bisection bandwidth is ΛJx3/2, the total number
of fibres is 2bJx3 (same as for the PULSE architecture 2x4 Benjamin et al.
(2020)), and the total number of physical links required is 2Jx2 (compared
to 2x3 of PULSE Benjamin et al. (2020)), as paths can be grouped/ribboned
by racks and source-destination communication groups. Source-destination
selection and circuit reconfiguration are performed through path/transceiver,
wavelength and time-slot mapping.

There are three possible choices for the subnet: (i) a simple star coupler
with N ports (Broadcast and select, B&S), (ii) J parallel Λ × Λ arrayed
waveguide gratings (AWGRs) followed by Λ parallel J×J star couplers mix-
ing information between same ports of each AWGRs (Route and Broadcast,
R&B) or (iii) the same AWGRs followed by SOA based J×J crossbars switch
(Route and Switch, R&S).
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Figure 4: Example of a many-to-many communication pattern across different time slots
between nodes of a) same source-destination communication group pairs and b) different
source-destination communication group pairs. Showcase the WDM, TDM and SDM (for
different communication groups) principles of RAMP). The colour of the line represents
the wavelength used to communicate at each time slot (1 & 2). The color of the line
used at the transmission side for each timeslot matches the colour of the destination node
and receiver line. This way the colour/wavelength maps source and destination for each
node-pair (and transceiver) at any timeslot.

Figures Fig.4 and Fig.5 show how the RAMP architecture handles dif-
ferent communication patterns. It needs to be noticed that in both Figures
the considered configuration of the RAMP architecture is a fixed receiver
Broadcast & Select (B&S).

In Fig.4 the many-to-many communication pattern in multiple time-slots
across multiple sources and destinations within a) single source-destination
communication groups pair and b) multiple communication groups are shown.
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For Fig.4.a) communication between multiple source nodes (1, λ, Λ) of rack
j and communication group c and destination nodes (1, γ,Λ) of rack k and
communication group d by using the tth transceiver. At the transmission
side each node has a tunable transmitter followed by a 1 : x space switch
(implemented by an SOA gated splitter), whereas at the reception side each
receiver is preceded by a filtered (single wavelength) x : 1 switch (SOA gated
coupler), making it fixed receiver. Each node in a rack receives at different
wavelengths represented in both Fig.4 and Fig.5 by receiving node, receiver
and filter colour. Between the communication group pairs (c− d) for the tth

transceiver exists the single subnet: c, d, t which allows communication be-
tween all transmitter t of all source nodes in communication group c and all
destination nodes of communication group d. To perform the communication
and transmit through the correct subnet the correct port of the switches need
to be selected at both the transmission and reception side. At transmission,
the switch port corresponds to the destination communication group (port
d is used to communicate to the dth communication group) and at recep-
tion the source destination group. For both Fig.4 and Fig.5, the colour of
the transmission switch port and subnet matches the one of the destinations
communication group, and similarly, the colour of the receiving switch port
matches one of the source communication groups which the ports receive
from.

At each Time Slot, each node set its destination by selecting its receiving
wavelength, as shown at the transmitting side of Fig.4.a) where the trans-
mitting node (c, j, λ) sends info to node (d, k, γ) and (d, k, 1) by choosing
wavelength γ and 1 for time slots 1 and 2 respectively. In each subnet, due
to the broadcast principle, each active wavelength is available at each out-
put port (represented by the rainbow colour in Fig.4 and Fig.5), the correct
for each destination is recovered by the filter before each port of the 1 : x
switch. For both time slots as the communication group pair of the source
and destination, nodes is constant, the ports d and c of the transmission and
reception side switches respectively are selected. In a similar fashion, node
(d, k, γ) receives from nodes (c, j, λ) and (c, j, 1) in different time slots have
been tuned their transmitter at the γth wavelength.

Fig.4.b) shows a similar many-to-many pattern between different nodes
(1, λ,Λ for tx and 1, γ,Λ for rx) in different racks (i, j, k for tx and l,m, n for
rx) of different communication groups (1, c, x for tx and 1, d, x for rx). Each
pair of communication groups is connected by a subnet, accessed through
a specific source and destination switch port selection. As in Fig.4.a) the
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node selection in a rack is performed through wavelength selection for ev-
ery time slot whereas different communication groups are accessed by gating
different ports of the transmission and reception side switch. In the figure,
node (c, j, λ) communicates to nodes (d,m, γ) and (1, l, 1) in different time
slots by selecting wavelengths 1, γ and gating the ports d, 1 and c, c for trans-
mission and reception side switches respectively in each time slot. Different
switch port pairs selection at each time slot lead to different communication
group communication allowing effective port-level all-to-all communication
with fast reconfiguration.
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Figure 5: Example a) one-to-many, b) many-to-one and c) one-to-one communication
patterns at each time slot between nodes with same source-destination communication
group pairs. It shows the WDM, TDM and SDM (across multiple transceivers) principles
of RAMP, therefore allowing high bandwidth (up to full capacity) communication between
one or multiple node-pairs or sets.

Fig.5 shows different communication patterns per same time-slot: a) one-
to-many, b) many-to-one and c) one-to-one. For all the communication pat-
terns Fig.5 depicts the communication between multiple source nodes (1, λ,
Λ) of rack j and communication group c and destination nodes (1, γ,Λ) of
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rack k and communication group d by using multiple transceivers.
Fig.5.a) shows the one-to-many communication pattern from the source

node (c, j, λ) to all the nodes of communication group d rack k. Each
transceiver of the source node transmits in the same time slot to differ-
ent destinations by selecting different wavelengths. If the destinations would
have been in different communication groups different transmission and des-
tination switch ports would have been selected for each time slot, similarly
to Fig.5.b).

Fig.5.b) shows the many-to-one communication pattern, where the desti-
nation node (d, k, γ) receives at the same time from multiple destinations by
using different transceivers.

Fig.5.c) shows multiple one-to-one communication patterns between dif-
ferent source pair destinations. In this figure, all transmitters of each source
node are used to communicate to all receivers of the same destination node,
such that full-capacity communication between node pairs is used at any
time slot. It needs to be noticed that also only a subset o transceivers can
be used between node pairs depending on the application requirements.

The described principles can be used at the same time to adapt the net-
work requests and they are extensively used together for collective operations.
It needs to be noted that in both Fig.4 and Fig.5 rack selection has not been
performed. This is due to the fact that the signal between nodes with the
same node number of different racks is coupled together, broadcasting the
same information to all racks. This effectively creates contention in each
subnet, however, the multiple paths between each source-destination pair al-
low communication to be re-arrangeably non-blocking, and when correctly
scheduled up to full bandwidth.

It needs to be noted that both in Fig. 3, Fig. 4 and Fig.5 we show the
architecture with b = 1, so the case when a transceiver group is equivalent
to one transceiver.

It is possible to create an equivalent Electrical Circuit Switched (ECS)
RAMP architecture by replacing each subnetwork with a ΛJ ×ΛJ electrical
switches and increasing the total amount of transceivers to bx2JΛ(1 + x).
However, this approach would require the use of high-capacity switches,
it would incur electro-optical conversion which would increase energy con-
sumption and increase the cost (number of transceivers and more expensive
switches) and inefficiencies as only a portion of the transceivers could be ac-
tive at all times. These characteristics make an electrical version of RAMP
over-provisioned and cost-ineffective. Transforming the ECS to EPS switches
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and transceivers would further increase costs and power consumption (ex-
plained in sec.2.4).

3.2. Dynamic Traffic

While the focus of this work is on the deterministic traffic of MPI col-
lective operations and the co-design of architecture and collective strategies
(described in sec.6), it is important to note that different types of traffic
can also be handled. In fact, dynamic traffic is prevalent in DCN and HPC
applications and secondary for DDL workloads. The RAMP architecture
has been designed such that it is compatible with previously proposed OCS
scheduling approaches such that the dynamic nanosecond level circuit sched-
uler presented in PULSE Benjamin et al. (2022). This scheduler proved to
deliver skew-tolerant performances whilst achieving above 90% throughput
and tens of millisecond tail latency, making it suitable for DCN and HPC
applications. However, to allow this scheduler to work on a RAMP archi-
tecture, we need to limit the connectivity such each transceiver is mapped
to a specific rack and therefore limiting the effective node-to-node capacity.
A novel scheduler which uses the multi-path and full-capacity capabilities of
RAMP whilst taking into consideration the sub-network contention is cur-
rently under development.

4. Optical Technologies

In this section, we introduce the optical technologies powering the pro-
posed architecture describing the operating principles of the system. These
technologies have been experimentally demonstrated in prior art. The com-
ponents, scalability and operating properties (cost and power consumption)
are discussed. Further, a more detailed explanation, with in-depth optical
properties analysis and architectural features and characteristics will be dis-
cussed in a follow-up optical manuscript.

4.1. Components

Switching in the RAMP networks is achieved by configuring the wavelength/time-
slot/path at the end-node transceivers. For wavelength switching, at the
transmitter side, we assume the employment of wavelength tunable sources
(WTSs). WTSs composed of time-interleaved tunable lasers (spanning a
wide range of 122 wavelength channels) with gated SOAs capable of achiev-
ing < 1ns wavelength switching Thomas et al. (2021) have been previously
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demonstrated. On the destination side, the receiver can be either tunable or
fixed depending on the subnetwork choice. If the B&S network is selected,
the receiver can operate at a fixed wavelength by the use of passive filters.
However, wavelength tunability is required when considering sub-networks
with wavelength routing functionalities. The tunability can either be imple-
mented by a wavelength filter gated by SOAs or by the use of an additional
tunable laser for coherent detection.

For space switching, broadcast and select filter-based SOA-gated cou-
plers and combiners are used. Using SOA-based gating as a space-switching
mechanism allows sub-nanosecond path selection Parsonson et al. (2020). In
addition, SOAs are also used for amplification.

Time-division multiplexing is achieved by using pre-defined timeslots.
The synchronisation and Clock Data Recovery (CDR) uses the same principle
as the one proposed in PULSE Benjamin and Zervas (2020) and Sirius Bal-
lani et al. (2020) and described in Clark and et al. (2018). The duration
of the timeslot has been selected such that the maximum reconfiguration
overhead is 5%, leading to a minimum data-transfer slot of 20ns.

Transceiver node capacity of (B =) 400 Gbps can be achieved using low-
energy silicon-organic hybrid (SOH) modulators Wolf et al. (2018), which is
the assumed line-rate for the analysis in this paper. Using this data-rate the
minimum message size that can be transmitted in a timeslot per transceiver
is 950B. Such small messages are common in DCN traffic and HPC MPI
collective operations at large scale. Nanosecond circuit reconfiguration time
is fundamental for HPC application as it allows effective transmission of small
message sizes and the use of dynamic collective strategies for MPI operations
(sec.5). When the circuit reconfiguration time is smaller than the node I/O
time (transceiver and computation delay), it will not create any overhead in
the transmission time. Since transceiver (I/O) delays can be as low as a few
tens of ns Andreades et al. (2019), switching reconfiguration times should
follow suit.

Star-couplers are used as broadcast technology at both the edge and core
of the network. At the edge, they are used in the form of SOA gated splitters
and combiners to create 1:N and N:1 switches. At the core, we propose the use
of N:N star-couplers, which have been shown to scale to 1024 ports Funnell
et al. (2016) as an individual component and larger when using a cascaded
approach. This approach makes the network passive and cost-effective.

The wavelength routing component considered for the network core is
AWGR, which has been proven to scale to 100s of ports with low loss Ballani
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et al. (2020).
The combination of these technologies allows the RAMP transceiver and

network of achieving ns circuit reconfiguration while achieving high node
capacity.

4.2. Scalability

Power (dBm) 8 -7 15 -18 4 -11

Components
Subnet

Tx SOA SOA Rx
Coupler:
𝐽Λ × 𝐽Λ

Figure 6: Power budget after each component in the path for most constrained RAMP
architecture at maximum scalability.

The scalability of the system in terms of end nodes is limited by the
optical properties of the network. In fact, the limiting factor is the optical
Signal-to-Noise Ratio (SNR) degradation and attenuation that the optical
signal incurs at the output of each network component. To allow direct
detection the optical power budget at the receiver side photodetector has to
be above -15dBm and the minimum optical power across the path have to be
above -20dBm to maintain good SNR. Using the architecture proposed and
the components described in sec.4.1 under the lossiest configuration (B&S),
this leads to a maximum scale of 65,536 nodes each having 12.8 Tbps node
capacity. These results are obtained considering the following configuration
which is going to be further analysed in sec.8: Λ = 64, x = J = 32, B =
400Gbps, b = 1. The power budget under the described configuration after
each network component is shown in Fig.6.

Under the maximum scale conditions, the proposed system is capable of
achieving larger scalability than current SoTA HPC clusters (> 5.5×) while
allowing significantly higher effective node-to-node bandwidth (> 20×) than
custom small-scale platforms. These characteristics give the RAMP architec-
ture the upper hand with respect to SoTA HPC and AI system architectures
Khani et al. (2020). A comparison between current and proposed HPC sys-
tems and RAMP in terms of bandwidth per node and number of compute
nodes is displayed in Fig.7 using curves representing the different RAMP con-
figurations. For this analysis, the number of communication groups x and
the number of transceivers per transceiver group b have been modified while
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the number of racks has been kept equal to the number of communication
groups (J = x) and the number of nodes per rack has been kept constant
(Λ = 64). By varying x from 32 to 10 and b from 1 to 256, the scalability
in terms of nodes reduces to 4096 whereas the node capacity supported in-
creases to 960Tbps. This shows the capability of the RAMP system to scale
to future bandwidth requirements. Considering current SoTA technology, a
RAMP system could allow full-capacity (288 Tbps), all-to-all communica-
tion between 12,544 Tesla DOJO tile Day (2021) accelerators. Currently,
such accelerators can only be connected by using limited degree connectivity
topologies such as meshes and toruses and limit the effective node-to-node
bandwidth.
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Figure 7: Comparison in bandwidth per node and system scale between RAMP and
current or proposed systems Khani et al. (2020); DELL Technologies (2022); IBM

Corporation (2021); NVIDIA (2021); Habana Labs Ltd (2019); NVIDIA Corporation
(2019); NVIDIA Corporation. (2020); Summit (2021); Bernauer and Kashinkunti

(2021); Jeon et al. (2019); Tao Wang (2021); Fu et al. (2016); Bernauer and Kashinkunti
(2021). Figure adapted from Khani et al. (2020).

Similar scalability analysis can be performed while keeping constant other
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metrics such as cost and power. Multiple configurations will be explored in
future work.

4.3. Cost and Power Consumption

In Tables 4.3, 4.3, the estimated cost and power requirements for the pro-
posed architecture are estimated and compared to EPS systems for HPC and
DCN at matched scalability (maximum RAMP scalability of 65,536 nodes)
for different intra-to-inter server over-subscriptions (1:1, 10:1, 64:1).

The HPC system considered is a 3-Tier Fat-Tree SuperPod NVIDIA Cor-
poration (2021a) architecture scaled to support 8,192 DGX-A100 NVIDIA
Corporation. (2020) servers, each supporting 8 GPUs (65,536 GPUs) and ex-
posing one 200Gbps HDR Infiniband transceiver per GPU NVIDIA (2021).
This represents the 64:1 over-subscription ratio case. The switch used is
the 40-port 200Gbps-per-port NVidia QM8790 InfiniBand switches Mellanox
Technologies (2021); NVIDIA Corporation (2021b), as described in the ref-
erence architecture NVIDIA Corporation (2021a). It needs to be noted that
intra-server (DGX-A100) connectivity is discarded (this leads to an underes-
timation of the effective network cost and power consumption).

Component
Cost ($)

#items / network

HPC SuperPod 17 DCN Fat-Tree

RAMP

EPS DCN 1:1 10:1 64:1 1:1 10:1 64:1

Transceivers
for

EPS
18

200 25.2M 2M 0.3M 50.3M 4.7M 0.8M -

OCS 600-1200 - 2.1M

Switch EPS 20 23,7k 44k 530k 49.7k 8.3k 655k 61.4k 10.2k -

Coupler OCS 22 3000 - 32.8k

Trxs. : Switches cost ratio 25:75 19:81 93:7,96:4

Total Network cost (B$) 16.8 1.57 0.26 35.5 3.33 0.55 1.35-2.61

Normalised cost ($/Gbps) 20.02 42.38 1.62-3.12

Table 3: Cost estimated for RAMP OCS network compared to current state-of-the-art
EPS HPC (SuperPodNVIDIA Corporation (2021a)) and DCN (Fat-Tree) networks scaled
to 65,536 nodes with matched bandwidth of 12.8Tbps. σ represents the intra-to-inter
system oversubscription ratio. To match the EPS system node to the RAMP one at
12.8Tbps (σ = 1 : 1), 64-128 transceivers (200-100 Gbps) per node and 64-128 copies of
separate 3-tier Fat-Tree networks are presented for HPC and DCN, respectively. The OCS
system uses x = 32 transceivers each operating at 400Gbps.
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A 3-Tier Fat-Tree system interconnecting 65,536 nodes (servers) is consid-
ered as DCN system. The system is based on Arista 7170-64c Arista (2021a)
64-port 100Gbps-per-port switches. As transceivers, 100Gbps QSFP opti-
cal transceivers Arista (2021b) for inter-rack communication and 100Gbps
copper twinax cables for intra-rack Fiberworks (2021). This choice has been
performed due to the different power drawn by the different transceivers (as
shown in Table.4.3)

For both EPS networks, the cost of $1/Gbps is assumed Taubenblatt
(2019). To match the node (GPU) I/O bandwidth to the one of the proposed
RAMP system (12.8 Tbps, considered as intra-system bandwidth), additional
ports per node are exposed and parallel copies of the network are created. At
matched bandwidth (1:1 intra-to-inter server oversubscription), in the HPC
system, each GPU exposes 64 200Gbps ports (64×8 for DGX-A100) with 64
independent parallel SuperPod networks. For 1:1 over-subscription in Fat-
Tree DCN case, each node of the DCN exposes 128 100Gbps ports and all
nodes are connected through 128 parallel independent networks. For the 10:1
oversubscription (1.2Tbps inter-node bandwidth), the number of ports and
parallel networks for HPC and EPS is 6 and 12, respectively. Equivalently, for
the 64:1 these numbers are 1 for HPC (same as in the SuperPod architecture
NVIDIA Corporation (2021a)) and 2 for DCN.

We consider for the RAMP architecture the maximum scalability sys-
tem with 65,536 nodes (x = J = 32, b = 1 and Λ = 64) with 400Gbps
modulators (12.8Tbps total capacity), as described in sec. 4.1, 4.2. For
the OCS networks, we propose the use of integrated transceivers (with the
laser, modulator, SOAs) and assume cost of 1.5-3× greater than that of EPS
transceivers. The cost of the optical coupler for OCS is assumed to be $3000,
estimated from Arévalo et al. (2017). For RAMP, the power consumption of
the transceiver and switching elements is estimated by considering the indi-
vidual power consumption of the relevant components described in sec. 4.1
and reported in Benjamin et al. (2020); Moralis-Pegios et al. (2021); Grobe
and Eiselt (2013); Koos et al. (2016); Williamson et al. (2020); Yoshimatsu
et al. (2012); Figueiredo et al. (2015). In the power analysis, we consider the
power consumption for transceivers with both fixed and tunable wavelength
reception.

Table.4.3 shows that the normalised cost ($/Gbps) of EPS networks is
significantly higher than the RAMP counterparts. For the EPS networks, the
cost is switch-dominant, having a transceiver:switch cost ratio of 25:75 and
19:81 for HPC and DCN respectively. On the other hand, for the OCS-based
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Units HPC
SuperPod

DCN
Fat-Tree

RAMP

Oversub.
σ

- 1:1 10:1 64:1 1:1 10:1 64:1 -

Switch
Comp.

- NVidia
QM879043

Arista
717045

SOA
46

Power/
Comp.

W/Comp. 404 320 0.88

Comp./
path

#/path 11 11 2

Trx.
Power

W 4.35
48

0.5-3.5
50

3.4-3.8

Energy/
bit/path

pJ/
bit/path

383 400 8.5-9.5

Power/
Gbps

mW/
Gbps

365 400 85-95

Total
Power

MW 306 28.7 4.8 336 31.5 5.2 7.1-8

Table 4: Power Consumption of RAMP, SuperPodNVIDIA Corporation (2021a) and
DCN Fat-tree Medhi and Ramasamy (2018); scaled to 65,536-node networks with 12.8
Tbps/node and all-to-all connectivity. Component: Comp., Transceiver: Transc. σ repre-
sents the intra-to-inter system oversubscription ratio.

RAMP architecture, we nearly eliminate the switching cost and significantly
reduce the number of transceivers required per connection. Hence, RAMP,
the transceiver:switch cost ratio is 93:7 - 98:2, with the overall normalised
network cost reduced by a factor 6.4-26.5× to 1.62-3.12$/Gbps. This also
applies to the overall network cost at matched bandwidth (1:1) where the
budget for EPS networks is ≥ 16.8B$ whereas the RAMP network cost is
≤ 2.16B$. A similar cost to the proposed RAMP architecture is reported
for EPS networks with 10:1 over-subscription (1.57-3.33$ for HPC and DCN
respectively) while offering 10 times lower capacity.

It is important to note that, compared to EPS systems, it might seem
that the RAMP architecture is over-provisioned, due to the large number of
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sub-networks. However, differently to electrical switches, the coupler-based
sub-networks are passive, inexpensive devices whose cost will further reduce
with mass production, making the proposed interconnect feasible for large-
scale systems. When compared to PULSE Benjamin and Zervas (2020), the
number of subnets required by RAMP to accommodate the same number
of nodes is smaller (assuming the maximum scale network, PULSE requires
32× more subnets than RAMP). It also needs to be noted that, due to the
passive properties of the sub-networks, the core of the interconnects does not
need to be changed when the computational nodes are upgraded. Accommo-
dating workers with higher data-rate in EPS systems requires substituting
all network switches to models capable of handling the new line-rate leading
to a short core network life cycle (around 4 years in DCNs). Similarly, in tra-
ditional active OCS switching systems such as 3D-MEMS, to take advantage
of higher data-rate faster circuit reconfiguration time is needed, requiring
the core switching infrastructure to be replaced periodically. On the other
hand, RAMP, by using a passive core, does not require any substitution in
the network with a higher data-rate, as all switching and line-rate dependent
technologies reside at the edge. This means that, when upgrading to higher
capacity nodes, the only networking component which requires change is the
transceiver. This property significantly decreases recurrent costs.

In Table.4.3, the power consumption of the EPS and proposed OCS ar-
chitecture is compared. Our study shows that RAMP consumes as low as
8.5-9.5 pJ/bit/path, whereas the HPC and DCN counterparts consume 383
and 400 pJ/bit/path respectively. It is important to note that while the
number of paths of the RAMP system is significantly higher than the EPS
counterparts, all subnets are passive consuming no power and each commu-
nication considers only a single chain of active devices. Therefore, the total
amount of active paths at any time step is equal to the number of transceivers
in the system (bx2JΛ). The overall network energy consumption only de-
pends on the active paths. For this reason, the difference in energy per bit is
matched by the overall energy consumption. EPS systems at matched scale
(65,536 nodes) and matched bandwidth (12.8Tbps) would consume 306-336
MW, which is 10× larger than the upper DCN network power budget of
∼ 30MW Ballani et al. (2020). In contrast, RAMP consumes 7.1-8 MW
leading to a reduction by a factor of 38-47×. When compared to the similar
cost 10:1 oversubscribed EPS systems, the proposed architecture leads to
a reduction in energy consumption ≥ 3.6× for 10× increase in bandwidth.
The proposed system energy consumption is similar (36-66 % increase) to
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the EPS networks for 64:1 oversubscription (current SuperPod node-to-node
capacity and 2 copies of DCN system) while allowing 64 times higher network
communication.

5. RAMP Collective Operations

We propose a set of collective communication algorithms valid for the
proposed architecture, arranged in a way such that contention is avoided
and collective completion time is minimised. Each RAMP-x (x=MPI opera-
tion) collective operation follows a set of schedule-less reconfiguration steps
through: a) parallel subgroup mapping (devices performing a subset of col-
lective operations in parallel); b) information/message per node mapping at
communication step; c) wavelength selection and subnet selection; d) time-
slot mapping.
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Figure 8: Visualisation of algorithmic steps subgroups for a 54-node
(x = 3, J = 3,Λ = 6) network example. Top-to-bottom: Communication steps 1-4.
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The proposed strategy could be implemented on any port-level all-to-
all large-scale network without over-subscription. However, creating such
networks using EPS or previous OCS networks would be expensive in terms
of cost, power Medhi and Ramasamy (2018); NVIDIA Corporation (2021a),
connectivity Benjamin et al. (2020); Ballani et al. (2020) and reconfiguration
time Khani et al. (2021). The strategy, topology and scheduling have been
co-designed to maximise performance and minimise power and cost to enable
high capacity and scalability.

In the following sections, 0 ≤ g ≤ x − 1, 0 ≤ j ≤ J − 1, and 0 ≤ λ ≤
Λ− 1 correspond to the local communication group, rack and device number
(represented by colour in Fig. 8) respectively.

The strategy of MPI operations is performed in RAMP-x using 3-4 se-
quential algorithmic steps. An example that works as a visual aid for the
reconfiguration steps for a strategy (e.g reduce-scatter) is shown in Fig.8,
where Λ = 6 and J = x = 3.

In this figure, the four rows represent steps 1-4. At each algorithmic
step, parallel logical graphs, called subgroups, are created between a unique
subset of devices, represented in Fig.8 as a line. The left side of Fig.8 rep-
resents the chord diagram of the RAMP network for each step, with nodes
grouped in communication groups, racks and device IDs. The right-hand
side of the figure represents the connectivity matrix for each node at each
step. The number representation of each node for the connectivity matrix is
shown as the number inside each vertex of the chord diagram. It needs to be
noted that, while the graph is sparse, the network resources are maximised
as each node uses x − 1 transceivers for the first 3 steps and x for the last.
In Fig.8, an example of 3 subgroups is shown with black lines and the others
are greyed out in the background. The devices in each subgroup will per-
form a partial collective operation, depending on the MPI operation. In the
first step of the reduce-scatter operation (Step 1), for each node, the overall
message is divided in three portions and sent to different destinations in the
subgroup. Then the information received is summed (reduced) in each node.
The information portion that needs to be sent/received to/by each node is
determined by the information map, and the transformation operations (e.g.
summation) are dictated by the MPI operation. Each node now contains the
sum of a unique 1/3 of the information of the message in each subgroup.

Note that we track the location of the information portion (Table 6.1.2)
in every node after each communication step. For the following steps, the
subgroups are selected such that they include only nodes with the same
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information portion combinations. In the second step (Step 2), the message
is further partitioned into 3 parts (1/9 of the original message), transmitted
to the correct node in each subgroup and processed. In the same way, the
third step (Step 3) is performed, such that each device contains the sum
of a unique 1/27 of the original information (global reduce-scatter). In the
fourth step (Step 4), the information is exchanged between pairs of nodes
to complete information updates across all 54 devices (i.e. nodes). This
step might have some variations depending on the formulation chosen for
subgroup selection.

A similar process, performed backwards (Steps 4 to 1), is valid for all-
gather, where unique portions of information are shared and gathered (con-
catenated) at each algorithmic step in every subgroup. In this way, starting
with having 1/54 of the overall message, each node will contain a full 1/27,
1/9, 1/3 and whole information after Step 4, Step 3, Step 2 and Step 1 re-
spectively. In general, the number of steps required by the algorithm can be
described as logx(N) which, for the maximum scalability case of RAMP, is
equal to 4. It is important to note that in cases where x = 2, the algorithm
effectively becomes equivalent to a recursive halving/doubling Thakur et al.
(2005). Recursive halving doubling could be used as a collective operation,
however, at the maximum data rate, would lead to high network contention.
On the other hand, the proposed strategies have been co-designed such that
bandwidth is maximised and contention is avoided by selecting different phys-
ical paths and time slots and wavelengths for communication.

The following sections provide further explanation on subgroup (sec.6.1.1),
wavelength (sec.6.2.1), information map (sec.6.1.2), transformation (sec.6.1.3,sec.6.1.4),
transceiver and path (sec.6.2.2) and time-slot (sec.6.2.3) selection.

5.1. Overall RAMP-MPI procedure

The core of the proposed research is the combination/co-design of ar-
chitecture (physical graph sec.3), MPI strategy and scheduling algorithm.
An overview of how these components come together to perform an MPI
operation is shown in Fig.9. The process can be viewed in subsequent stages.

After a distributed task/job is placed by the job scheduler, the informa-
tion about the ranks of the devices and the MPI operations are shared to all
devices/nodes involved. This information is processed by the RAMP engine.
The RAMP engine consists of two main components: 1) the MPI Engine
(section sec.6.1) and 2) the network transcoder (section sec.6.2). In the first
stage, as shown in Fig. 9, the MPI Engine (1) uses the physical graph (G)
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Figure 9: Birdview of the MPI operational process from application to physical implemen-
tation.

and the MPI operation information to calculate the number of algorithmic
steps required and generates information 1.a) and 1.b). 1.a) contains only
the information required by 3) the Application to process and retrieve the
data correctly for every step. 1.b) represents the algorithmic information
required by the network transcoder and consists for every step, the data-size
and the subgroup. 1.c) subgroup information represents the logical graph
(a derivative of the physical graph G) of devices performing a partial MPI
operation at each step. Note that in 1.c), the current node is represented as
the yellow dot and the current subgroup as the blue connection in Fig. 9.

The network transcoder gets the information of 1.b) and G) and trans-
lates (trans-codes) it into instructions for the Network Interface Card (NIC).
For each algorithmic step, the network transcoder generates instruction 2.b)
for each individual transceiver to select time-slot size and number, transmit-
ting/receiving wavelength and path. After processing these instructions, the
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network transcoder sends Ready signal (2.a) to the 3) Application signalling
that it is ready for transmission. The Application retrieves and transforms
the data using 1.a) such that it could be correctly handled and transmitted
by the NIC to perform the MPI operation. The Application shares the pro-
cessed data to the 4) NIC, which using information 2.b), transforms it into
4.a) signal on the physical system. The NIC Logic tunes the transceiver at
the instructed wavelength and selects the correct SOA path (to turn on) for
the given time-slot size.

6. RAMP Engine

The RAMP Engine is composed of two main blocks: MPI Engine and
Network Transcoder. Together they handle the scheduling and communica-
tion while the processing is handled by the application.

6.1. MPI Engine

The MPI Engine uses the physical topology, application, and MPI oper-
ation to generate the instructions required by the application and network
transcoder to complete the collective operation.

6.1.1. Communication subgroup map

Step #SG #NS Subgroup ID formula
1 ΛJ x λ+ Λ · j
2 ΛJ x (λ− g) mod x+ Λj + ⌊λ/x⌋x
3 Λx J (λ+ Λ(j − g)) mod (Λj)

1) (λ− ⌊λ/x⌋x) mod x+ x2j
+((g − j⌊λ/x⌋) mod x)x
or

4 Jx2 Λ/x

2) x2j + x [(g − ⌊λ/x⌋) mod x] + d mod x

Table 5: Table showing subgroup ID selection. #SG is the number of subgroups, #NS is
the number of nodes per subgroup.

The subgroup describes the set of devices (logical graph) that each node
needs to share information (communicate) with at any algorithmic step.

Summary and formulae describing how each device is mapped to any
subgroup at any communication step are shown in Table 6.1.1. For this
mapping, the nodes in a rack are further divided into groups of x devices

34



Step Communication Group Rack Device ID Variable
1 (g + γ)mod x j λ 0 ≤ γ ≤ x− 1

2 (g + γ)mod x j
(λmod x+ γ)mod x+
x⌊λ/x⌋ 0 ≤ γ ≤ x− 1

3
[(g − j)mod x
+γ]mod x

[(j + γ)mod J
−j]mod J

λ 0 ≤ γ ≤ J − 1

4.1
(g + j−
⌊(⌊λ/x⌋+ 1)/⌊Λ/x⌋⌋
×(⌊λ/x⌋+ 1) ∗ j)mod x

j
λmod x+ x× [
(⌊λ/x⌋+ 1)mod⌊Λ/x⌋] NA

4.2
[(g − ⌊λ/x⌋)mod x

+γ]mod x
j

λmod x+ x× [
(γ + ⌊λ/x⌋)mod ⌊Λ/x⌋
−⌊λ/x⌋]mod ⌊Λ/x⌋

0 ≤ γ ≤ ⌊Λ/x⌋

Table 6: Table describing the formulas to calculate the RAMP coordinate (communication
group, rack and device ID) the other members of the subgroup of the current node (node:
g, j, λ) at any algorithmic step. The Variable column shows the range of the variable to
describe all members of the subgroup.

called device groups, where each node has a unique device group number
from 1 to x.

The communication subgroups at each algorithmic step correspond to
communication performed between unique sets of devices in different system
dimensions. These consist of:

Step 1: Nodes with the same node number, rack and different commu-
nication groups;

Step 2: Nodes with sequential node numbers in the same device group,
rack and different communication group;

Step 3: Nodes with the same node number, different rack and commu-
nication group;

Step 4: Nodes with the same device group number, different device
groups, racks and communication groups or nodes in sequential device groups
with the same device group number rack and different communication groups.

Depending on the selection of the formulation for the subgroup in Step
4, two different operations will be used. It has to be noted that when the
first formulation is selected, the algorithm considered for the last step has to
use strategies with one-to-one communication (such as ring, recursive halv-
ing/doubling Thakur et al. (2005) and Bruck’s Bruck et al. (1997)), which
might incur additional steps if the number of devices is greater than 2 (value
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Step Information portion formula

1
(g − λ− j − ⌊λ/x⌋j)
mod x

2 (g − j − ⌊λ/x⌋j) mod x
3 j
4 ⌊λ/x⌋

Table 7: Formula describing what portion of the previous message should be received by
a node at any algorithmic step.

at maximum scale).
The subgroup selection defines the logical circuit in which each node is

part. The number of nodes per subgroup, as shown in Table.6.1.1, selects
which of the four steps is active (#NS > 1). From the subgroup informa-
tion, each node is able to know all sources and destinations active at any
algorithmic step as described in Table.6.1.1.

Using the information provided in Tab.6.1.1, the members of each sub-
group can be found from each algorithmic step by each node. The formulae
to find the coordinate of the other members of the same subgroup for the
current step of each node is shown in Table.6.1.1.

6.1.2. Information Map

The information map consists of a set of formulae describing the portion of
the information that should be sent-received and processed by each node at
each algorithmic step. The formulae describing the information map at each
algorithmic step for data transfer-related strategies are described in Table
6.1.2. The combination of values generated by the table across each algorith-
mic step represents the node rank. This also represents either the portion
of the original message or the collected information available at the node
after the last operation depending on the selected operation. The decimal
representation of the information value at all algorithmic steps represents the
rank of each node in the collective.

6.1.3. Buffer Operation

The buffer operation (Buff op) corresponds to the transformation per-
formed on the message before transmission that is generated by the MPI
Engine and defined by the MPI Operation. It takes three arguments: the
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message that needs to be processed (DATA), the number of nodes in the cur-
rent subgroup (nodes) and the information map for the current step (info).

As shown in Table 6.1.5, there are three types of operations:

• Reshape: the information vector is reshaped such that is divided into
nodes addressable contiguous segments of the same size.

• Copy: the buffer size is increased by a factor of nodes and reshaped
as described above. The original information will be in the segment of
the array corresponding to the local rank of the node in the subgroup.

• Identity: no transformation is performed.

info is used to sort the message in such a way that the correct portion
of the information is given to the correct transceiver.

6.1.4. Local Operation

The local operation (Loc op(DATA)) is the transformation performed on
the received data after a communication step. There are four operations:

• Reduce: associative operation, usually sum, between vectors received
from different sources.

• Reshape: used only in the all-to-all operation. Transpose the infor-
mation (considered as a 3D array) in the source, rank dimension and
flatten it into a one-dimensional vector. This operation puts the infor-
mation to be transmitted into a contiguous portion of memory in the
correct rank order.

• Logical-AND between Booleans representing the presence of a correct
message. Only used for barrier operation.

• Identity: no transformation is performed.

info is used to place in the correct order information coming from the
NIC.
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Message size/step (m = original msg size) Local Ops.
1 2 3 4 Op. Buff Op

Red.-Scatter m/x m/x2 m/(Jx2) m/(JΛx) Reduce Reshape
All-Gather m · Λ/x m · JΛ/x m · JΛ m · JΛx Identity Copy
Barrier 0 0 0 0 AND Identity
All-to-All m/x m/x m/J m · x/Λ Reshape Reshape
Scatter m/x m/x2 m/(Jx2) m/(JΛx) Identity Reshape
Gather m · Λ/x m · JΛ/x m · JΛ m · JΛx Identity CopyM

P
I
O
p
er
at
io
n
s

Broadcast m/k for s+ k − 2s steps Identity Identity

Table 8: Message size and operations per algorithmic step for different collective operations

6.1.5. MPI operation algorithm

The combination of Buff op and Loc op is defined by the MPI operation
(Table 6.1.5), which will be performed on the message by the application.
The pseudo-code for a single MPI operation running on an individual node is
shown in Alg.1. In Alg.1 starting with the local message, each node requests
information to the MPI Engine given the current and active nodes’ rank
and the MPI operation (line 2). For each of the steps dictated by the MPI
Engine, the DATA is first transformed by the Buff op (line 6) and after
receiving confirmation from the Transcoder that the NIC is ready (line 7)
pushes/receives data to/from the NIC which will be transformed by local
operation (Loc op, line 9) and will be used as the data for the next step.

The selection of Buff op,Loc op for each MPI operation is shown in Ta-
ble 6.1.5. The message sizes for each step and operation in Table 6.1.5 are
derived by the combination of Buff op and Loc op following Alg.1.

It can be noted that the Reduce and All-Reduce operations have not been
included in Table 6.1.5. These are implemented by following an approach
similar to Rabenseifner’s algorithm Rabenseifner (2004), where we consider
the reduce and all-reduce operations as a reduce scatter followed by a gather
and all-gather operation respectively.

For the broadcast operation, we take advantage of the optical property of
the systems. Using SOA gating, one device can multi-cast data at full-node
capacity to x2 or x3 nodes depending on the selected system configuration.
Given this property, a pipelined tree broadcast is created, where a root node
can talk up to x2 nodes, λ − 1 of which will transmit to an additional x2

devices each using different wavelengths. This creates a logical tree with a
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Algorithm 1 Collective operation routine for single node

[1] DATA← msg
steps,Loc op,Buff op, Info map, n nodes ←
MPI Engine(my rank, devices rank, MPI Op)
step = 1 to steps
nodes← n nodes[step]
info← Info map[step]
DATA ← Buff op (DATA, nodes, info) WAIT
Network Transcoderready signal DATA ← NIC(DATA) DATA ←
Loc op(DATA, info)

diameter of 3. The number of stages k for the pipeline considered is:

k =

√
m · (s− 2)

α
β, (1)

where s is the diameter of the tree generated to perform the broadcast, α
is communication setup latency (propagation and node/software dependent
latencies) and β is the inverse of the total node capacity. The total number
of steps needed to perform the operation is k+ s− 2 and the message trans-
mitted per stage is MSG/k.

6.2. Network Transcoder

The network transcoder uses the information from the MPI Engine and
collective operation and translates them to instructions for the NIC to estab-
lish an optical circuit by just configuring the transceiver (wavelength) and
the 1 : x switches (path) of that node (see Fig.9).

6.2.1. Wavelength mapping

Wavelength selection in OCS networks is fundamental to correctly route the
information and avoid contention. Together with the subgroup selection,
colour/wavelength is also assigned for each node to communicate appropriate
information at each algorithmic step.

The wavelength mapping varies for the various subnets and it uses a look-
up table. Using a subnet with only a star coupler the mapping is dictated by
the node receiving wavelength whereas with the AWGR it is forced by the
source/destination pair.
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6.2.2. Subnet/Path/transceiver selection

For any source-destination pair, there are bx possible paths and subnets that
allow communication. Between the parallel subgroups in the first three al-
gorithmic steps, there might be up to bx communications using the same
wavelength sharing the same set of subnets. To avoid contention, a wave-
length must be used only once in the same subnet.

To minimise control complexity, the transceivers used by any node to
perform the collective operations are pre-determined. The transceiver groups
chosen between any source-destination pair are:

Trx (d(gsrc, jsrc, λsrc), d(gdst, jdst, λdst))

= (gsrc + gdst + jsrc) mod x,
(2)

where gsrc - gdst, jsrc - jdst and λsrc - λdst are the source and destination
communication group, racks and node numbers respectively. The transceiver
selection forces the subnet selection as each subnet is defined by the combi-
nation of gsrc, gdst, T rx.

In practice, whenever the number of devices per subgroup is smaller than
the number of communication groups, multiple transceiver groups might be
used to communicate between the same source-destination pair. The addi-
tional number of transceiver groups that can be used for each communication
in a collective operation is:

#TRXadditional =

⌊
x− ⌊x/d⌋(d− 1)

d− 1

⌋
, (3)

where d is the number of devices in the active subgroup. If #TRXadditional is
different than 0, then the additional transceiver groups are used for commu-
nication. The transceiver groups used for any communication pair is:

TRX(dsrc, ddst) = [Trx(dsrc, ddst)

+{0, 1,...,#TRXadditional − 1}] mod x · d,
(4)

where Trx(dsrc, ddst) is the original transceiver group described in Eq. 2.
From Eq. 4 the effective I/O unidirectional bandwidth of a node can be

defined as:

BIO Eff = B · b · (1 + #TRXadditional)(d− 1). (5)

For the fourth step, the transceiver selection may vary depending on the
sub-groups formula selected (Table 6.1.1). For the first formula, the number
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of transceiver groups used per communication is x as there would not be
any contention for a single job. Selecting the second formula, the transceiver
mapping follows Eq. 4.

6.2.3. Time-slot mapping

The time-slot map is given by the data-transmitted per step (Tab.6.1.2)
and the effective bandwidth per transceiver (Eq. 5), and gives deterministic
communication latency.

It is possible to further increase the number of parallel jobs by select-
ing different subnets (e.g. AWGR-based subnets allow support for different
device number sets, same reason as for the communication groups set).
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6.3. MPI Operation workflow

To perform a complete MPI operation, each node has to perform the
following operations as described in Fig.10. Each node first receives from the
job allocator/scheduler the collective operation, the message size, the active
nodes for the collective and equivalent RAMP architecture parameters in
terms of used communication groups (x), racks (J) and node numbers (Λ).
Using this information, each node calculates its subgroup ID and the number
of nodes in each subgroup for each algorithmic step, using the principles
described in sec.6.1.1. While these are calculated, also the active steps (the
steps of the collective operation that have to be run) are selected, as they
will have a number of nodes > 1. Then for each active step, the logical
circuits (nodes with the same subgroup ID) are found using the formulations
described in sec.6.1.1. Once the logical circuits have been identified the
information portion that needs to be sent to each of them is calculated as
described in sec.6.1.2 and stored in a lookup table. From the information
portion and the buffer operation, the message size per source-destination
pair is calculated. Using the topological and logical circuit information the
transceivers for each source-destination pair are selected, which determine
the effective bandwidth of the node pair communication. From the message
size and effective bandwidth, the number of time-slots per communication is
determined and the wavelength and path per active transceiver are selected.
The received data is processed by the local operation and considered as the
message for the next active step.

All the information is deterministic and pre-computed at application
setup, such that it can be used as a lookup table at runtime following the
principles described in sec.6.1.5.

6.3.1. Alternative strategies

Strategies different to the one described in sec.6 could be implemented
either by considering them as input to the scheduler described at sec.3.2 or
pre-determined by mapping the strategy to the RAMP network configura-
tions. As an example, both (up-to) full-capacity ring-based and recursive
halving/doubling strategies can be implemented for the RAMP architecture.
However, these strategies lead to poorer performance than the ones which
have been co-designed for the architecture and require complex network con-
trol.

42



7. Simulation Methodology

We develop a simulator in Python that is provided as open source to
evaluate collective completion times of various collective operations using
different strategies and topologies. The main elements of the simulator are
described in sec.7.1. The network setup and strategies description are de-
scribed in sec.7.5 and sec.7.6 respectively. The simulator has been made open
source and is accessible online (see Artifact Description).

NN 
Partitioner

NN Profiler

MPI 
estimator

Computation time

Communication time

Training time 
estimator

Training 
Time

Equivalent Model,
Local batch size,
Custom Data-loader

Collective 
Operations

NN Config,
#Workers,
CE Loss,
Training 
steps, …

Checkpointing,
Precision,
Data-Loader

Topology,
Technology,
Strategy

#Training 
Steps

DDL Simulator

Figure 11: DDL Simulator Diagram

7.1. DDL Simulator

To evaluate the performance of the proposed system and strategies and
compare it to traditional EPS and proposed OCS systems a custom DDL
simulator has been developed in Python. Fig.11 describes the main building
blocks and functionalities of the simulator. The goal of the simulator is to
determine training time in either terms of time-to-accuracy or training iter-
ation time for different Deep Neural Networks, partitioned at different scales
onto different systems. The Simulator consists of three main building blocks:
the NN Partitioner (sec.7.2), the NN Profiler (sec.7.3) and MPI Estimator
(sec.7.4).

To evaluate the overall training time, the input neural network is pro-
cessed by the partitioner, which, using the configuration parameters, the
number of workers and additional constraints, generates the equivalent par-
titioned model which consists of the computation graph present on a single
GPU when running a distributed job. The equivalent model, together with
the local batch size information and the data-loader is fed into the profiler
which evaluates the computation time of the model for forward and back-
ward computation. At the same time, the partitioner provides information
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about the collective operations required for the distributed job to the MPI
estimator which, using system and strategy information, will estimate the
collective completion time for each operation. The computation time infor-
mation from the profiler and the collective completion time from the MPI
estimators are fed into a training time estimator, together with the number
of steps, to evaluate the overall training time.

7.2. NN Partitioner

In this paper, we evaluate the distributed training performance of two
types of models: Megatron-based Shoeybi et al. (2019) encoder-only trans-
former and Deep Learning Recommendation Model (DLRM) Naumov et al.
(2019). For each one of them, a custom equivalent model has been developed
and open-sourced.

7.2.1. Megatron NN partitioner

For the Megatron model, we develop a library capable of creating the
equivalent model for using the Megatron-LM partitioning strategy for transformer-
based encoder-only models using data and tensor parallelism. The goal is to
evaluate the difference in time to accuracy of Megatron models for differ-
ent target cross-entropy (CE) loss when performing distributed training on
multiple systems. The partitioner takes as input the target CE loss and the
maximum number of workers to perform the computation. This information
is fed into a scaling law processing block which calculates the model param-
eters and training requirements for reaching the target loss. The scaling law
processing block uses the formulations of Kaplan et al. (2020) to determine
the number of parameters, number of attention heads, hidden dimension,
number of layers, global batch size and number of training steps required to
reach the target accuracy. The number of parameter information, together
with the number of available workers, is fed into a model parallel partitioning
block which partitions the model such that the number of parameters avail-
able in a single device is as close as possible to the upper limit acceptable by
an NVIDIA A100 GPU (1.6B Ren et al. (2021)). Using this approach the
model parallel level for the partitioning is selected and the equivalent ten-
sor partitioned model is generated. The equivalent model is then fed to the
Data Parallel Partitioning block together with the global batch size. In this
step, the data parallel level and local batch size are selected to maximise total
memory utilisation, including activation memory, for a single GPU. Maximis-
ing memory utilisation for both model and data parallelism minimises the
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overall data transferred across the system and maximises the effective com-
pute time. After the data parallel partition, the number of training steps to
accuracy is recalculated for the effective global batch size.

The partitioned model, with either data or model parallelism, requires
collective communication between workers. From the partitioned models and
the batch size, the collective operations required are determined such that
they can be evaluated by the MPI estimator. Following Megatron Shoeybi
et al. (2019) partitioning, the tensor partitioned model includes two main
building blocks which determine different collective operations: the parti-
tioned multi-head attention and corresponding backward path all-reduce, and
partitioned feed-forward MLP with corresponding forward path all-reduce.
The message size for both collective operations is determined by the local
batch size and the hidden model dimension. Data parallelism requires a gra-
dient all-reduce before the optimiser step with message size dependent on
the number of parameters.

The equivalent model and batch size will be given as input to the profiler
and the number of training steps will be used by the training estimator to
evaluate the overall time to accuracy.

The partitioner library and profiled partitioned Megatron models for the
results have been made public at Ottino (2022a) and Ottino (2022a) respec-
tively.
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7.2.2. DLRM NN Partitioning

Differently from Megatron, the goal of the DLRM partitioner is to iden-
tify the different individual training iteration times for models with different
numbers of parameters. The partitioner takes as input the total number of
parameters, the number of maximum workers and additional DLRM model
architecture features such as the number of sparse and dense features, hidden
size, number of tables et cetera. These parameters are fed to the partitioning
blocks which will partition the model such that the overall memory utilisa-
tion of the GPU is maximised. The partitioning strategy used follows the
3D partitioning strategy for DLRM described in Mudigere et al. (2022), in
terms of table-wise, column-wise and data parallelism. For embedding ta-
bles, the partitioning method first prioritises the table-wise parallelism, as
it has better activation and input data efficiency, and if greater partitioning
(due to memory constraints) is required implements column-wise parallelism.
For the MLP layers, data parallelism is used and depending on the available
memory the local batch size is selected.

In addition to the equivalent model, the partitioning generates a custom
data-loader for the specific partitioning. If a simple distributed data-loader
would be used, before the actual data feeding process, an all-to-all (with
possible replication) operation would be needed for the categorical features
between workers for any tensor-partitioned mode such that it could be cor-
rectly used by the equivalent model. The custom data-loader generates ran-
dom batches with the correct data attributes and dimensions for a particular
equivalent model such that only necessary computation and communication
are included for communication and computation time analysis.

As for Megatron, the DLRM partitioned model requires multiple collec-
tive communications. Both table and column-wise parallelism require for-
ward and backward pass all-to-all collective communication, with message
size dictated by the hidden dimension, local batch size and parallelism level.
The data parallelism for the dense computations requires gradient all-reduce.
The collective operations are then fed as inputs to the MPI estimator.

The equivalent model and the partitioned custom data-loader are fed as
input to the profiler to calculate the training step computation time. A
diagram describing the partitioning procedure is shown in Fig.12.

The DLRM-3D partitioning library and the corresponding tested models
for the results have been made public at Ottino (2022a) and Ottino (2022a)
respectively.
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7.3. NN Profiler

To estimate the computation time of a training step for either Megatron
or DLRM we use the built-in Pytorch Profiler. Each model is profiled for a
minimum of 150 training iterations on a NVidia A100 GPU to estimate the
GPU computation time correctly.

For Megatron, a single-layer equivalent transformer block model has been
profiled, and the results are generalised for the total depth of the model.
The training has been performed under mixed precision Mellanox Technolo-
gies (2021), using Adam optimiser Funnell et al. (2016) and implementing
activation checkpointing Chen et al. (2016); Shoeybi et al. (2019) and ac-
tivation offloading Ren et al. (2021) to represent large scale models. The
activation checkpointing forces the model to recompute the forward pass be-
fore calculating the backward pass, incurring additional communication. A
random-data data-loader has been selected which generates random embed-
ding vectors as input to the transformer block. It needs to be noticed that
the sequence length selected for all trained models is 1024 tokens.

For DLRM, the equivalent data-tensor partitioned model is profiled as-
suming half-precision and sparse SGD optimiser. As a data ingestion mecha-
nism, the custom data-loader (described in sec.7.2.2) for each model is used.
The profiled models are available at Ottino (2022a,a).
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7.4. MPI Estimator
To evaluate the collective completion time of different MPI collective

operations using different strategies on different systems a custom MPI Esti-
mator block is developed and made accessible at Ottino (2022a). The block
diagram of the MPI estimator can be seen in Fig.13.

The first step of the MPI estimator is to generate a physical topology
for the given number of workers, device technologies (#Trxs per device, BW
per Trx ...) and architecture-specific parameters. The Fat-Tree architecture
requires information about the switch type per hierarchy, oversubscription
per hierarchy, the maximum number of hierarchies and distances between
hierarchies, in such a way topology with the corresponding characteristics
and number of nodes is generated. For 2D-Toruses and Ring topologies,
the information required is the maximum ring size in the first dimension,
the number of transceivers and data-rate per direction and latency. For
TopoOpt the communication degree latency and bandwidth per transceiver
information are required. Whereas for the RAMP system, the topological
parameters (#Communition Groups, Racks, Nodes per Rack) are required
together with the maximum distance.

The topology generator creates the topology and provides information
about the available capacity and effective latency at each hierarchy and path
across the topology. This information together with the number of active
nodes is fed to a node selection block which selects which of the workers in
the physical topology will be used for the job. The nodes are selected in a
greedy fashion such that high-bandwidth interconnected nodes are prioritised
and at bandwidth parity, the lowest overall latency is minimised. This means
that in oversubscribed Fat-Tree systems, the intra-node device utilisation will
be maximised while trying to minimise the number of hops (logical diameter)
between the furthest nodes. For 2D-Torus leads to choosing when possible
only connectivity in the highest bandwidth direction and when needed min-
imising the logical diameter. For TopoOpt it consists of minimising the
number of logical circuits needed such that the effective degree is one and
the bandwidth for collective operation is maximised. In RAMP, as it is a
single hop full-bandwidth all-to-all topology, the nodes have been selected
such that the minimum number of algorithmic steps is minimised. It needs
to be noticed that the proposed approach only considers a single job and the
placement approach would not be ideal for multi-job scenarios.

Once the active nodes have been selected, the logical topology is found
and the maximum available bandwidth and latency for each active hierar-
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chy and path are measured. The logical circuit information is then used to
map the devices to specific collective operation strategy steps. The mapping
is made such that, for collectives and topologies which allow it, the largest
message is transmitted between nodes which communicate at the highest ef-
fective bandwidth and the smallest to the ones with the lowest data rate.
At parity of bandwidth, the steps are selected such that the minimum num-
ber of communication steps are used for the highest propagation latency
paths. After the mapping, the information about the number of algorithmic
steps, number of communication steps per algorithmic step, message size per
communication step and the effective load (number of devices using same
switching resources) per active hierarchy is found.

The effective load information and the bandwidth and latency per active
hierarchy are then used to estimate the critical path for each algorithmic step,
which allows us to find the effective bandwidth and latency per algorithmic
step. A more detailed explanation of what is considered in the critical path
estimator can be found in sec.7.4.1.

Using the information from the collective mapping and critical mapping
estimator the propagation, idling and processing latency components, head-
to-head time (H2H), and data-transfer components, head-to-tail time (H2T)
are calculated, while at the same time the computation time is estimated.
Using all this information the overall completion time can be found.

The MPI estimator developed has been modelled on and validated by ex-
periments performed using the Cambridge Wilkes2 GPU-Cluster running the
NVidia communication benchmark NCCL Tests NVIDIA Corporation: Opti-
mized primitives for inter-GPU communication. (2022); NVIDIA Inc (2022),
which performs operations using ring strategy and verified with respect to
previous literature Li et al. (2020). The experiments have been performed
on up to 4 nodes (16 workers) using both NVidia Pascal P100 and Ampere
A100 GPUs. The proposed estimator gives a lower bound for the collective
communication as it assumes ideal switching, computing and load character-
istics.

7.4.1. Critical Path estimator

To evaluate the effective bandwidth and latency for each algorithmic step
of any collective operation strategy, the properties of the critical path, the
worst performing path in either term of data-rate or propagation delay, needs
to be found. In fact, due to the synchronicity and pipelining of collective
strategies, the effective communication parameters will be dictated by the
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worst-performing link.
A visualisation of the components taken into consideration when measur-

ing the critical path is shown in Fig.14. There are four main components
considered for the calculation: the compute node, the network interface card
(NIC), the interconnect and the switches. The compute node is used to es-
timate the compute time of a collective operation step and the intra-node
latency. For the compute time calculation the memory bandwidth (β), peak
computational intensity (π) and clock period (clk) information from the com-
pute node are used as parameters of the roofline model, which depending on
the operation, number of sources and message size of the collective opera-
tion estimates the arithmetic intensity of the operation and the collective
step computation time. Between the compute node and NIC we consider the
memory-to-transceiver delay, which represents the time taken for the first bit
of data to be transmitted from the memory and pushed out of the transceiver
or vice-versa.

The network components (NIC and switches) parameters can be sep-
arated into the ones related to bandwidth and latency calculations. To
evaluate the effective bandwidth the parameters considered for the NIC are
the number of available transceivers, the bandwidth per transceiver and the
communication protocol used. For each switch, for EPS systems, multiple
parameters are taken into account, such as the number of ports per direc-
tion, oversubscription ratio, switch occupancy, directional load (number of
requests from and to each destination hierarchy) and directional bandwidth
(bandwidth per transceiver per destination hierarchy). Each algorithmic step
will involve multiple nodes sharing the same network resources by assigning
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a path for each source-destination pair. Each request that uses the same
switches will determine the switch occupancy. By measuring the number
of directional requests, the number of available ports, their data rate and
oversubscription, the effective number of active input transceivers per switch
is found. This process is repeated for all transceivers in a hierarchical fash-
ion such that the effective network oversubscription and the number of ac-
tive transceivers per NIC are found. By using the effective number of active
transceivers, bandwidth per transceiver and protocol, the effective bandwidth
per algorithmic step is found. For a RAMP system, the effective bandwidth
and number of active transceivers is found using the formulation described
in sec.6.2.

For latency calculation, NIC parameters considered are the memory-to-
transceiver delay and circuit reconfiguration time for OCS systems. For net-
work components, we consider a propagation delay for the links and switching
and holding time for the switches. The effective latency will be the sum of
all these contributions across all network parameters.

7.5. Networks comparison

To analyse the performance of the RAMP algorithms and architecture, we
compare them to electrical packet and optical circuit switching baselines.

As a baseline for EPS, we use a Fat-Tree Topology inspired by the Nvidia
DGX-A100 SuperPod NVIDIA Corporation (2021a) architecture which we
scale to match the number of nodes of RAMP (65,536). To do so, the Fat-Tree
hierarchy has been increased to a 4 tier system. The Super-Pod architecture
can be viewed as a heterogeneous network, where intra-node and inter-node
communications are handled by NVLink NVIDIA Corporation (2018) and
InfinBand Mellanox Technologies. (2021) interconnects, respectively.

This heterogeneity in links is also reflected in bandwidth, allowing intra-
node GPUs unidirectional bandwidth of up to 2.4Tbps and inter-node of up
to 200Gbps, leading to an effective over-subscription ratio of 1:12 between
inter-node and intra-node communication. However, to fairly compare the
performance of the algorithm we assume a network with 1:1 subscription
ratio.

For every communication between pair of nodes, we assume the shortest
path is taken and assume deterministic switching latency equal to the min-
imum switching time. The intra-node switching time (NVSwitch NVIDIA
Corporation (2018)) is considered to be 100ns and each inter-node switch
(NVIDIA Quantum QM8790 Mellanox Technologies (2021)) latency equal to
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350ns. The intra-node propagation latency is considered to be 20ns and the
latency between tiers 10ns, 50ns, 1.25µs respectively.

For both algorithmic and system comparison, the propagation latency
between nodes in the proposed architecture is considered to be 1.3µs. On the
other hand, the total unidirectional capacity per node is considered 2.4Tbps
for the algorithmic comparison and 12.8Tbps for the system analysis.

For completeness, even though it does not allow all-to-all communication,
we also compare the system and strategies to a 2D-Torus topology, assuming
a total node capacity of 2.4Tbps. In this case, we assume 128 and 512
nodes per dimension, with worst-case propagation latency of 156ns, 520ns
respectively.

We compare RAMP with TopoOpt Wang et al. (2022) a recently pro-
posed OCS network for DDL. We scale TopoOpt to match the number
of nodes (above actual scalability of 384 direct node connectivity) and we
assume the 3D-MEMs-based system to allow circuit reconfiguration (neces-
sary for full data-rate hybrid parallelism in DDL). We assume a data-rate of
1.6Tbps per node (maximum considered in Wang et al. (2022)) and a maxi-
mum latency between nodes of 260ns (when the circuit has been established).
For applications and collective completion time analysis, we assume already
defined circuits and discard any additional contribution due to the circuit
reconfiguration time.

Independently of the architecture, the minimum in-out latency per node
(intra-GPU) is considered to be 100ns. To simulate the computation time,
we assume for all topologies a Nvidia A100 GPU node NVIDIA Corporation
(2020) following the roofline model Williams et al. (2009).

7.6. MPI strategies comparison

We compare the proposed strategy and topology with electrical counterparts
running Ring based collective operation algorithms. The Ring-based strate-

52



gies have been chosen because of their popularity in distributed deep learning
operations as they are implemented by the Nvidia NCCL library NVIDIA
Corporation: Optimized primitives for inter-GPU communication. (2022).

For each collective operation, we consider multiple strategies based on log-
ical rings implemented in literature. Apart from the Ring all-reduce based
operations Patarasuk and Yuan (2009), we include operations derived from
hierarchical counterparts, which are 2D-Torus Mikami et al. (2019) and Hier-
archical Ring all-reduce Ueno and Yokota (2019). For each of the strategies,
the inner steps of the operations have been modified to accommodate all MPI
collectives.

For all MPI operations, apart from the reduce, the same number of data
is transferred by the hierarchical counterparts as in the single ring-based col-
lectives. However, in the hierarchical collectives, the number of algorithmic
steps is reduced from being dependent on the total number of nodes to the
number of active nodes in each dimension of the hierarchy.

This reduction can be seen in Fig.15, where the number of steps required
by all strategies to complete a scatter-gather operation is shown as the num-
ber of active nodes in the system is increased.

For each collective, we place the devices such that the minimum number
of tiers are involved for any communication and head-to-head latency (H2H:
propagation, setup and I/O latency) and head-to-tail latency (H2T: data
transfer time) per communication is minimised.

It is important to note that for TopoOpt only single ring-based strate-
gies can be considered as the large circuit reconfiguration time (>10ms) would
lead to significant overhead in communication time. In fact, for this topol-
ogy, the logical connectivity is selected before application runtime and never
changed till the job completion time is reached. Due to the static approach
of the proposed architecture, the ring-based algorithms are the most suitable
and best performing as maximum bandwidth communication can be achieved
without incurring additional network overhead due to circuit and hardware
reconfiguration time (for e.g. when using recursive doubling or hierarchical
ring algorithms).

8. Large-Scale Simulation Results

8.1. Distributed Deep Learning Training

We analyse the capabilities of the proposed technologies for DDL train-
ing applications by comparing the training time of Megatron Shoeybi et al.
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Figure 16: Training time (lines), communication contribution (bars in the second plot) and
equivalent RAMP speed-up (bars third plot) for distributed Transformer encoder models
with different target loss. The numbers on the left and right sides of each bar of the
speed-up plot represent the speed-up values for the RAMP system in respect of Fat-Tree
and TopoOpt, respectively.

(2019) and DLRM models Naumov et al. (2019) on different networks. We
compare the proposed system and strategy with DGX-SuperPod-based Fat-
Tree architecture with oversubscription (as described in sec.7.5) and TopoOpt
for equivalent scale and partitioning. The computation time of each model
has been estimated as described in sec.7.3 and partitioned as described in
sec.7.2.

In Fig.16, we show the expected training time and communication time
contribution for different target cross-entropy (CE) loss Megatron-based Transformer-
encoder models Vaswani et al. (2017). The number of parameters, batch size
and training steps for each model have been derived from the target loss
following the laws described in Kaplan et al. (2020). The models have been
trained using hybrid data parallelism (DP) and model parallelism (MP) with-
out pipelining. The model partitioning strategy used is equivalent to the one
described in Shoeybi et al. (2019).

The level of parallelism varies for each model (500M-566T parameters)
and goes from DP:MP=16:1, through 256:128 to 1:65,536. The total number
of devices used for each model is equal to MP×DP.

The parameters and assumptions used for the tested models are described
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in Table.9 and the profiled models are accessible at Ottino (2022a).
Fig.16 shows a reduction in training time varying from a factor of 1.01-

16.7×. Two independent behaviours can be noticed, where the partitioning
is DP dominant (CE≥1.67) and where it is MP dominant (CE<1.67) and
all 65K nodes are used. In the first case, the speed-up increases significantly
(1.01-5.2×) with a decrease in CE due to an increase in the number of devices
used. This is due to the fact that by increasing the model parallel level and
the number of devices used, the network overhead increases proportionally,
till it becomes dominant (network overhead > 50%). When CE<1.67, an-
other exponential increase in speed-up is achieved. However, this happens at
a much slower rate as the network overhead for most topologies increases only
slightly (82-87%) since the number of devices used stays constant (maximum
scalability is achieved). The Fat-Tree topology is the only one that does not
follow this behaviour due to the higher latency contribution (described in
detail in sec.8.2).

It is important to note that the improvement in overall training time is
the same as the one for a single iteration. This has been calculated using real
profiled computational data and the number of training steps and respective
batch size were found using OpenAI’s ”law of scaling large language models”
formulas Kaplan et al. (2020) (as described in sec.7.2 and sec.7.3).
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for different DLRM model sizes partitioned across 256 to 65k servers
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The speed-up is due to the smaller communication time contribution to
the overall training time. The communication contribution of RAMP ranges
between 7.7-34× smaller when compared to the other described systems and
leads to an absolute change of 23.1-85 percentage points. As shown in figure
16, RAMP’s communication contribution is between 0.6-11%. For the other
systems, the communication contribution ranges from 23.8-94.6% effectively
making the communication time the main bottleneck in training. If future
xPUs would decrease the computation time, RAMP would also effectively
decrease training time, whereas this would stay approximately constant for
other systems. For example, a 2× speed-up in computation would lead to
1.76-1.94× and 1.02-1.6× reduction in training time for RAMP and the other
networks respectively.

Similar behaviour can be noticed for DLRM Naumov et al. (2019) mod-
els. Fig. 17 shows the expected training iteration completion time for DLRM
models of different sizes partitioned onto 256-65K nodes using the partition-
ing strategies proposed in Mudigere et al. (2022). It can be noted that RAMP
achieves a speed-up in iteration time with a reduction factor of up to 7.8-58×
when compared to TopoOpt and Fat-Tree, respectively. RAMP achieves
this speedup while keeping a sub 1% network overhead, whereas the OCS
and EPS baselines suffer from overhead ranging from 12.5-87% and 52-98%
respectively. The low overhead for RAMP is due to the high bandwidth
and fast reconfiguration of the topology which allow for efficient all-to-all
collective operation (which dominates the data-transfer for this model).

The hyper-parameters and partitioning assumptions for the tested DLRM
model are shown in Table.10 and the profiling data for each of the models
are accessible at Ottino (2022a).

8.2. Architectural comparison

We compare the overall performance gain of the proposed RAMP architecture
and strategies at full potential with realistic electrical and optical systems
described in sec. 7.5.

We perform a complete analysis of the speed-up for all the relevant MPI
collective operations in Fig.18. This figure shows the total completion time
for the best performing strategy in the baselines topologies and their RAMP
equivalent for each collective operation and shows the minimum speed-up
that RAMP achieves at maximum scale. RAMP offers a speed-up range of
7.6-171× (reduce-scatter and all-to-all) between different operations. This
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Figure 18: Time taken to perform collective operations with 1GB message using the best
performing strategy on different systems and its corresponding RAMP speed-up at

maximum scalability.

range in speed-up is due to the different data size transmitted in each algo-
rithmic step between collective operations. For the reduce-scatter operation,
the data transmitted decreases with steps (or hierarchies for electrical sys-
tems), which reduces the over-subscription impact on the completion time
due because the majority of data is transferred at high capacity between
neighbouring devices. In contrast, for all-to-all, the data size stays con-
stant with the steps and therefore, for electrical networks, it is limited by
the lower data-rate between inter-rack/system connections. RAMP’s reduce-
scatter speed-up is smaller than other operations where data size decreases
because the computation time reduction is smaller than the node capacity
ratio (2.8× < 5.3×), therefore, increasing the computation time contribu-
tion.

These properties show the capability of the proposed architectures and
strategy to be employed for multiple HPC applications, leading to significant
improvement.

8.3. Architecture, MPI-strategy and bandwidth contributions

We aim to disentangle the joint network architectural/MPI-strategy con-
tributions and the effect of bandwidth on collective completion times. We
compare RAMP to bandwidth matched (same node bandwidth from 0.2
to 12.8 Tbps and no over-subscription ratio) baselines described in sec.7.5.
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Figure 19: Minimum RAMP speed-up for each collective operation at maximum scale in
respect of the baselines when operating at matched node-to-node capacity and scale. The
message size for each collective is 1GB. The best performing strategy for each system is
chosen as comparison.

Fig.19 shows the speedup of the RAMP system and algorithms with respect
to the best-performing strategy on all bandwidth-matched baseline systems.
It can be noted that RAMP produces a speedup factor 1.04-2.24E3 × de-
pending on collective and data-rate. Apart from All2All and Broadcast, a
similar pattern can be seen on the RAMP speed-up against Fat-Tree and
TopoOpt at low data-rate (200 Gbps) and the speed-up further increases
when the data-rate increases. In fact, the speed-up increases up to 32× for
Fat-Tree (Broadcast) and 27× for TopoOpt (All-Gather and Scatter) when
the data-rate is increased from 200Gbps to 12.8Tbps. This is because the
head-to-head (H2H) latency contribution becomes more significant at higher
rates and the significantly reduced communication steps of RAMP lead to
negligible overheads. It can be noticed that for the All-to-All collective, the
speed-up (3-2.2E4×) is purely due to algorithmic efficiencies as it is band-
width dominated. The best-performing baseline (disregarding Broadcast) is
always Fat-Tree due its fast reconfiguration, which allows the use of more effi-
cient strategies (hierarchical). However, as discussed in sec.2.4sec.4.3, scaling
Fat-Tree systems to such performances is unfeasible in terms of power and
cost.

Fig.20 shows all-reduce completion time as the breakdown percentage of
individual contributors (H2T, H2H and computation time) and magnitude
for the electrical architectures and RAMP with their corresponding collec-
tive strategies at maximum scale. It can be seen that the RAMP collec-
tive strategy on the proposed architectures outperforms the collectives on
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Strategy:
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Figure 20: Analysis of how each individual component affects the total collective comple-
tion time for the all-reduce operation for different strategies, systems and message sizes.

electrically switched networks with a speed-up ranging from 9-3.26×104, de-
pending on the data-size and strategy. At small message sizes (<10GB), the
RAMP speed-up is larger due to its relatively smaller H2H latency contri-
bution, which becomes insignificant with larger messages for all systems.
Even when the completion time is dominated by computation and H2T
time for electrical counterparts (torus and hierarchical strategy on a 2D-
Torus and Fat-Tree system respectively for 10GB message), the proposed
architecture leads to a speed-up (7.3×) above the total node-capacity ra-
tio (12.8Tbps/2.4Tbps = 5.3×). This is due to the elimination of over-
subscription in RAMP, which allows high-capacity communication between
any set of devices. The reduction in computation time leads to significant im-
provement in completion time as the high data-rate leads to similar portions
of H2T and compute time (44% and 56% respectively).

8.4. Algorithmic comparison

To showcase the algorithmic performance of the proposed strategies, we
compare RAMP architectures with reduced node capacity (from the theoret-
ical 12.8 Tbps down to 2.4 Tbps) to a Fat-Tree SuperPod-based architecture
in which no oversubscription occurs between intra-DGX nodes and inter-
DGX nodes (from 1:12 to 1:1).

Fig. 21 shows that the proposed algorithm performs better than the ring-
based counterparts. It can be noted that the speed-up increases with the
number of devices involved, especially for small message sizes.
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Figure 21: All-Reduce completion time with different number of GPUs and different mes-
sage sizes, for Ring, 2D-Torus and Hierarchical strategies on Fat-Tree topology vs proposed
strategy and architecture. The marker represents the message size and the colour the strat-
egy. Dashed lines are only used to better differentiate curves. The bottom plot represents
the completion time of each strategy and message size divided by the equivalent RAMP
ones.

There are two main factors which influence the speed-up of RAMP with
respect to the ring-based counterparts: algorithmic steps required and com-
putational speed-up.

8.4.1. Algorithmic steps analysis

As shown in Fig. 21, RAMP’s largest speed-up, with a factor ranging
from 9-10,000×, is with respect to the ring all-reduce at maximum scale.
For the hierarchical counterparts, the speed-up is reduced to a range varying
from 1.16 to 10. This is due to the fact that the ring-based reduction time
increases with the number of devices (at a different rate for each strategy),
whereas the RAMP collective stays almost flat with the increase in size.
This is a result of the different number of algorithmic steps required by each
strategy.

From Fig. 15, it can be noted that the number of algorithmic steps for
the ring collectives increases at a faster rate than the one for the RAMP
collective. Each algorithmic step will incur additional H2H, which will affect
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Figure 22: Head-to-Tail / Head-to-Head (H2T/H2H) ratio for an all-reduce operation for
different scale and message size on Fat-Tree SuperPod using ring-based strategy and the
RAMP system and strategy.

the total completion time.
The analysis of how the steps and H2H latency influence the collective com-
pletion time is shown in Fig 22 where the H2T/H2H latency ratio for an all-
reduce operation using different message sizes varying the number of nodes
is displayed.
In Fig. 21, every point below 100 corresponds to a collective operation which
is H2H latency limited whereas everything above is data transfer limited. To
minimise the collective operation time, the strategy should be data transfer
limited. The H2H latency becomes negligible when the H2T/H2H ratio is
> 10. Fig. 21 shows a similar behaviour between all curves for different
messages. This trend is due to the fact that the H2H latency is independent
of the message size but dependent on the number of algorithmic steps. In
contrast, the opposite is valid for data transfer time, where increasing the
data size, the starting point of the curves shifts upwards (data transfer lim-
ited region). Due to the larger number of algorithmic steps, the ring-based
strategies (apart from the hierarchical with a message of 10GB), even though
starting in a data transfer limited region, as the number of devices increases,
the strategies find themselves in portions of the space where the H2H la-
tency is not negligible. Differently, the small number of algorithmic steps in
RAMP, keeps the ratio approximately constant with the number of nodes.

For the largest message size, both the hierarchical and RAMP strategy
is in the H2H latency negligible regime, minimising the gain of the RAMP
collective.
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workers, using algorithm having a single source and RAMP (multiple sources).

8.4.2. Computational analysis

It can be noted that even when the ring-based collectives are in data-
transfer limited region the RAMP architecture still produces a speed-up of
a factor above 16% in respect of its ring-based counterpart as shown in Fig
21. This advantage is given not only by the smaller H2H contribution but
also by a difference in the computation time of the reduce operation.

Differently from algorithms that use a single source per step, the RAMP
strategies receive information from up to x−1 devices, transforming the local
operation from a 2-to-1 reduction to an x-to-1, leading to higher arithmetic
intensity. This leads to a speedup factor of up to 2.8× considering the x for
maximum scale. The improvement is shown in Fig. 23 in which the com-
putation time required to perform a reduce scatter operation on a message
of 1 GB using n workers is plotted for sequential algorithms and parallel
RAMP network. Note that for all our calculations, we assume half-precision
operations (16 bit) as it is widely used in DDL and the roofline model.

9. Conclusion

Current EPS networks for HPC and distributed deep learning systems are
affected by over-subscription ratios between intra- and inter-rack/system
nodes, effectively reducing the node-to-node capacity, and increasing MPI
operations completion and job completion times. Scaling EPS systems to a
large number of nodes and high node-to-node bandwidth leads to unsustain-
able energy consumption (306-400 MW for a 65k node system with an upper
power budget of ∼30 MW).

We proposed near-Exascale (Ebps) optical network architectures, RAMP,
that provide high scalability (65,536 nodes), all-to-all connections with a
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single-hop, ultra-low and synchronous latency, while being highly energy
efficient (8-9.5 pJ/bit/path or 6.4-8 MW total network power). It sup-
ports nanosecond-speed re-configuration (<20 ns) and high-node bandwidth
(12.8 Tbps) as well as total network capacity (0.84 Ebps). Moreover, the
proposed networks significantly reduce the network cost to $1.62-6.12/Gbit,
offering a 6.4-26.5× improvement over matched-bandwidth and scale state-
of-the-art EPS fat-tree networks. RAMP is capable of achieving 64 times
higher capacity for 33-66% increase in power consumption compared to EPS
systems. Compared to EPS networks with similar cost, the proposed archi-
tecture achieves 10× higher capacity with a ≥ 3.6× lower power consump-
tion.

We co-designed the collective operation strategies called RAMP-x (x=MPI
operation type) and system-level reconfiguration algorithms to enable all
MPI operations. These collective operations allow collective completion us-
ing up to 4 (8 for reduce and all-reduce) algorithmic steps even on large-scale
systems, making the completion time almost scale-independent. We develop
the RAMP Engine, which includes the MPI Engine and Network Transcoder,
capable of handling the overall MPI process. The MPI Engine uses topolog-
ical, application MPI operation information to handle the data processing
in a distributed fashion and generates instructions that will be used by the
Network Transcoder to transmit data in the physical layer in a schedule-less
and contention-less manner.

By evaluating the performance of our network and strategies, we show a
speed-up of 1.16-10,000× compared to equivalent fully connected (no over-
subscription) Fat-tree and Nvidia DGX-A100 SuperPod-based networks at
matched node capacity. The combination of the proposed architecture and
algorithms achieves 7.6-171× speed-up in completion times across all MPI
operations with respect to realistic electronic and OCS network counterparts
at maximum scale. Moreover, we compare the DDL training application
performance using the proposed system against EPS and OCS baselines. We
show that RAMP achieves 1.01-16.7× and 7.8-58× speed-up in Transformer
and DLRM model training time and a reduction of 23.8-84 percentage points
in communication time contribution, making the proposed system a suitable
candidate to meet future DDL jobs requirements.

All opto-electronic devices and communication methods have been demon-
strated in the past in lab experiments. Future work will focus on building a
complete system.
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