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Abstract

Assign to each vertex of the one-dimensional torus i.i.d. weights with a heavy-tail of index τ−1 > 0.
onnect then each couple of vertices with probability roughly proportional to the product of their weights
nd that decays polynomially with exponent α > 0 in their distance. The resulting graph is called scale-
ree percolation. The goal of this work is to study the mixing time of the simple random walk on this
tructure. We depict a rich phase diagram in α and τ . In particular we prove that the presence of hubs
an speed up the mixing of the chain. We use different techniques for each phase, the most interesting
f which is a bootstrap procedure to reduce the model from a phase where the degrees have bounded
verages to a setting with unbounded averages.
2023 Published by Elsevier B.V.
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1. Introduction

In this article we study the mixing time of the simple random walk on a scale-free
ercolation random graph defined on the one-dimensional torus.

.1. Spatial random graphs and scale-free percolation

We say that a graph is spatial if its vertices occupy a position in a given metrical space.
It is reasonable to believe that spatial random graphs are good candidates when one tries to
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model real-world networks where agents have a geographical or physical position (commercial
or social networks, telecommunications, brain cells...). This intuition has been confirmed by the
fact that some of these models exhibit properties that are often observed in data: for example,
it is often the case that the nodes of the network have a degree distribution with polynomial
tails (the network is said to be scale-free), the nodes are separated by a relatively low

umber of edges (the network is said to be small-world) and they are highly clustered. While
hysicists have been studying this kind of networks for some time (see e.g. the review [1]),
athematicians have begun to prove rigorous results on these models only in recent years.
The scale-free percolation random graph (from now on SFP) falls into the category of

nhomogeneous spatial models: not only does the probability of linking two vertices of the
raph depend on their position in space, but also on a random importance, or weight, that
s assigned to each of them. SFP can be considered a combination of long-range percolation
a random graph where the probability of linking two nodes decays, roughly, polynomially
n their distance, [31]) and inhomogeneous random graphs, such as the Norros–Reittu model
where nodes with a high weight are likelier to be linked, [29]). Since its introduction in [12]
FP has been the object of intense research. In particular, the scale-free property has been
roved for the discrete-space model, where the nodes lay on Zd , in [12]. In its continuum
ounterpart, where the position of the nodes is given by a Poisson point process, the graph has
een shown to be scale-free in an annealed sense in [14] and in a quenched sense in [11]. The
onvergence in distribution for the maximum of the degrees on a growing observation window
as been studied in [6]. The problem of graph distances in SFP has been addressed in the
riginal paper for discrete-space and in [14] for the continuum. Depending on the parameters
f the model, SFP can exhibit the small-world property (the graph distance between vertices
ehaves asymptotically as the log of their Euclidean distance), the ultra-small-world property
the graph distance is log log of the Euclidean distance) or can be comparable to Euclidean
istances. A good deal of effort is being put in finding the precise order of these distances,
ee [13,19,35]. Finally, in [11] the authors show the positivity of the clustering coefficient for
ontinuous SFP.

Among the other few spatial models for which these properties have been proved to
arious extents, we mention the ultra-small scale-free geometric network [36], the hyperbolic
andom graph [18], the spatial preferential attachment model [21], the age-dependent random
onnection model [16] and the geometric inhomogeneous random graph [8]. As noted in [17],
ost of these models can be thought as particular cases of the more general weight-dependent

andom connection model. To further confirm our original motivation, we point out that
ome of these random graphs have been proposed to model real-world networks such as the
nternet [30], banking systems [13] and livestock trades [11].

.2. Stochastic processes on spatial inhomogeneous random graphs

Motivated by applications (the spread of fake news on social media, the outbreak of an
pidemics, the diffusion of a computer virus...), we take a step further and look at stochastic
rocesses that evolve over inhomogeneous spatial networks. The interest of the mathematical
ommunity on this topic is quite recent and a few references are available. Among them we
nd [9,24], where the authors study bootstrap percolation on the hyperbolic random graph
nd on the geometric inhomogeneous random graph respectively; [25], dealing with first
assage percolation on different graph models; [22], about a push&pull protocol on the spatial

referential attachment.
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One of the most basic and studied processes on a graph is the simple random walk, where at
ach time-step a particle moves from its current location to any neighboring vertex with equal
robability. Transience and recurrence for this process has been studied for weight-dependent
andom connection models in [17] and for SFP in [20]. The mixing time of the simple random
alk is, roughly put, the time needed for the distribution of the chain to approach its invariant
easure. Quantifying the mixing time of a Markov chain is of primary importance, for example,

or its connection with the spectral gap of the chain (see Remark 2.6) and in computer science
or sampling through Monte Carlo procedures. We refer to Levin and Peres [26] for a complete
ccount on the subject. We could find very few works where the random walk mixing time is
tudied for models that go beyond lattices or graphs without an underlying geometry (like, for
xample, [27] or [4]). We cite [3,10], which deal with long-range percolation in dimension
= 1 and d ≥ 2 respectively, and Dyer et al. [15] which analyzes another similar model.

losely related to our work is the article [23]. There the authors study the spectral gap of the
andom walk on the “threshold hyperbolic random graph” (cf. [25, Definition 9.1]), determining

gap of order N 1−γ , which matches our result in the region where γ ∈ (1, 2) and α is
arge (tending to infinity). This is not surprising: it is well-known that there exists an isometry
etween threshold hyperbolic random graphs and threshold geometric inhomogeneous random
raphs (see e.g. equation (9.3) in [25]), which in turn are close to a local version of our model
hen one lets α → ∞ at fixed γ . As a note-worthy difference between our findings and

hose of Kiwi and Mitsche [23], we consider the mixing time of the model at any finite α. In
articular, the further phase transition we conjecture for γ ∈ (1, 2) at τ = 2 is not detectable

if one looks only at the regime α → ∞.

1.3. Our contribution

In the present paper we address the problem of finding the order of the mixing time
for the simple random walk on an SFP constructed on the one-dimensional torus of size
N . To our knowledge, this is the first time the mixing time is analyzed for a walk on an
inhomogeneous spatial random graph. The graph, called G N , is built as follows: to each node
in TN := {1, . . . , N } we assign independent weights (Wx )x∈TN following a Pareto distribution
of parameter τ − 1, with τ > 1. Once we have fixed the weights, we add an edge between
node x and node y with probability

1 − exp{−Wx Wy∥x − y∥
−α

}

where ∥ ·∥ is the torus-distance and where α > 0 is the parameter which tunes the influence of
the distance between the nodes over the linking probability. So α and τ are the two parameters
of the model, and we call γ := α(τ − 1). It is possible to show that the degrees of the nodes
have a heavy tail of parameter γ , see [12]. We consider then a lazy simple random walk on
G N and study its mixing time tmix(G N ), see Section 2.2 for a precise definition.

We are inspired by Benjamini et al. [3], who studied the same problem for the long-range
percolation random graph on TN . Long-range percolation is equivalent to a version of SFP
where all the weights are set equal to 1, which morally corresponds to the case τ = ∞. The
authors of Benjamini et al. [3] prove that the simple random walk on long-range percolation
undergoes a phase transition in the parameter α: when 1 < α < 2, the mixing time is of order
Nα−1, whereas for α > 2 it is of order N 2 (all up to polylogarithmic factors). Note in particular
the remarkable discontinuity of the exponent at α = 2.

For SFP we depict an almost complete phase diagram in α and τ with a rich variety of
phases. Up to correcting factors, we show that t (G ) behaves as follows, cfr. Fig. 1:
mix N

3
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Fig. 1. Phase diagram of the mixing time of the simple random walk on the SFP random graph on the one-
imensional torus of size N . The symbols ≳ and ≃ indicate an (in)equality up to a slowly varying function in

N .

(i) for γ < 1, tmix(G N ) is upper bounded by a power of log N (Theorem 2.2).
(ii) For 1 < γ < 2 and τ < 2, tmix(G N ) is of order N γ−1 (Theorem 2.3).

(iii) For α ∈ (1, 2) and τ > 2, tmix(G N ) is at least of order Nα−1 (Theorem 2.4).
(iv) For α > 2 and γ > 2, tmix(G N ) is of order N 2 (Theorem 2.5).

Notice that we do not cover the case α < 1 and γ > 1, more details below.
Let us further comment on these results also comparing them with the phase-diagram

orrowed from Heydenreich et al. [20], see Fig. 2. In this diagram, we report the asymptotic
ehavior of the graph distances between vertices with respect to their Euclidean distance for
FP on Zd (so we are only interested in the case d = 1).

(i): in this case, the mean degree of the nodes of SFP on TN goes to infinity as N grows.
evertheless, the resulting graph is far from being the complete graph (even if the graph
istances on the infinite lattice for γ < 1 are bounded by 2, see Fig. 2) and the bound of

mix(G N ) in this regime presents several challenges, see Section 1.4. Our result here holds
lmost surely and we point out that this fact becomes fundamental for the proof of (ii).

hen α < 1 and γ > 1 the mean degree is also unbounded and tmix(G N ) should be again
olylogarithmic. We do not study this regime since it is irrelevant for the investigation of the
olynomial mixing of the other cases.

(ii): we consider this to be the most interesting regime, both from a mathematical viewpoint
nd for applications (see [34]). The degrees have bounded first moment in N , but unbounded
ariance, while the weights have infinite mean. The statement on tmix(G N ) holds in probability,
ee Theorem 2.3, and its proof consists in a bootstrap procedure that brings us back to the
odel with γ < 1, see Section 1.4 for more details. The exponent γ − 1 = α(τ − 1) − 1 of

he mixing time confirms the intuitive fact that the presence of nodes with a very high degree
due to small values of τ ), also called hubs, speeds up the mixing (note that, conversely, there
re dynamics that are slowed down by hubs, see e.g. [22]). This is a fundamental novelty with

espect to the long-range percolation of Benjamini et al. [3], where this phase clearly does not

4
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Fig. 2. Phase diagram of graph distances in SFP on the infinite lattice Zd from Heydenreich et al. [20]. Here
:= α(τ − 1)/d . D(x, y) indicates the graph distance between points x and y (conditioned on being in the infinite

luster of the graph, see the paper for more details), while | · | is the Euclidean distance. See [19] for the precise
eaning of the symbol ≈.

ppear. Another interesting point is that the graph with 1 < γ < 2 and τ < 2 has a very
mall diameter (cfr. Proposition 6.1), but a polynomial mixing time. In this regime the graph
istances in the infinite lattice behave even as the log log of the Euclidean distances, see Fig. 2:
he graph exhibits the ultra-small world property.

(iii): in this case we are only able to show a lower bound of order Nα−1. We make the
onjecture that an upper bound of the same order applies:

onjecture 1.1. Let 1 < α < 2 and τ > 2. There exists c > 0 such that

P(tmix(G N ) < Nα−1(log N )c)
N→∞
−−−→ 1 .

There are several reasons to believe this statement to be true. First of all, when τ > 2
he weights have a finite mean, so it is reasonable to think that the model would behave like
ong-range percolation and the order of tmix(G N ) would match the Nα−1 of Benjamini et al.
3]. Secondly, we can prove the conjecture in certain sub-regions of this phase. Thirdly, the
robability of linking two distant nodes undergoes a phase-transition at τ = 2, cfr. Lemma 3.2.
ne might object, by looking at Fig. 2, that the ultra-small world regime extends to the

triangle” τ > 2, α > 1, γ < 2 (the area between the pink, the purple and the red dotted
ines in Fig. 1), so one might think that the order N γ−1 could extend at least to that part of the
iagram. Indeed, our proof for the upper bound of (ii) works also in the triangle, yielding an
pper bound of N γ−1. Nevertheless, we believe this bound to be suboptimal (notice that for
> 2 one has that γ − 1 > α − 1). This is because we believe tmix(G N ) to be an increasing

unction on τ (that is, higher weights bring to a faster mixing), and if N γ−1 was the right order
n the triangle and Nα−1 outside of the triangle, we would have a sudden decrease of the order
f tmix(G N ) when increasing τ in correspondence of γ = 2 (the red dotted line in Fig. 1).

(iv): the last regime has the slowest possible mixing, N 2. This could be expected by noticing
n Fig. 2 that the graph distances between points behave linearly in their Euclidean distance.
5
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We stress out once more that in this paper we only treat scale-free percolation on the one-
imensional torus. In higher dimension d > 1 we expect a similar picture for the mixing time as
n Fig. 1, with the critical lines α = 1 and α = 2 replaced by α = d and α = 2d , respectively,
nd with γ := α(τ − 1)/d as in Fig. 2.

.4. Techniques and outline of the paper

We introduce precisely our model and state our main theorems in Section 2. After giving
ome preliminary results in Section 3, we carry out the proofs. We summarize here the key
deas and techniques we use.

Upper bound of (i), Section 4: the main idea is to study first a simplified model where
the torus geometry is ignored: we introduce a new random graph G N where two nodes are
linked if and only if the product of their weights is larger than Nα(log N )2. We show in
Proposition 4.1 that, if the weights follow independent Pareto distributions of parameter τ−1,
then the mixing time of the simple random walk on G N is polylogarithmic. In order to do
so, we study the Cheeger constant of G N . While the Cheeger constant is usually used to find
lower bounds on the mixing thanks to a test set, here we analyze the bottleneck ratio of all
the possible sets of vertices. This requires a thorough slicing of the set of vertices according
to their weights and then concentration inequalities to control the number of nodes and their
degree in each slice (Proposition 4.6). Once the mixing of the toy model tmix(G N ) has been
established, we prove that it is substantially equivalent to tmix(G N ), see Proposition 4.2.
Upper bound of case (ii), Sections 5 and 6: this bound requires the most elaborate ideas. The
initial approach is inspired by Benjamini et al. [3]: we divide the torus TN into K chunks
S1, . . . , SK of length L = N γ−1+ε for some small ε > 0. We collapse all the points of the S j ’s
into a unique point and we obtain a new graph Γ on the torus TK . While in [3] the graph
resulting from a similar operation stochastically dominates an Erdős–Rényi random graph
with link probability log K/K , we end up with something quite different. By a rescaling of
order L−(τ−1)−1

of the weights and a coupling procedure, we can show that Γ stochastically
dominates a random graph Γ̃ which is again an SFP. The fundamental point is that this time
Γ̃ has parameters α̃ < α and τ̃ = τ such that γ̃ = α̃(τ̃ − 1) < 1. Furthermore, by using
multicommodity flows as a tool, it is possible to bound tmix(G N ) by some quantities related
to G N and Γ̃ , see Lemma 5.2. This is a refinement of the approach of Benjamini et al. [3],
since for long-range percolation much cruder bounds are sufficient.
The second part of the proof in Section 6 is devoted to the estimate of these quantities. The
first one is tmix(Γ̃ ), which we already know to be at most polylogarithmic in K by case (i).
The second one is the largest diameter ∆G N of the graphs induced by G N on each S j ; we
bound ∆G N by adapting an argument of Deijfen et al. [12] for graph distances on Zd . The
third is the ratio of the total number of edges in G N and in Γ̃ , which we prove to be very
stable thanks to a Bernstein-type concentration inequality in Proposition 6.3. The last two
quantities, called ΠG N and RG N ,Γ̃

in Lemma 5.2, involve the equilibrium measure on G N

and its relation with the equilibrium measure on Γ̃ . Their study, Propositions 6.4 and 6.5, is
quite involved and technical. One is forced not only to bound the maximum of the degrees
on each S j , but also its product with the sum of all the other degrees in S j . We achieve an
optimal bound by using several times the Fuk–Nagaev inequality, see Theorem A.2.

• Upper bound of case (iv), Section 7: we use a second moment method to show the
concentration of the total degree of G N around its mean, see Lemma 7.3. In turn, this allows

us to easily bound tmix(G N ) via the hitting times of the chain in Proposition 7.1.
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• Lower bounds of all regimes, Section 8: the lower bounds of cases are obtained at once in
Proposition 8.1 using a test set in the Cheeger constant. The lower bound of case (iv) uses
the parallel between random walks on graphs and electrical networks: similarly to Benjamini
and Berger [2] we show that there exists a positive fraction of nodes that are cut-points for
the graph (in a particular sense, see Lemma 8.2) and infer in Proposition 8.4 that the mixing
must be at least the square of the number of vertices.

2. Model and results

2.1. Scale-free percolation on the torus

We describe now in detail the distribution of the SFP random graph G N . The set of vertices
f G N is {1, 2, . . . , N }, which we identify with TN := Z/NZ, the torus of size N . The edge
et E(G N ) with law P is constructed in two steps:

for τ > 1, we associate to each x ∈ TN a random weight Wx such that the weights under P
are independent and follow a Pareto distribution with parameter τ − 1, that is

P(W1 ≥ t) =

{
t−(τ−1) t ≥ 1
1 t < 1 .

(2.1)

Once we have fixed the weights of the nodes of the graph, we connect independently any
couple of nodes x, y ∈ TN with probability

P(x ↔ y | Wx ,Wy) := 1 − e−
Wx Wy
∥x−y∥α (2.2)

where α > 0 is another parameter of the graph and ∥x − y∥ denotes the distance of x and
y on the torus, that is, ∥x − y∥ := |x − y| ∧ (N − |x − y|), where ∧ indicates the minimum
between the two.

To make sure that G N is connected, we will also impose that x and x + 1 are linked for all
x ∈ TN (we identify N + 1 with 1).

emark 2.1. The Pareto tail for the weights in (2.1) has been chosen for convenience, rather
han some more general distribution as in [12]. We preferred to sacrifice generality for cleaner
nd more readable calculations in the proofs. We believe that our results would substantially
emain true for weights whose distribution has a regularly varying tail of index τ − 1.

For a given graph G = (V, E) we write {x
G
↔ y}, or simply {x ↔ y} when there is no risk of

onfusion, for the event that x and y are connected by an edge. Dx = Dx (G) :=
∑

y ̸=x 1{y↔x}

indicates the degree of node x ∈ V . For a set A ⊆ V , we write DA = DA(G) :=
∑

x∈A Dx ,
so that DG = 2|E | is twice the total number of edges. For two sets A, B ⊆ V , we also let
DA,B :=

∑
x∈A, y∈B 1{x↔y} be the number of edges going from A to B. The diameter of G is

defined as

diam(G) := max
x, y∈V

D(x, y) ,

where D(x, y) denotes the graph distance between points x and y, that is, the minimal number
of edges of the graph one has to cross to go from x to y.
7
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2.2. The simple random walk on G N and its mixing time

For a given realization of the graph G N , we define now the simple random walk (Xn)n∈N0 .
his is the Markov chain with transition matrix given by{

P(x, y) =
1

2Dx
1{y↔x}

P(x, x) =
1
2 .

(2.3)

We consider this lazy version of the walk in order to avoid periodicity issues. The invariant (in
fact, reversible) measure π for the walk (Xn)n∈N0 is defined as

π (x) = πG N (x) :=
Dx

DG N

, x ∈ TN . (2.4)

aziness ensures that, no matter the starting point of the walk, the distribution of Xn will
pproach π by the ergodic theorem. Our goal is to quantify how long we will have to wait
efore these two measures are in some sense close to each other. To this end, we define

d(n) := sup
x∈TN

∥Pn(x, ·) − π (·)∥TV , n ∈ N

as the distance between the distribution of the walk on G N at time n and π when starting from
the worst possible vertex. Recall that the total variation distance for two measures µ and ν on
G N is given by

∥µ− ν∥TV :=
1
2

∑
x∈TN

|µ(x) − ν(x)|.

he time for (Xn)n∈N0 to get close to π is the so-called mixing time of the chain:

tmix(G N ) := inf
{
n ∈ N : d(n) < 1

4

}
.

For other graphs G we will write tmix(G) for the analogous quantity. Notice that the quantity
1/4 in the definition is arbitrary, see [26, Section 4.5].

2.3. Main results

We call

γ := α(τ − 1).

The main results of our work are the following.

Theorem 2.2. Let γ < 1. There exists c > 0 such that P-a.s., for all N large enough,

tmix(G N ) ≤ (log N )c.

Recall that a measurable function ℓ : N → (0,∞) is said to be slowly varying if, for all
∈ (0,∞), it holds that limt→∞ ℓ(st)/ℓ(t) = 1 [7, Section 1.2].

heorem 2.3. Let 1 < γ < 2 and 1 < τ < 2. For any δ > 0 and for some slowly varying
unction ℓ : N → (0,∞) it holds

P
(
N γ−1(log N )−2−δ

≤ t (G ) ≤ N γ−1ℓ(N )
) N→∞

−−−→ 1.
mix N

8
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Theorem 2.4. Let 1 < α < 2 and τ > 2. For any δ > 0 it holds

P
(
tmix(G N ) ≥ Nα−1(log N )−2−δ

) N→∞
−−−→ 1 .

heorem 2.5. Let α > 2 and γ > 2. There exist constants c1, c2 > 0 such that

P
(
c1 N 2

≤ tmix(G N ) ≤ c2 N 2 log N
) N→∞

−−−→ 1.

The results of these theorems are summarized in the phase-diagram of Fig. 1, where we use
the symbols ≲ and ≳ to omit corrections with slowly varying functions, see Section 2.4.

Remark 2.6. We point out that there is a close relation between tmix(G N ) and the spectral
gap of the chain. Recall that, letting 1 = λ1(N ) > λ2(N ) ≥ · · · ≥ λN (N ) be the eigenvalues
of the matrix P = (P(x, y))x,y∈TN , the spectral gap is defined as 1 − λ2(N ). Then (see for
xample [26, Theorems 12.3 and 12.4]) it holds( 1

1 − λ2(N )
− 1

)
log 2 ≤ tmix(G N ) ≤

1
1 − λ2(N )

log
( 4
πmin

)
ith πmin := minx∈TN π (x). In particular, all our results can be read in terms of the spectral
ap rather than the mixing time of the chain.

.4. Notation

We will use the notation a ∧ b := min{a, b} for a, b ∈ R as well as a ∨ b := max{a, b}.
he use of the symbols c, c1, c2 . . . refers to positive constants whose value may change from

ine to line. Their value might depend on the model parameters α and τ , but will not depend
rom other variables (for example, N ) unless specified otherwise.

The symbols ≲ and ≳ indicate respectively ≤ and ≥ eventually up to a slowly varying
unction in N . Actually, except for the upper bound in Theorem 2.3, all the ≲ and ≳ refer to
olylogarithmic corrections.

. Preliminary results

Let us recall the fundamental inequality

exp(x) ≥ x + 1, x ∈ R (3.1)

hich we will use frequently.

.1. The cheeger constant

We now give a quick overview on the Cheeger constant and its relation to the mixing time.
e recall that for the lazy simple random walk on a graph G = (V, E), the bottleneck ratio

f a subset S ⊂ V of its state space is defined as [26, Remark 7.2]

Φ(S) =
DS,Sc

DS
(3.2)

and the Cheeger constant of the chain is defined as

Φ∗ = min Φ(S) (3.3)

S:π (S)≤1/2

9
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where π is the invariant measure of the walk. The following result links the mixing time of
he chain and its Cheeger constant [33, pg. 58]:

1 − Φ∗

2Φ∗

log 4 ≤ tmix(G) ≤
2
Φ2

∗

log
(

4
πmin

)
(3.4)

where πmin := minx∈V π (x).

3.2. Multicommodity flows

Consider a reversible Markov chain on the vertices V of a graph G with its set of unoriented
edges E , transition matrix P and reversible measure π . Let

E(G) = {(x, y) ∈ V × V : {x, y} ∈ E}

be the set of oriented edges obtained by doubling the unoriented edges. An E-path from x ∈ V
to y ∈ V is a sequence p = e1 e2 . . . em of edges in E(G) such that e1 = (x, x1), e2 =

x1, x2), . . . , em = (xm−1, y) for some vertices xi ∈ V . The length of a path p is indicated as
p|. The set of all paths is called P and the set of all simple paths from x to y is called P(x, y).
e will also use the notation P(G) and P(x, y, G) when we need to specify in which graph

he path is taken. A flow is a function f : P → [0, 1] which satisfies∑
p∈P(x, y)

f (p) = π (x)π (y) ∀x, y ∈ V, x ̸= y.

xtending the definition of f also to oriented edges, we let the edge load of an edge e ∈ E(G)
e

f (e) :=

∑
p∈P
p∋e

f (p)|p| . (3.5)

he congestion of a flow f is

ρ( f ) := max
(a, b)∈E(G)

f ((a, b))
π (a)P(a, b)

. (3.6)

Sinclair [32] establishes the relation between congestion rate and mixing time of the chain
(notice that in [32] the congestion of a flow f as defined in (3.6) is called ρ( f ), while the
etter ρ is used for a related quantity). The author shows (see Theorem 5’ and Proposition 1
herein) that for any flow f

tmix(G) ≤ ρ( f ) log(4|E(G)|) (3.7)

nd that there exists a flow f ∗ (see Theorem 8 and Remark (a) therein) such that

ρ( f ∗) ≤ 32
(
tmix(G)

)2
. (3.8)

.3. A simple lemma

The following lemma will be used for the upper bound of Theorem 2.3 to pin the right
olynomial order of the mixing time in that regime. It should be a well-known fact about
lowly varying functions, but we could not find a reference.
10
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Lemma 3.1. Let (X N )N∈N be a sequence of random variables such that, for each ε > 0,

P(X N > N ε)
N→∞
−−−→ 0.

Then there exists a slowly varying function ℓ : N → (0,∞) such that

P(X N > ℓ(N ))
N→∞
−−−→ 0.

Proof. Take a sequence (εi )i∈N such that εi ↓ 0. We know that for all i ∈ N there exists a
N (i) ∈ N such that

P(X N > N εi ) < εi ∀N ≥ N (i).

alling now ε(N ) := {εi : N (i) ≤ N < N (i + 1)}, we obtain, for N large enough,

P(X N > N ε(N )) < ε(N ).

ince limN→∞ ε(N ) = 0, we are done if we find a slowly varying function ℓ such that

N ε(N )
≤ ℓ(N ).

y Karamata’s representation theorem (see e.g. [7, Theorem 1.3.1]), the function ℓ(N ) =

xp{
∑N

k=1 θ (k)/k} is a slowly varying function as long as limN→∞ θ (N ) = 0. So it is sufficient
o find a function θ with limN→∞ θ (N ) = 0 for which

ε(N ) log N ≤

N∑
k=1

θ (k)
k
.

This is clearly possible by choosing a θ which decays to 0 slowly enough. □

.4. Preliminary results on SFP

We will use in different places the following bound on linking probabilities for SFP.

emma 3.2. For x, y ∈ TN with ∥x − y∥ > 1, it holds

P(x ↔ y) ≤

{
c ∥x − y∥

−α if τ > 2
c ∥x − y∥

−γ (log ∥x − y∥)2 if τ ≤ 2
(3.9)

here c > 0 is a constant that only depends on α and τ .

roof. Abbreviate d = ∥x − y∥ and calculate, using (3.1),

P(x ↔ y) = E
[
1 − e−Wx Wyd−α

]
≤ P(Wx Wy > dα) + E

[
Wx Wyd−α1Wx Wy≤dα

]
. (3.10)

he first term on the right hand side of (3.10) is equal to

P(Wx Wy > dα) = P(Wx > dα) + E
[
P
(
Wy > dαW −1

x |Wx
)
1Wx ≤dα

]
= d−γ

+ c1d−γ

∫ dα

1
w−1 dw = d−γ (1 + c2 log d) . (3.11)

or the second term in (3.10) we must now distinguish between the different regimes. For
> 2 the W ’s have finite expectation, so

E
[
W W d−α1 α

]
≤ c d−α (3.12)
x y Wx Wy≤d

11
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for some c > 0 only depending on τ . For τ ≤ 2 we have

E
[
Wx Wyd−α1Wx Wy≤dα

]
= d−αE

[
WxE

[
Wy1Wy≤dαW−1

x
|Wx

]
1Wx ≤dα

]
= cd−αE

[
Wx1Wx ≤dα

∫ dαW−1
x

1
w1−τ dw

]
.

n particular, when τ = 2, this is equal to (up to a constant factor)

d−αE
[
Wx log(dαW −1

x )1Wx ≤dα

]
≤ d−α log dα

∫ dα

1
w−1 dw = d−α(log dα)2 , (3.13)

hile for τ < 2

d−αE
[
Wx1Wx ≤dα (dαW −1

x )2−τ
]

= c d−γ log dα . (3.14)

ince γ > α for τ > 2, γ = α for τ = 2 and γ < α for τ < 2, putting (3.12), (3.13), (3.14)
ogether with (3.11) into (3.10) yields the desired result. □

. Case γ < 1 : upper bound in Theorem 2.2

In this Section we prove the upper bound of Theorem 2.2. First of all we will show that
he result holds for a simplified model where the geometry of the torus plays no role. Then we
ill prove that we can dominate the mixing time of the original model by the square of the
ixing time of the simplified model up to a polylogarithmic factor.

.1. Proof of Theorem 2.2

Under the measure P, we construct another random graph called G N with vertices on the
torus TN . We use the same random weights {Wx }x∈TN that we use to construct G N , so the two
random graphs are coupled. Then, we put an edge between two vertices in G N if and only if
he product of their weights exceeds Nα(log N )2, that is, for all x ̸= y ∈ TN ,

x ↔ y ⇔ Wx Wy ≥ Nα(log N )2.

We refer to G N as the simplified model. We indicate with Dx the degree of a node in G N , D A

he sum of the degrees of the vertices in A ⊆ TN , π the invariant measure of the lazy simple
andom walk on G N , that is π (x) = Dx/DG N

. Proposition 4.1 shows that the lazy simple
andom walk on G N mixes fast, while Proposition 4.2 tells us that the mixing time on G N is
ounded by the square of that of G N up to a correction. We will prove the two propositions
n the next sections and we point out that their combination yields Theorem 2.2.

roposition 4.1. Let γ := α(τ − 1) < 1. There exists c > 0 such that P-a.s., for N large
nough,

tmix(G N ) ≤ (log N )c.

roposition 4.2. P-a.s., for all N large enough, it holds

t (G ) ≲
(
t (G )

)2
.
mix N mix N

12
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4.2. Preliminary results on the simplified model

Before proving Propositions 4.1 and 4.2, we collect hereby some facts about G N and G N .

Proposition 4.3. P-a.s., for N large enough, the following properties hold:

(i) G N is fully connected.
(ii) E(G N ) ⊆ E(G N ).

(iii)

E[D1 | W1] ≲ N 1−γ W τ−1
1 ∧ N , (4.1)

E[D1 | W1] = (N − 1) ·
{

N−γ W τ−1
1 (log N )−2(τ−1)

∧ 1
}
. (4.2)

(iv) For all x ∈ TN⏐⏐Dx − E[Dx | Wx ]
⏐⏐ ≲ E[Dx | Wx ]1/2, (4.3)⏐⏐Dx − E[Dx | Wx ]
⏐⏐ ≲ E[Dx | Wx ]1/2 . (4.4)

(v) ⏐⏐DG N
− E[DG N

]
⏐⏐ ≲ N (3−γ )/2 (4.5)

N 2−γ ≲ E[DG N
] ≲ N 2−γ . (4.6)

roof. The proof is postponed to Appendix B.1. □

4.3. Proof of Proposition 4.1

In view of the upper bound in (3.4) and the fact that, for N large enough, πmin≥
1

DG N

≥

/N 2 (using item (v) in Proposition 4.3), it will be enough to show that there exists a c > 0
uch that, P-a.s., for N large enough, Φ∗(G N ) ≥ (log N )−c where Φ∗(G N ) is the Cheeger

constant (cfr. (3.3)) associated to the lazy simple random walk on G N . Therefore, we will be
one if we can prove the following: there exists c > 0 such that, P-a.s. for N large enough,

for each S ⊆ TN with π (S) < 1/2 we have

Φ(S) =
DS,Sc

DS
≥ (log N )−c , (4.7)

here in this Section Φ(S) indicates the bottleneck ratio of the set S associated to the lazy
imple random walk on G N .

Observation 4.4. If a set S is such that DS,Sc ≳ N 2−γ , we automatically have (4.7). In fact,
-a.s. for all N large enough, we have that DS ≤ DG N

≲ N 2−γ by Proposition 4.3 item (v).

We partition the set of vertices into “weight slices”. Let

jmax := 2 +
α

2
log N

log log N
and δ := 2−

1
τ−1

nd define

V j := {x ∈ TN : Wx ∈ [Nα/2(log N ) j , Nα/2(log N ) j+1)} j = 1, . . . , jmax − 1

V := {x ∈ T : W ∈ [Nα(log N )2,∞)}
jmax N x

13
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V jc := {x ∈ TN : Wx ∈ [Nα/2(log N )2− j , Nα/2(log N )3− j )} j = 1, . . . , jmax

V +

j := {x ∈ TN : Wx ∈ [δNα/2(log N ) j+1, Nα/2(log N ) j+1)} j = 1, . . . , jmax − 1

V +

jc := {x ∈ TN : Wx ∈ [δNα/2(log N )3− j , Nα/2(log N )3− j )} j = 1, . . . , jmax

he V j ’s partition the vertices of the graph with weight larger than Nα/2 log N , whereas the
V jc ’s partition the vertices with weight smaller than Nα/2(log N )2 (notice that V1 = V1c , while
ll the other sets V j and V jc are mutually disjoint). V +

j and V +

jc are subsets, respectively, of
V j and V jc with vertices that have a high weight (within their weight slice).

bservation 4.5. In the simplified model, for each j , all vertices in V jc are connected to all
ertices in Vℓ, with ℓ ≥ j , since the product of the weight of a vertex in V jc and the weight of
vertex in Vℓ is always larger than Nα(log N )2.

roposition 4.6. Call Q := (log N )τ−1. P-a.s. for all N large enough, the following holds:

(i) for j = 1, . . . , jmax

1
2 N 1−γ /2 Q− j

≤ |V j | ≤ 2N 1−γ /2 Q− j (4.8)
1
2 N 1−γ /2 Q j−2

≤ |V jc | ≤ 2N 1−γ /2 Q j−2 (4.9)

2N 1−γ /2 Q j−3
≤ |V +

jc | ≤ 2N 1−γ /2 Q j−3

and for j = 1, . . . , jmax − 1
1
2 N 1−γ /2 Q−( j+1)

≤ |V +

j | ≤ 2N 1−γ /2 Q−( j+1)
; (4.10)

(ii) for j = 1, . . . , jmax − 1,

DV j > 2DV +

j
and DV jc > 2DV +

jc
. (4.11)

roof. The proof is postponed to Appendix B.2. □

Take now any S ⊆ TN and call Q := (log N )τ−1 as in Proposition 4.6. We have three
possibilities:

Case (A) |V1 ∩ S| ∈

(
Q−2

|V1| ,
(
1 − Q−2

)
|V1|

)
;

Case (B) |V1 ∩ S| ≥
(
1 − Q−2

)
|V1|;

Case (C) |V1 ∩ S| ≤ Q−2
|V1|.

We analyze separately these three cases and show that (4.7) always holds when π (S) < 1/2.
This will conclude the proof.

Case (A) Since all points in V1 are connected to all the other points in V1, in this case we
have, recalling that the symbol ≳ indicates the inequality up to polylogarithmic factors,

DS, Sc ≥ DV1∩S, V1∩Sc=|V1 ∩ S| |V1 ∩ Sc
|≥ Q−4

|V1|
2

(4.8)
≳ N 2−γ ,

o that we have (4.7) thanks to Observation 4.4.
Case (B) Define

j := inf
{

j≤ jmax : |V j ∩ S| <
(
1 − Q−2)

|V j |
}
.

e distinguish two subcases: either j ∈ {2, . . . , jmax} or j = ∞ (that is, the set on the
right-hand side above is empty).
14
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Case (B1) Suppose that j ∈ {2, . . . , jmax}. Recall (cfr. Observation 4.5) that, by construc-
tion, all the points in V j−1 and all the points in V j are connected to all the points in V( j−1)c .

here are now two possibilities: if |V( j−1)c ∩ S| ≤
(
1−Q−2

)
|V( j−1)c |, that is, most of the points

f V( j−1)c are in Sc, then we can bound

DS,Sc ≥ |V j−1 ∩ S| |V( j−1)c ∩ Sc
| ≥ (1 − Q−2)|V j−1| · Q−2

|V( j−1)c |,

therwise we bound

DS,Sc ≥ |V( j−1)c ∩ S| |V j ∩ Sc
| ≥ (1 − Q−2)|V( j−1)c | · Q−2

|V j |.

sing (4.8) and (4.9), we see that in both cases (4.7) holds thanks to Observation 4.4.
Case (B2) Suppose now that j = ∞. If there exists i ∈ {1, . . . , jmax} such that |Vic ∩ S| ≤

1 − Q−2
)
|Vic |, then as before

DS,Sc ≥ |Vi ∩ S| |Vic ∩ Sc
| ≥ (1 − Q−2)|Vi | · Q−2

|Vic |

nd we obtain again (4.7) with (4.8) and (4.9). If such an i does not exist, it means that
U ∩ S| ≥ (1− Q−2)|U | for all U ∈ {V1, V1c , . . . , V jmax , V jc

max}. We want to show now that this
ind of set S is not to be taken into account in (3.3) since π (S) > 1/2. This should intuitively
e true because we are considering a set S that contains the large majority of the points of
ach weight slice. More precisely we decompose (recall that DV1 = DV1c )

π (S) =
DV1∩S +

∑
j=2,..., jmax

(
DV j ∩S + DV jc∩S

)
DV1 +

∑
j=2,..., jmax

(
DV j + DV jc

) .

Consequently, if we can prove that

DV j ∩S > DV j /2 and DV jc ∩S > DV jc /2 ∀ j = 1, . . . , jmax (4.12)

t will follow that π (S) > 1/2. We will show (4.12) just for the DV j ’s, the proof for the DV jc

eing completely similar.
For j = jmax, we notice that a proportion larger than Q−2 of the points of V jmax are inside

he set S. Since all of the points in V jmax have the same degree (which is N − 1), we clearly
ave DV jmax ∩S > DV jmax

/2. Take now j ∈ {1, . . . , jmax − 1}. By (4.8) and (4.10) we know that

|V +

j | ≥
1
4 Q−1

|V j | ≥ Q−2
|V j | . (4.13)

ince by assumption |V j ∩ Sc
| ≤ Q−2

|V j | and since the vertices in V +

j are the vertices of V j

ith the largest weight and therefore with the largest degree, we deduce that DV j ∩S ≥ DV j \V +

j
.

But DV j \V +

j
≥ DV j /2 by (4.11), so that all in all DV j ∩S > DV j /2.

Case (C) We mirror the proof of Case B. Define

ĵ := inf
{

j : |V j ∩ S| ≥ Q−2
|V j |

}
.

s for j , ĵ can be either finite or not.
Case (C1) Suppose ĵ ∈ {2, . . . , jmax}. Then we can reason similarly to Case B1:
If |V( ĵ−1)c ∩ S| ≥ Q−2

|V( ĵ−1)c |, then

DS,Sc ≥ |V( ĵ−1)c ∩ S| |V ĵ−1 ∩ Sc
| ≥ Q−2

|V( ĵ−1)c | · (1 − Q−2)|V ĵ−1|,

therwise we bound

DS,Sc ≥ |V ĵ ∩ S| |V( ĵ−1)c ∩ Sc
| ≥ Q−2

|V ĵ | · (1 − Q−2)|V( ĵ−1)c |.

n both cases, using (4.8) and (4.9), we arrive to (4.7) by Observation 4.4 .
15
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Case (C2) Finally suppose that ĵ = ∞. Similarly to Case B2, if there exists i ∈

{1, . . . , jmax} such that |Vic ∩ S| ≥ Q−2
|Vic |, then

DS,Sc ≥ |Vic ∩ S| |Vi ∩ Sc
| ≥ Q−2

|Vic | · (1 − Q−2)|Vi |

nd we obtain once more (4.7). If such an i does not exist, it means that |U ∩ S| ≤ Q−2
|U |

or all U ∈ {V1, V1c , . . . , V jmax , V jc
max}. Then, setting V( jmax+1)c = ∅ to ease the notation, on the

ne hand

DS,Sc ≥

jmax∑
j=1

|V j ∩ S|

(∑
i≤ j

|Vic ∩ Sc
| +

jmax∑
i=1

|Vi ∩ Sc
|

)

≥
(
1 − Q−2) jmax∑

j=1

|V j ∩ S|

(∑
i≤ j

|Vic | +

jmax∑
i=1

|Vi |

)
(4.14)

hile on the other hand

DS,S ≤

jmax∑
j=1

|V j ∩ S|

( ∑
i≤ j+1

|Vic ∩ S| +

jmax∑
i=1

|Vi ∩ S|

)

≤ Q−2
jmax∑
j=1

|V j ∩ S|

(∑
i≤ j

|Vic | + |V( j+1)c | +

jmax∑
i=1

|Vi |

)
. (4.15)

ince by (4.9) one has |V( j+1)c | ≤ 4Q|V jc |, one sees from (4.14) and (4.15) that

DS ≤
Q−2(4Q + 1)

1 − Q−2 DS,Sc ≤ Q−1/2 DS,Sc .

herefore

Φ(S) =
DS,Sc

DS
=

DS,Sc

DS,Sc + DS,S
≥ c

or some constant c > 0. This concludes the proof of Proposition 4.1.

.4. Proof of Proposition 4.2

For a realization of the simplified model G N , let f
∗

be a flow on G N for which (3.8) holds.
e define now a flow on G N as follows: for each x, y ∈ TN and each path p from x to y we

et

f (p) =

{
f

∗
(p)π (x)π (y)

π (x)π (y) if p is allowed in G N

0 otherwise.

ecall by Proposition 4.3(ii) that E(G N ) ⊆ E(G N ) almost surely for N large enough. Since
G N is connected for N large enough, it is easy to check that f is indeed a flow for G N .

We notice that, by the definition of f , for any edge e ∈ E(G N ) ∩ E(G N ),

f (e) ≤

(
max

π (z))2
f

∗
(e)
z∈TN π (z)
16
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while for any edge e ∈ G N \ G N one has f (e) = 0. Using also that DG N
≤ DG N , we can

ound the congestion of f by

ρ( f ) ≤
DG N

DG N

(
max
z∈TN

π (z)
π (z)

)2
ρ( f

∗
)
(3.8)
≤

(
max
z∈TN

Dz

Dz

)2(
tmix(G N )

)2
.

y (3.7) and the fact that DG N
≲ N 2−γ (as can be seen by (4.5) and (4.6)), we are done if we

rove that for some c > 0

max
z∈TN

Dz

Dz
≤ (log N )c (4.16)

lmost surely for N large enough. But this is true, since each node z has the same weight Wz

in both models, so (4.1), (4.2), (4.3) and (4.4) do the job.

5. Case 1 < τ < 2, 1 < γ < 2 : Upper bound of Theorem 2.3. First part.

We fix some

0 < ε < (γ − 1) ∧
2 − γ

2
(5.1)

nd let

L = L(N , γ, ε) := ⌊N γ−1+ε
⌋ and K = K (N , γ, ε) =

N−ℓ
L

ith ℓ = N mod L . We divide TN into K “chunks” S1, . . . , SK , with

Si := {(i − 1)L , . . . , i L − 1}

or all i = 1, . . . , K − 1 and SK := {(K − 1)L , . . . , N }. Notice that all chunks have length
L except for the last one with length L + ℓ < 2L .

emark 5.1. For simplicity of exposition we will consider from now on ℓ = 0, so that all the
hunks have the same size. Our results will still hold, up to minor corrections, for other values
f ℓ. When the needed modifications will not be minor, we will explicitly indicate what has to
e changed.

We call Γ = Γ (N ) the random graph on TK obtained in the following way: for a realization
f SFP G N , we put a single undirected edge between node i and j in Γ if the point xmax(i)
ith the largest weight in Si is connected to the point xmax( j) with the largest weight in S j .
hat is,

xmax(i)
G N
↔ xmax( j) H⇒ i

Γ
↔ j, i ∈ TK . (5.2)

e include in any case all edges between neighboring i’s, too.

emma 5.2. Let Γ̃ = Γ̃ (N ) be a SFP random graph on TK with parameters

τ̃ = τ and α̃ =
2 − γ −

3
2ε

(τ − 1)(2 − γ − ε)
. (5.3)

It is possible to couple G N and Γ̃ so that

P(E(Γ ) ⊇ E(Γ̃ )) = 1 . (5.4)
17
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Furthermore, it holds that

tmix(G N ) ≲ ∆G N |E(G N )|
(
ΠG N + R2

G N ,Γ̃

1
|E(Γ̃ )|

(
tmix(Γ̃ )

)2
)
, (5.5)

here

∆G N := max
j∈TK

diam(G j
N ) ΠG N := max

j∈TK

∑
z ̸=w∈S j

πG N (z)πG N (w) RG N ,Γ̃
:= max

j∈TK

πG N (S j )
πΓ̃ ( j)

with G j
N indicating the restriction of G N on S j .

Notice that Γ̃ in the lemma is an SFP where γ̃ = α̃(τ̃−1) < 1 . Therefore we already know
that tmix(Γ̃ ) is polylogarithmic in K (and hence in N ) by Theorem 2.2. We point out that the
presence of ε in the definition of L is needed for the stochastic domination (5.4).

We proceed now as follows. We will spend the rest of this section in the proof of Lemma 5.2,
dividing the proof in two parts: in Section 5.1 we describe how to couple the two random graphs
and obtain (5.4), while in Section 5.2 we derive (5.5). Afterwards, in Section 6, we will show
how the upper bound in Theorem 2.3 follows from Lemma 5.2.

5.1. Stochastic domination, proof of (5.4)

We show now that we can build Γ̃ on the same probability space of G N (and therefore of Γ )
so that condition (5.4) is satisfied. The idea is to couple the weights W̃ j in Γ̃ with the weights
in Γ so that, roughly, W̃ j ∼ L−1/(τ−1)Wmax (S j ), where Wmax (S j ) := maxx∈S j Wx = Wxmax( j).
Since we will use this fact in the next section, we rephrase the statement in a more precise
proposition.

Proposition 5.3. There exists a coupling between G N and Γ̃ such that, P-a.s. for all N large
enough,(

L−
1
τ−1 Wmax (S j ) ∨ 1

)
≤ W̃ j ≤ (log L)

2
τ−1 L−

1
τ−1 Wmax (S j ) (5.6)

nd

P
(
E(Γ ) ⊇ E(Γ̃ )

)
= 1 . (5.7)

roof. First of all we check that it is possible to couple the weights of the nodes so that (5.6)
olds. For the lower bound it is enough to check that

P(W̃ j > t) ≥ P
(
L−1/(τ−1)Wmax (S j ) > t

)
∀t ≥ 1 . (5.8)

ndeed, for all t ≥ 1, the right hand side is

1 − P
(
Wx ≤ t L1/(τ−1))L

= 1 −
(
1 − t−(τ−1)L−1)L

≤ t−(τ−1)
= P(W̃ j > t)

here for the inequality we used the fact that (1 − a)L
≥ 1 − aL for all a ≥ 0 and L ≥ 0. By

he definition of stochastic domination of random variables, this gives the lower bound of (5.6).
or the upper bound of (5.6) we shorten Θ j := L−1/(τ−1)UL Wmax (S j ) with UL := (log L)2/τ−1.
irst we claim that, P − a.s., the variable Θ j is larger than, say, 2 for all L large enough. In
act,

P
(
∃ j ∈ T : Θ ≤ 2

)
≤ K

(
1 − (2/U )−(τ−1)L−1)L

≤ K e−(log L)2/2τ−1

K j L

18
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which is summable in L (recall that K can be written as a polynomial in L) and the first
orel–Cantelli lemma gives the claim. It follows that the upper bound of (5.6) holds if we can
rove

P(W̃ j > t) ≤ P
(
Θ j > t

)
∀t ≥ 2 .

This is the case because

P
(
Θ j > t

)
= 1 −

(
1 − (t/UL )−(τ−1)L−1)L

≥ 1 − exp{−(log L)2t−(τ−1)
}

nd this quantity is larger than P(W̃ j > t) = t−(τ−1) for all t ≥ 2 as can be checked
traightforwardly.

Now we consider G N and Γ̃ built on the same probability space with weights satisfying
5.6). We recall that, given the weights, the presence of each edge is independent from the
thers. Hence, showing that for all i ̸= j ∈ TK

P
(
i

Γ
↔ j | {Wx }x∈TN

)
≥ P

(
i

Γ̃
↔ j

⏐⏐ {W̃ℓ}ℓ∈TK

)
(5.9)

ill ensure that there exists a coupling such that (5.7) holds. Without loss of generality we can
ake i = 1 and show (5.9) for all j = 3, . . . , ⌈K/2⌉ (the case j = 2 is trivial, since by the
efinition of the model all nearest neighbors are connected with probability 1, and we stop at
K/2⌉ since we are dealing with the torus distance). Recalling (5.2), the left-hand side of (5.9)
an be bounded as

P(1
Γ
↔ j | {Wx }x∈TN ) ≥ 1 − exp

{
−Wmax (S1)Wmax (S j ) ( j L)−α

}
(5.6)
≥ 1 − exp

{
−W̃1W̃ j j−αL−α+

2
τ−1 (log L)−

4
τ−1

}
here for the first inequality we have used the fact that for all x ∈ S1 and y ∈ S j one has

∥x − y∥ ≤ j L . On the other hand, the r.h.s. of (5.9) is

P
(
1

Γ̃
↔ j

⏐⏐ {W̃ℓ}ℓ∈TK

)
= 1 − exp

{
−W̃1W̃ j ( j − 1)−α̃

}
,

so (5.9) is verified if we prove that

j−αL−α+
2
τ−1 (log L)−

4
τ−1 ≥ ( j − 1)−α̃ . (5.10)

ince α > α̃, it is enough to show (5.10) for j = ⌈K/2⌉. Recalling that L = ⌊N γ−1+ε
⌋ and

K = N/L , we see that

l.h.s. of (5.10) ≳ N−αL
2
τ−1 = N−

2−γ−2ε
τ−1 (5.11)

hile, recalling (5.3),

r.h.s. of (5.10) ≲ K −α̃ ≲ N−
2−γ−3ε/2

τ−1 . (5.12)

omparing (5.11) and (5.12), we obtain that (5.10) holds for all N large enough, which in turn
gives (5.9) and so (5.7). □

5.2. Comparison of the mixing times, proof of (5.5)

We show now how to obtain (5.5), closing the proof of Lemma 5.2. The idea comes
from Benjamini et al. [3] (cfr. Proposition 2.1 thereby), and we will borrow part of its notation;
19
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we will also drop the N from G N and G i
N for simplicity. Recall Section 3.2 for some notation

bout paths. For x, y both in some Si denote as p(x, y) the graph-geodesic in G i between
x and y (if there is more than one, we just choose any). For an edge (i, j) ∈ E(Γ ), let
e(i, j) ∈ E(G) be the edge (xmax(i), xmax( j)). If q = e1e2 · · · e|q| ∈ P(i, j, Γ̃ ) and x ∈ Si ,
y ∈ S j , we denote p(q, x, y) the path in G from x to y that uses p(x, xmax(i)), then the edges
nduced by q and then p(xmax( j), y), that is

p(q, x, y) := p(x, e+

1 )e(e+

1 , e−

1 )e(e−

1 , e+

2 ) · · · e(e+

|q|
, e−

|q|
)p(e−

|q|
, y)

here for each oriented edge ek we indicate with e+

k (respectively e−

k ) its starting (ending)
oint. We also observe that for any q, x, y as above one has

|p(q, x, y)| ≤ 2∆G + |q| ≤ 2∆G |q| . (5.13)

et f ∗ denote a flow on Γ̃ for which (3.8) holds. From it, we will construct a flow f on G as
ollows:

- for x, y ∈ Si , set f (p) := πG(x)πG(y) if p = p(x, y), and 0 otherwise;
- for x ∈ Si , y ∈ S j with i ̸= j , set for any q ∈ P(i, j, Γ̃ )

f (p(q, x, y)) =
f ∗(q)

πΓ̃ (i)πΓ̃ ( j)
πG(x)πG(y)

and 0 otherwise.

t is straightforward to verify that this defines a flow on G. Let us now compute the congestion
ate associated to f . Let (x, y) ∈ E(G) and let x ∈ Si and y ∈ S j .

• If i ̸= j , then denoting q+ (respectively q−) the starting (ending) vertex of a path q we
obtain ∑

p∈P(G)
p∋(x, y)

f (p)|p|
(5.13)
≤ 2∆G

∑
q∈P(Γ )
q∋(i, j)

∑
z∈Sq+

w∈Sq−

f ∗(q)|q|

πΓ̃ (q+)πΓ̃ (q−)
πG(z)πG(w)

≤ 2∆G R2
G, Γ̃

∑
q∈P(Γ )
q∋(i, j)

f ∗(q)|q|

(3.8)
≤ c∆G R2

G, Γ̃

1
|E(Γ̃ )|

(
tmix(Γ̃ )

)2 (5.14)

for some constant c > 0.
• If i = j , any path p that contains the edge (x, y) such that f (p) > 0 must be of the form

p = p(z, w) for some z, w ∈ Si . Therefore∑
p∈P(G)
p∋(x, y)

f (p)|p| ≤

∑
z ̸=w∈Si

f (p(z, w))|p(z, w)| ≤ ∆G

∑
z ̸=w∈Si

πG(z)πG(w) ≤ ∆G ΠG .

(5.15)

ow note that for a flow f one has that

ρ( f )
(3.6)≤

4 |E(G)| max
(a, b)∈E

∑
p∈P(G)
p∋(a, b)

f (p)|p| . (5.16)

he result (5.5) follows by applying (3.7) and (5.16) to tmix(G N ) and then using (5.14) and
5.15).
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6. Case 1 < τ < 2, 1 < γ < 2: Upper bound of Theorem 2.3. Second part.

In the previous section we showed inequality (5.5). In order to conclude the proof of the
pper bound of Theorem 2.3, we will have therefore to bound the quantities appearing on the
ight hand side of (5.5). As mentioned before

tmix(Γ̃ ) ≤ (log N )c (6.1)

ince, for ε small enough, Γ̃ is a SFP random graph with γ̃ = α̃(τ̃ − 1) < 1: by using the
esult of Theorem 2.2 its mixing time is at most logarithmic in the number of nodes, which is

K . We are left to control the quantities ∆G N , ΠG N , RG N ,Γ̃
, |E(G N )| and |E(Γ̃ )|. This is taken

are of in the next four propositions. Also in this section we will drop the N from G N to ease
he notation.

roposition 6.1. Let γ < 2. Recall that ∆G N := max j∈TK diam(G j
N ). There exists c > 0 such

that, P-a.s. for all N large enough,

∆G ≤ (log N )c . (6.2)

Observation 6.2. Mind that, for completeness, Proposition 6.1 is stated for a set of parameters
that is more general than the one considered in this Section, that is, we are not imposing that
1 < τ < 2.

Proposition 6.3. There exists c > 0 such that, P-a.s. for all N large enough,

N γ−1
≤

|E(G)|
|E(Γ̃ )|

≤ N γ−1+cε. (6.3)

roposition 6.4. Recall that RG,Γ̃ := max j∈TK πG(S j )/πΓ̃ ( j). There exists a constant c > 0
uch that, P-a.s. for all N large enough,

RG,Γ̃ ≲ N ε (6.4)

roposition 6.5. Recall that ΠG := max j∈TK

∑
z ̸=w∈S j

πG(z)πG(w). It holds

P
(
|E(G)|ΠG > N γ−1) N→∞

−−−→ 0 . (6.5)

Before giving the proofs of these four propositions in the next subsections, we conclude
he argument for the upper bound of Theorem 2.3. Using (6.1), (6.2), (6.3), (6.4) and (6.5) in
ombination with (5.5) yields that there exist positive constants c1 and c2 not depending on N
uch that

P(tmix(G N ) ≥ (log N )c1 N γ−1+c2ε)
N→∞
−−−→ 0.

ince ε can be taken arbitrarily small, we finally obtain the upper bound of Theorem 2.3 thanks
o Lemma 3.1.

.1. Proof of Proposition 6.1

The proof of the following proposition takes inspiration from the argument of Deijfen et al.
12, Theorem 5.1] which deals with graph distances in SFP. The approach is alternative to the
enormalization approach of Benjamini and Berger [2, Theorem 3.1]. First of all we consider
21
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G1, the graph induced by G on {1, . . . , L}. Take a constant M > 0, to be chosen large enough
ater on. We denote D(·, ·) the graph distance between points of G1. We start by showing that,
or some ξ > 0 and c > 0 (both not depending on M),

P
(
D(1, L) > 3(log L)M)

≤ e−c(log L)ξM
. (6.6)

ix some 0 < δ < (2 − γ )/2 and define

imax :=
⌊

log2

( L
(log L)M

)⌋
.

or i = 2, . . . , imax let

Ai := [2−i−1L , 2−i L) ∩ N and Bi := [L − 2−i L , L − 2−i−1L) ∩ N

nd A1 = B1 = [ 1
4 L , 3

4 L)∩N. We want to show that in each Ai (respectively in each Bi ) there
is a point ai (resp. bi ) such that ai ↔ ai+1 (resp. bi ↔ bi+1) with high probability. Notice that if
the event

⋂
i

{
ai ↔ ai+1, bi ↔ bi+1

}
happens, then D(1, L) ≤ 2(imax + (log L)M ) ≤ 3(log L)M ,

since (log L)M is an upper bound of the distance between 1 and the rightmost point of Aimax
(resp. between the leftmost point of Bimax and L), being neighboring points always connected.
We focus on the Ai ’s, since for the Bi ’s the same calculation holds.

Let ai be the point in Ai with the largest weight:

ai := arg max
x∈Ai

Wx

and let F be the event

F := {Wai ≥ |Ai |
1−δ
τ−1 , ∀ i = 1, . . . , imax}

where |Ai | indicates as usual the cardinality of the set Ai . We bound

P(Fc) ≤

imax∑
i=1

P
(
Wai < |Ai |

1−δ
τ−1

)
≤

imax∑
i=1

(
1 − |Ai |

−1+δ
)|Ai |

≤

imax∑
i=1

e−|Ai |
δ
.

y upper bounding the last expression with imax times the largest summand (which corresponds
o i = imax ) and noticing that |Aimax | ≤ (log L)M we find

P(Fc) ≤ exp
{
−c(log L)Mδ} (6.7)

or some c > 0 not depending on L .
On the other hand, conditioning on F , it is unlikely that for some i one has ai ̸↔ ai+1:

P
( ⋃

i=1,...,imax −1

{ai ̸↔ ai+1}

⏐⏐⏐ F
)

≤

∑
i=1,...,imax

E
[
exp

{
−Wai Wai+1 |ai − ai+1|

−α
} ⏐⏐⏐ F

]
≤

∑
i=1,...,imax

exp
{
−|Ai |

1−δ
τ−1 |Ai+1|

1−δ
τ−1 2αi L−α

}
(6.8)

where for the last passage we have used that |ai − ai+1| ≤ L2−i . Since |Ai | is 2−i−1L up to a
nit and that δ < (2 − γ )/2, one can check that the exponent in the last display is bounded by

−|Ai |
1−δ
τ−1 |Ai+1|

1−δ
τ−1 2αi L−α

≤ −c (2−i L)
2(1−δ)−γ
τ−1 ≤ −c (2−imax L)

2(1−δ)−γ
τ−1 ≤ −c (log L)M 2(1−δ)−γ

τ−1

here c > 0 is a constant not depending on L , possibly different of the one appearing in (6.7).
ith this bound at hand, we conclude the estimate (6.8) obtaining

P
( ⋃

{ai ̸↔ ai+1}

⏐⏐⏐ F
)

≤ exp
{
−c (log L)M 2(1−δ)−γ

τ−1
}
. (6.9)
i=1,...,imax −1
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Call now ξ := min{δ,
2(1−δ)−γ
τ−1 }. The bounds (6.7) and (6.9) yield

P
( ⋃

i=1,...,imax −1

{ai ̸↔ ai+1}

⏐⏐⏐ F
)

≤ P
( ⋃

i=1,...,imax −1

{ai ̸↔ ai+1}

⏐⏐⏐ F
)

+ P(Fc) ≤ 2e−c(log L)ξM

and this implies (6.6) absorbing the factor 2 in the constant c.
We notice that the bound (6.6) also works if we replace D(1, L) by any D(x, y) with

x, y ∈ G1, since we could repeat the whole argument here above with x and y replacing
1 and L and obtain an even better bound. Hence, by a union bound,

P
(
∆G > 3(log L)M)

= P
(
∃ j ∈ {1, . . . , K } , ∃x, y ∈ G j

: D(x, y) > 3(log L)M)
≤ K L2P

(
D(1, L) > 3(log L)M)

≤ N γ+εe−c(log N )ξM
.

The last quantity can be made summable in N by choosing M large enough so that, by the first
Borel–Cantelli lemma, we are done. Notice that we ignored the fact that the graph induced on
the K th the graph induced on SK = {(K −1)L , . . . , N } might be of a size larger than L; since
this size cannot be larger than 2L − 1, though, the proof can be easily adapted.

6.2. Proof of Proposition 6.3

First of all we claim that, P-a.s. for all N large enough,

N ≤ |E(G)| ≤ N (log N )4. (6.10)

he lower bound is obvious. We begin by bounding, for any x ∈ TN , and considering N odd
for simplicity,

E[Dx | Wx ] = 2 + 2
(N−1)/2∑

j=2

E
[
1 − e−Wx Wx+ j j−α

| Wx
]

≤ 2 + 2
(N−1)/2∑

j=2

(
E

[
Wx Wx+ j

jα 1{Wx+ j< jα/Wx} | Wx

]
+ P(Wx+ j ≥

jα

Wx
| Wx )

)
.

y an elementary calculation, one can see that the j th term of the sum equals 1 if jα < Wx ,
hile it is smaller than c1W τ−1

x /jγ for some c1 > 0 if jα > Wx . Hence

E[Dx | Wx ] ≤ 2W 1/α
x + 2c1

(N−1)/2∑
j=W 1/α

x

W τ−1
x

jγ
≤ c2W 1/α

x (6.11)

here the last inequality can be checked by using the approximation of sums by definite
ntegrals. Notice that Dx cannot be larger than N , so (6.11) implies

E[Dx | Wx ] ≤ c2W 1/α
x ∧ N . (6.12)

urthermore, for all t > 1, it holds

P(D > t E[D | W ] | W ) ≤ e−ct .
x x x x
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The inequality can be checked via Bernstein’s inequality, see Lemma A.1 with the X i ’s given
by 1{x↔x+i} for i = 1, . . . , N − 1, taking M = 1 and noticing that

σ 2
=

1
N − 1

∑
i=1,...,N−1

Var(1{x↔x+i} | Wx ) ≤
1

N − 1

∑
i=1,...,N−1

E[1{x↔x+i} | Wx ]

= E[Dx | Wx ].

his ensures that

P
(
∃x : Dx > (log N )2E[Dx | Wx ]

)
≤ N E

[
P
(
Dx > (log N )2E[Dx | Wx ] | Wx

)]
≤ Ne−c(log N )2

, (6.13)

hich is summable in N : we can conclude, thanks to the first Borel–Cantelli lemma and using
6.12), that almost surely for N large enough

Dx ≤ {c2W 1/α
x ∧ N }(log N )2

∀ x ∈ TN . (6.14)

e are now ready to bound the total number of edges in G. Thanks to (6.14) we get

P(|E(G)| > N (log N )4) ≤ P
( ∑

x∈TN

{c2W 1/α
x ∧ N } > N (log N )2

)
.

e use once more Bernstein’s inequality: we take in Lemma A.1 the independent variables
X i = {c2W 1/α

i ∧ N }, the value M = N and bound

σ 2
≤ E

[
c2

2W 2/α
1 ∧ N 2]

=

∫ N2

1
P
(
c2

2W 2/α
1 > t

)
dt ≤ c3 N 2(1−γ /2)

≤ c3 N .

ernstein’s inequality then yields

P(|E(G)| > N (log N )4) ≤ e−c(log N )2
.

he last quantity is summable in N , so the Borel–Cantelli lemma finally gives the upper bound
n (6.10).

We turn our attention to |E(Γ̃ )|. This is the number of edges in a SFP model with K vertices
nd γ̃ < 1. By item (ii) in Proposition 4.3 on the one hand, and by (4.16) on the other, we
now that, P-a.s. for all N large enough,

|E(Γ̃ )| ≤ |E(Γ̃ )| ≤ |E(Γ̃ )|(log K )c . (6.15)

here Γ̃ indicates the simplified model described in Section 4.1. At the same time, item (v)
n Proposition 4.3 tells us that

K 2−γ̃ ≲ |E(Γ̃ )| ≲ K 2−γ̃ . (6.16)

ince 2 − γ̃ = 1 + ε/(4 − 2γ − 2ε) and recalling that K = N/L ≥ N 2−γ−ε, (6.15) and (6.16)
ield, for some c4, c5 > 0 that can be chosen independently of ε,

N 2−γ−c4ε ≲ |E(Γ̃ )| ≲ N 2−γ−c5ε.
his, together with (6.10), implies (6.3).
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6.3. Proof of Proposition 6.4

For simplicity in this proof we abbreviate DS j for DS j (G) and D̃ j for D j (Γ̃ ). We use the
ower bound in (6.3) to see that

πG(S j )
πΓ̃ ( j)

≤ N 1−γ
DS j

D̃ j
∀ j ∈ TK . (6.17)

herefore we want to show that there exists c > 0 such that, P-a.s. for N large enough, for all
j ∈ TK

DS j

D̃ j
≲ N γ−1+ε (6.18)

hich together with (6.17) implies (6.4). We claim that, P-a.s. for all N large enough, for all
j ∈ TK

DS j ≲
{

L ∨ max
x∈S j

W 1/α
x

}
∧ N (6.19)

D̃ j ≳
{

L−1 max
x∈S j

W τ−1
x ∨ 1

}
∧ N 2−γ−ε (6.20)

Before proving (6.19) and (6.20) we show how to conclude by analyzing all possible cases. Fix
j and abbreviate W := maxx∈S j Wx . Recall that L = ⌊N γ−1+ε

⌋ and that we are considering
the case γ = α(τ − 1) ∈ (1, 2). We point out that in principle some of the cases listed below
might be empty, depending on the values of α and τ .

Case 1. W > Lα . In this case we obtain DS j ≲ W 1/α
∧ N and D̃ j ≳ L−1W τ−1

∧ N 2−γ−ε.
Here we distinguish two further sub-cases.

Case 1.a. W > N 1/(τ−1). We have DS j ≲ N and D̃ j ≳ N 2−γ−ε, so (6.18) is verified.
Case 1.b. W ≤ N 1/(τ−1). We get DS j ≲ W 1/α and D̃ j ≳ L−1W τ−1, so that (6.18) is

verified since W −(τ−1)+1/α
≤ 1.

Case 2. W ≤ Lα . Here we have DS j ≲ L ≤ N γ−1+ε, while for (6.20) we distinguish again
sub-cases.

Case 2.a. W > L1/(τ−1). It holds D̃ j ≳ L−1W τ−1
∧ N 2−γ−ε

≥ N−(γ−1+ε)W τ−1
∧

N 2−γ−ε. If W τ−1 > N , then D̃ j ≳ N 2−γ−ε, so that DS j /D̃ j ≲ N 2γ−3+2ε
≤

N γ−1. If instead W τ−1
≤ N , then D̃ j ≳ N−(γ−1+ε)W τ−1, so that DS j /D̃ j ≲

N 2(γ−1+ε)W −(τ−1)
≤ N 2(γ−1+ε) N−1

≤ N γ−1. So in both cases (6.18) is
verified.

Case 2.b. W ≤ L1/(τ−1). In this case again D̃ j ≳ N 2−γ−ε and (6.18) holds.

e move to the proof of (6.19) and (6.20). For Eq. (6.20) we recall the simplified model
escribed at the beginning of Section 4 and write D̃ j for the degree of node j in the simplified
odel related to Γ̃ . We have, using item (ii) of Proposition 4.3,

D̃ j ≥ D̃ j

(4.2), (4.4)
≳ E[D̃ j | W̃ j ]

(4.2)
= (K − 1) ·

{
K −γ̃ W̃ τ−1

j (log K )−2(τ−1)
∧ 1

}
(5.6)
≳ K 1−γ̃

{
L−1 max

x∈S j
W τ−1

x ∨ 1
}

∧ K

hich yields (6.20) since K 1−γ̃
≥ 1 and recalling that K = N L−1

≥ N 2−γ−ε.
25
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For Eq. (6.19), we first of all notice that, by (6.14),

DS j ≲
∑
x∈S j

W 1/α
x .

all

Y j :=

∑
x∈S j

W 1/α
x , M j := max

x∈S j
W 1/α

x .

e claim that there exists a constant Q > 0 such that

P(∃ j ∈ TK : Y j ≥ Q(L ∨ M j )) is summable in N . (6.21)

hanks to the Borel–Cantelli lemma, this implies (6.19) by also noticing that DS j ≲ N by
6.10). Let us show (6.21).

We focus on j = 1. Call Y := Y1 and M := M1 and let µ := E[W 1/α
x ] < ∞. We distinguish

etween the cases where M is smaller or larger than L . In the first case we can use directly the
uk–Nagaev inequality (A.2) with y = L and x = (Q −µ)L to get that there exists a constant
> 0 such that

P(Y ≥ Q(L ∨ M) , M ≤ L) ≤

(
cL

L1−γ

(Q − µ)L

)Q−µ

≤ L−(Q−µ)(γ−1) , (6.22)

here the last inequality holds for Q large enough.
When instead the maximum exceeds L we proceed as follows. First of all we divide the

ossible values of M in intervals and bound

P(Y ≥ Q(L ∨ M) , M > L) ≤

∞∑
ℓ=1

P
(

Y ≥ Q2ℓ−1L , M ∈ (2ℓ−1L , 2ℓL]
)
. (6.23)

t the cost of a union bound we can suppose that WL is the largest Wx in S1, so that, for each
, the ℓ-th summand in the last display can be dominated by

L P
(

Y ≥ Q2ℓ−1L , W 1/α
L ∈ (2ℓ−1L , 2ℓL] , M ′

≤ W 1/α
L ≤ 2ℓL

)
≤ L P

(
W 1/α

L ∈ (2ℓ−1L , 2ℓL]
)
P
(

Y ′
+ 2ℓL ≥ Q2ℓ−1L , M ′

≤ 2ℓL
)

(6.24)

here Y ′
:=

∑L−1
x=1 W 1/α

x and M ′
:= maxx=1,...,L−1 W 1/α

x . On the one hand,

P
(
W 1/α

L ∈ (2ℓ−1L , 2ℓL]
)

≤ 2−γ (ℓ−1)L−γ (6.25)

nd on the other, using again the Fuk–Nagaev inequality (A.2), for Q large enough,

P
(
Y ′

+ 2ℓL ≥ Q2ℓ−1L , M ′
≤ 2ℓL

)
≤ P

(
Y ′

≥ µL + Q′2ℓL , M ′
≤ 2ℓL

)
≤

(
cL

(2ℓL)1−γ

Q′2ℓL

)Q′

≤ L−Q′(γ−1) (6.26)

here Q′
=

Q
2 − 1 −

µ

2 is a constant that can be made arbitrarily large by taking Q large.
umming up, using (6.24), (6.25) and (6.26) into (6.23) we obtain

P(Y ≥ Q(L ∨ M) , M > L) ≤

∞∑
L1−γ 2−γ (ℓ−1)L−Q′(γ−1)

= 2L−(Q′
+1)(γ−1).
ℓ=1

26
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This last expression together with (6.22) show that

P(∃ j ∈ {1, . . . , K } : Y j ≥ Q(L ∨ M j )) ≤ KP(Y ≥ Q(L ∨ M)) ≤ K L−Q′′

(6.27)

here Q′′ is a constant that can be made arbitrarily large by taking Q large. Since L =

N γ−1+ε
⌋ and K = N/L , by taking Q large enough we can make (6.21) true, which in turn

mplies (6.19) as mentioned before. This concludes the proof of Proposition 6.4. □

.4. Proof of Proposition 6.5

Fix any j ∈ TK and call z∗ the point in S j realizing the maximum of πG(z) in S j . We notice
hat ∑

z ̸=w∈S j

πG(w)πG(z) = πG(z∗)
∑
w ̸=z∗

πG(w) +

∑
z ̸=z∗

πG(z)
∑
w ̸=z

πG(w)

≤ 2πG(S j )
(
πG(S j ) − πG(z∗)

)
.

y using that |E(G)| ≥ N , the probability on the left-hand side of (6.5) can be therefore upper
ounded using also a union bound by

l.h.s. of (6.5) ≤ K P
(
DS1

(
DS1 − D∗

S1

)
> N γ

)
ith D∗

S1
:= maxx∈S1 Dx . We call

Y :=

∑
x∈S1

W 1/α
x , M := max

x∈S1
W 1/α

x .

Let x†
:= arg maxx∈S1

Wx , that is, x† is the point in S1 with largest weight. Let D†
S1

:= Dx†

e its degree. Observe first of all that

DS1 − D∗

S1
≤ DS1 − D†

S1
.

his gives that

K P
(
DS1

(
DS1 − D∗

S1

)
> N γ

)
≤ K P

(
DS1

(
DS1 − D†

S1

)
> N γ

)
o we will focus on this latter expression from now on. For a constant c1 > 0 sufficiently large,
efine the event

E1 :=
{

DS1 ≤ (log N )c1
{

M ∨ L
}}
.

e can then write

KP
(
DS1

(
DS1 − D†

S1

)
> N γ

)
≤ KP

(
{DS1

(
DS1 − D†

S1

)
> N γ

} ∩ E1

)
+ KP(Ec

1) . (6.28)

We claim now that the quantity KP(Ec
1) converges to 0 as N → ∞. In fact, if we let

E2 :=
{
∃x : Dx > (log N )2E[Dx | Wx ]

}
e have, for some c2 > 0 and using (6.12),

KP(Ec
1 ∩ E2) + KP(Ec

1 ∩ Ec
2) ≤ KP(E2) + KP(Y ≥ {M ∨ L}(log N )c2 ).

he quantity KP(E2) goes to 0, cfr. (6.13), while the second term goes to 0 as well thanks to
6.27). Turning to KP

(
{DS1

(
DS1 − D†

S1

)
> N γ

} ∩ E1
)

in (6.28), the same strategy gives an
pper bound by

KP
(
{DS

(
DS − D† )

> N γ
} ∩ E1 ∩ Ec

)
+ K P(E2)
1 1 S1 2

27
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≤ KP
({

M ∨ L
}
(log N )c1+2(Y − M) > N γ

)
+ KP(E2)

here KP(E2) = o(1) vanishes as N → ∞, and we used that, under Ec
2, by (6.12)

DS1 − D†
S1

≤ (log N )2
∑
x ̸=x†

W 1/α
x = (log N )2(Y − M).

Therefore, in order to show that the left-hand side of (6.5) tends to zero, it will be enough to
rove that for some c > 0 one has

lim
N→∞

K P
({

M ∨ L
}
(Y − M) > N γ (log N )−c)

= 0 . (6.29)

e bound this probability depending on the value of M .

ase M < L(log N )c first of all we use that
{

M ∨ L
}
< L(log N )c to see that

P
({

M ∨ L
}
(Y − M) > Nγ

(log N )c , M < L(log N )c)
≤ P

(
Y > Nγ

L(log N )2c , M < L(log N )c).
Then, since µ := E[W 1/α

x ] < ∞ and since N γ L−1(log N )−2c
≥ 2µL by (5.1), one obtains

P
(
Y > Nγ

L(log N )2c , M < L(log N )c)
≤ P

(
Y > Nγ

2L(log N )2c + µL , M < L(log N )c).
sing the Fuk–Nagaev inequality (A.2) we bound the right hand side of the last display with(

c1L
(L(log N )c)1−γ

N γ L−1(log N )−2c

) Nγ

2L(log N )2c
1

L(log N )c
≤

(
(log N )c2 L3−γ N−γ

)Nγ L−2(log N )−4c

or some c1, c2 > 0. Since there exists δ > 0 such that L3−γ N−γ < N−2δ and N γ L−2 > N 2δ ,
or N large enough we can bound

P
({

M ∨ L
}
(Y − M) > Nγ

(log N )c , M < L(log N )c)
≤ N−δN δ . (6.30)

ase M ≥ N 1−2ε when the maximum is large, one can simply bound

P
({

M ∨ L
}
(Y − M) > Nγ

(log N )c , M ≥ N 1−2ε)
≤ P

(
M ≥ N 1−2ε)

≤ N−1+2εγ . (6.31)

ase M ∈ [L(log N )c, N 1−2ε) in this case {M ∨ L} = M and we divide the possible values
f M in intervals. Let ℓmin := c log2 log N and ℓmax := (2 − γ−3ε) log2 N (here and below we
re ignoring the fact that ℓmin and ℓmax might not be integers, in which case we could just take
heir integer part). We partition

P
(
M(Y − M) > Nγ

(log N )c , M ∈ [L(log N )c, N 1−2ε)
)

=

ℓmax∑
ℓ=ℓmin+1

P
(
Y − M > Nγ

M(log N )c , M ∈ Iℓ
)

here Iℓ := [L2ℓ−1, L2ℓ). We bound now the probability in the sum. At the cost of a union
ound we can suppose that WL is the largest Wx in S1. Calling Y ′

:=
∑L−1

x=1 W 1/α
x , it holds

P
(
Y − M > Nγ

M(log N )c , M ∈ Iℓ
)

≤ L P
(
Y − M > Nγ

M(log N )c , M = W 1/α
L ∈ Iℓ

)
≤ L P(W 1/α

L ∈ Iℓ)P
(
Y ′ > Nγ

L2ℓ(log N )c

)
. (6.32)

y (6.21) and the first Borel–Cantelli lemma, we know that with probability 1 there exists a
Q > 0 such that, for all N large enough, Y ′ < Y < Q(L ∨ M). Therefore, keeping into account
hat N γ L−12−ℓ(log N )−c Q−1 > L for all ℓ ∈ [ℓmin, ℓmax], for N large enough

P
(
Y ′ > Nγ )

≤ P(M > Nγ ) ≲ N−γ 2
L1+γ 2γ ℓ .
L2ℓ(log N )c QL2ℓ(log N )c

28
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Plugging this into (6.32) and using (6.25) yields

P
(
Y − M > Nγ

M(log N )c , M ∈ Iℓ
)
≲ N−γ 2

L2
≤ N−γ 2

+2γ−2+2ε

or all ℓmin ≤ ℓ ≤ ℓmax. Since the number of ℓ’s is logarithmic, we conclude that

P
({

M ∨ L
}
(Y − M) > Nγ

(log N )c , M ∈ [L(log N )c, N 1−2ε)
)
≲ N−γ 2

+2γ−2+2ε. (6.33)

We gather the results in (6.30), (6.31) and (6.33) to see that

K P
({

M ∨ L
}
(Y − M) > N γ (log N )−c) ≲ N 2−γ−ε(N−δN δ

+ N−1+2εγ
+ N−γ 2

+2γ−2+2ε)

≲ N−(γ−1)+3ε

hich proves (6.29) for ε small enough. □

. Case α > 2, γ > 2 : upper bound of Theorem 2.5

For the reader’s convenience we restate the upper bound of Theorem 2.5 as a Proposition:

roposition 7.1. Let α > 2 and γ > 2. There exists c > 0 such that, P-a.s. for all N large
enough, we have

tmix(G N ) ≤ cN 2 log N .

Before proving the Proposition, we need two lemmas.

Lemma 7.2. Let α > 2 and γ > 2. There exists c > 0 such that we have

E[DG N ]≤ cN (7.1)

and

Var(DG N )≤ cN .

Proof. In the regime α > 2 and γ > 2 we can use Deijfen et al. [12, Theorem 2.2] to infer
that the node degrees have a variance which is bounded in N and so, in particular, they have a
bounded mean. In fact, both E[Dx ] and Var(Dx ) are dominated by their infinite counterpart on
Z since the random variables {1{x↔y} : x, y ∈ TN } are positively correlated. The result (7.1)
on the expectation of DG N immediately follows.

As for the variance, the first step is the simple observation that

E
[
D2

G N

]
= NE

[
D2

1

]
+

∑
x ̸=y∈TN

E
[
Dx Dy

]
= cN +

∑
x ̸=y∈TN

E
[
Dx Dy

]
(7.2)

or some constant c > 0. Note that here we use the fact that the degrees have bounded variance.
et us look, for x ̸= y, at

E
[
Dx Dy

]
=E

[(
1{x↔y} +

∑
z ̸=x, y

1{x↔z}

)(
1{x↔y} +

∑
w ̸=x, y

1{y↔w}

)]
=

∑
z ̸=x, y

∑
w ̸=x, y, z

P(x ↔ z)P(y ↔ w) +

∑
z ̸=x, y

E
[
1{x↔z}1{y↔z}

]
+

∑
E

[
1{x↔y}

(
1{x↔z} + 1{y↔z}

)]
+ E

[
12

{x↔y}

]
. (7.3)
z ̸=x, y

29
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The first double sum in the last expression is upper bounded by E[Dx ]E[Dy] =
∑

z ̸=x P(x ↔

z)
∑

w ̸=y P(y ↔ w), and therefore

E
[
Dx Dy

]
≤ E[D1]2

+ Rx,y (7.4)

with Rx,y given by∑
z ̸=x, y

E
[
1{x↔z}1{y↔z}

]
+

∑
z ̸=x, y

E
[
1{x↔y}1{x↔z}

]
+

∑
z ̸=x, y

E
[
1{x↔y}1{y↔z}

]
+ P(x ↔ y) .

(7.5)

We will now provide a bound for Rx,y . Using the inequality P(A ∩ B) ≤ P(A) ∧ P(B) for
any two events A and B and the fact that the weights have finite mean, we can see that

E
[
1{x↔z}1{y↔z}

]
≤ P(x ↔ z) ∧ P(y ↔ z)

(3.9)
≤ ∥x − z∥−2−ε

∧ ∥y − z∥−2−ε

for some ε > 0 such that γ, α > 2 + ε. Noticing that ∥x − z∥ ∨ ∥y − z∥ ≥
⌈
∥x − y∥/2

⌉
for

all z ∈ TN , we bound∑
z ̸=x, y

E
[
1{x↔z}1{y↔z}

]
≤ 2

∞∑
ℓ=

⌈
∥x−y∥

2

⌉ ℓ−2−ε
≤ c ∥x − y∥

−1−ε (7.6)

or some c > 0. Analogously, using that E[1{x↔y}1{x↔z}] ≤ P(x ↔ y) when ∥x −z∥ ≤ ∥x − y∥

hile E[1{x↔y}1{x↔z}] ≤ P(x ↔ z) when ∥x − z∥ ≥ ∥x − y∥, we bound∑
z ̸=x, y

E
[
1{x↔y}1{x↔z}

]
≤ 2∥x − y∥ · ∥x − y∥

−2−ε
+ 2

∑
ℓ=⌈∥x−y∥⌉

ℓ−2−ε

≤ c∥x − y∥
−1−ε (7.7)

or some c > 0. We can bound similarly the third term of (7.5). Again (3.9) entails that the last
erm of (7.5) is upper-bounded by ∥x − y∥

−2−ε. This estimate, (7.6) and (7.7) plugged back
nto (7.5) yield Rx,y ≤ c∥x − y∥

−1−ε for some constant c > 0. This fact and (7.4) bring to∑
x ̸=y∈TN

E[Dx Dy] ≤

∑
x ̸=y∈TN

(
E[D1]2

+ ∥x − y∥
−1−ε

)
≤ N 2E[D1]2

+ cN . (7.8)

or some c > 0, where we have used the fact that
∑

∞

n=1 n−1−ε < ∞.
We can conclude with (7.2) and (7.8) that, for some c1 > 0,

Var(DG N ) ≤ N 2E[D1]2
+ c1 N − E[DG N ]2

= c1 N . □

For our purpose, not only do we need the mean and variance of the total degree, but also a
oncentration result.

emma 7.3. For α > 2, γ > 2 we have that, P-a.s. for all N large enough,⏐⏐DG N − E[DG N ]
⏐⏐ ≤ N log N .

roof. By Chebyshev’s inequality

P
(
|DG N − E[DG N ]| ≥ N log N

)
≤

Var(DG N )
N 2(log N )2 . (7.9)

he statement is a consequence of Lemma 7.2 and the first Borel–Cantelli lemma. □
30



A. Cipriani and M. Salvi Stochastic Processes and their Applications 167 (2024) 104236

f

Proof of Proposition 7.1. First of all, we recall the upper bound [26, Remark 10.17]

tmix(G) ≤ 4thit(G) + 1 (7.10)

or any irreducible chain on a graph G, where thit(G) = maxx, y∈G Ex [τy] with Ex [τy] the
mean hitting time of y of the chain starting at x . Using for example [26, Proposition 10.7] one
shows that the maximum hitting time for a graph with N vertices and M edges is at most of
order M N . But by Lemmas 7.2 and 7.3 we know that P-a.s. for all N large enough we have
DG N ≤ 2N log N . Since DG N is proportional to the number of edges, we obtain that there
exists c > 0 such that, P-a.s. for all N large enough,

thit(G N ) ≤ cN 2 log N .

This, together with (7.10), concludes the argument. □

8. Lower bounds

In this section we will prove a lower bound on the mixing time for all regimes. In Section 8.1
we deal with the case α ∈ (1, 2), τ > 2 and with the case τ ∈ (1, 2), γ ∈ (1, 2) at once. In
Section 8.2 we treat the case γ > 2, α > 2.

8.1. Lower bound on tmix(G N ) for case α ∈ (1, 2), τ > 2 and case τ ∈ (1, 2), γ ∈ (1, 2)

We recall the desired result in the following proposition.

Proposition 8.1. Consider either the case α ∈ (1, 2) and τ > 2 or the case τ ∈ (1, 2) and
γ ∈ (1, 2). Then for any δ > 0 it holds

P
(
tmix(G N ) < (log N )−2−δN (α∧γ )−1) N→∞

−−−→ 0.

Proof. Without loss of generality consider the set

S := {1, . . . , ⌊N/2⌋}

(if π (S) > 1/2 one can take Sc instead). Using for example the approximation of sums by
definite integrals, one can check that

E[DS,Sc ] =

∑
x∈S, y /∈S

P(x ↔ y)
(3.9)
≤ (log N )2

⌊N/2⌋∑
x=1

N∑
y=⌊N/2⌋+1

∥x − y∥
−(α∧γ )

≤ c(log N )2 N 2−(α∧γ ) (8.1)

for some constant c > 0 depending on α and τ . Recall the definitions of the bottleneck ratio
(3.2) and of the Cheeger constant Φ∗ in (3.3) and its relation with the mixing time in (3.4).
Notice that by Markov’s inequality and by the fact that DS ≥ N/2

P(Φ∗ >
1
2 ) ≤ 2E[Φ∗] ≤

4
N
E[DS,Sc ]

(8.1)
−−−→
N→∞

0

as α∧γ > 1. Under the event Φ∗ ≤ 1/2 we use again (8.1) and Markov’s inequality to obtain,
with c > 0 a constant depending on α and τ that might change from line to line,

−2−δ (α∧γ )−1 2+δ 1−(α∧γ )
P({tmix(G N ) < (log N ) N } ∩ {Φ∗ ≤ 1/2}) ≤ P(Φ∗ > c(log N ) N )

31
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≤ P(DS,Sc > c(log N )2+δN 2−(α∧γ ))

≤ cE[DS,Sc ](log N )−2−δN−2+(α∧γ )

hich goes to 0 as N → ∞. □

.2. Lower bound on tmix(G N ) for case γ > 2, α > 2

For a moment, let us consider SN = {1, 2, . . . , N } as a segment rather than a torus, so
hat in particular the distance between x, y ∈ SN is just |x − y| rather than the torus distance
x − y∥. For a graph G on SN , we say that a point x ∈ SN is a cut-point for G if there is no
dge between a point in {1, 2, . . . , x − 1} and a point in {x + 1, . . . , N }. We say that x ∈ S is
good cut-point if x − 1, x and x + 1 are cut-points.
Consider now a SFP random graph G N (S) on SN , that is, the model described in Section 2.1

nd with link probability given by Eq. (2.2) with |x − y| replacing ∥x − y∥. In the following
emma, we will show there is a positive density of good cut-points for N large.

emma 8.2. Consider a SFP random graph G N (SN ) on the segment SN . There exists c > 0
uch that

lim
N→∞

P
(
|{Good cut-points in SN }| ≥ cN

)
= 1.

roof. We want to make use of the ergodic theorem, so we start to investigate the infinite
FP random graph on Z. The infinite graph G N (Z) can be constructed under the measure
:=

⨂
x∈Z Law(Wx ) ⊗

⨂
x, y∈Z Law(Ux, y), where Ux, y are i.i.d. uniform random variables

n [0, 1]. To do so, first sample the weight Wx of each point in Z, then connect each couple
f points x and y with |x − y| > 1 with an edge if Ux,y ≤ P(x ↔ y | Wx ,Wy) (cfr. (2.2) with
· | replacing ∥ · ∥) and connect all nearest neighbors as usual. The definition of cut-point and
f good cut-point on the infinite graph are just the same we gave for the segment before the
emma. We compute, using Jensen’s inequality,

µ (x0 is a good cut-point of G N (Z)) = µ(x0, x0 − 1, x0 + 1 are cut-points in G N (Z))

= Eµ
[ ∏

x≤x0−1
y≥x0+1

e−
Wx Wy
∥x−y∥α

]
≥ exp

(
−

∑
x≤x0−1
y≥x0+1

E[W0]2

∥x − y∥α

)
.

ote that, since α > 2,∑
x≤x0−1
y≥x0+1

∥x − y∥
−α < ∞ , (8.2)

rom which we deduce that

µ (x0 is a good cut-point of G N (Z)) =: ψ(α, τ ) > 0.

he measure µ is invariant under the shift x ↦→ x + 1 in Z. Call MN the number of good
cut-points in {1, 2, . . . , N } in G N (Z). By the ergodic theorem

lim
N→∞

1{
MN
N ≥

ψ(α, τ )
2

} = 1 µ− a.s.
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Therefore

lim
N→∞

µ

(
MN

N
≥
ψ(α, τ )

2

)
= 1 (8.3)

y the dominated convergence theorem.
We observe now that an instance of scale-free percolation on SN can be obtained as follows:

onstruct G N (Z) and then restrict it to the vertices in SN . Using this construction we see that
if a point is a good cut-point in the infinite graph, then it is so also on its restriction to SN .
The lemma follows then automatically from (8.3). □

Remark 8.3. From Lemma 8.2 it is possible to deduce that, in the regime where α > 2 and
γ > 2, there exists c > 0 such that

lim
N→∞

P (diam(G N ) ≤ cN ) = 0,

that is, the diameter of G N is linear with probability tending to 1.

We are now ready to prove the lower bound for the regime under consideration.

Proposition 8.4. Let α > 2 and γ > 2. There exists c > 0 such that

lim
N→∞

P(tmix(G N ) ≥ cN 2) = 1.

Sketch of the Proof. The proof follows the argument in [3, Proposition 4.1], and for
completeness we will sketch here the main points. For simplicity we assume N to be divisible
by 8. We partition TN into three sets:

A :=
{
1, 2, . . . , N

2

}
, B :=

{ N
2 + 1, . . . , 3N

4

}
, C :=

{ 3N
4 + 1, . . . , N

}
.

lso call

Ki :=
{
(i − 1) N

8 + 1, . . . , i N
8

}
i = 1, 2, . . . , 8.

By Lemma 8.2 we can assume that there exists a constant c > 0 for which, with probability
rbitrarily close to 1, G N restricted to the segment Ki contains at least cN good cut-points. We
an also assume without loss of generality (eventually rotating the cycle) that π (A) ≥ π (B∪C),
(B) ≥ π (C). This entails that π (A ∪ B) ≥ 3/4. For x /∈ A ∪ B, let (Xn)n∈N0 be the simple

andom walk on G N starting at x . We denote its law (given the realization of the graph G N )
s Px and the relative expectation as Ex . For n ≥ tmix(G N ) one obtains

3
4

− Px (Sn ∈ A ∪ B) ≤

∑
y∈A∪B

⏐⏐π (y) − Pn(x, y)
⏐⏐ ≤ 2∥π − Pn(x, ·)∥TV ≤

1
2
.

Let T be the hitting time of A ∪ B for (Xn)n∈N0 . For any x /∈ A ∪ B and n ≥ tmix(G N ),
t follows that Px (T ≤ n) ≥ Px (Sn ∈ A ∪ B) ≥ 1/4. Hence, for any real s ≥ 0, one has
x (T > s) ≤ (3/4)s/tmix(G N )−1 and thus there exists c > 0 independent of N such that

Ex [T ] ≤ ctmix(G N ). (8.4)

all u := 7N/8. Using the language of electrical networks [26, Chapter 9] we ground the set
A ∪ B and set a potential in u so that there is a unit of current flowing from A ∪ B to u. Let
x1, . . . , xcN be the good cut points on the side of u with at least 1/2 the current. In particular,
ach of them will be crossed by at least half the current. In turn, using the relation between
33
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voltage and resistance and that the number of cut edges (resistors of resistance 1 connected in
series) is at least the number of good cut points, the voltage v(xi ) at xi is at least i/2. Hence

Eu[T ] ≥

∑
x /∈A∪B

x good cut point

Eu

[ T∑
i=0

1{Si =x}

]
=

∑
x /∈A∪B

x good cut-point

Dx v(x) ≥

cN∑
i=1

i = c1 N 2

or some c1 > 0. By (8.4) we derive that there exists a c > 0 such that tmix ≥ cN 2, thus giving
he desired result. □
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ppendix A

In this first part of the appendix we recall some well-known inequalities and also prove a
oncentration inequality that we will use in different parts of the paper.

emma A.1 (Bernstein Inequality). Let X i , i = 1, . . . , N, be independent centered random
ariables with |X i | ≤ M for all i a.s., and define σ 2

:=
∑N

i=1 Var(X i )/N. For all u > 0

P
( N∑

i=1

X i ≥ u
)

≤ exp
(
−

u2

2(Nσ 2 + Mu/3)

)
. (A.1)

Theorem A.2 (Fuk–Nagaev Inequality [28, Theorem 1.2], [5, Theorem 5.1 (ii)]1). Let
X1, . . . , X N be i.i.d. random variables such that

P(X1 > t) = t−γ

or some γ > 1 and let µ := E[X1]. Call SN :=
∑

i=1,...,N X i and MN := maxi=1,...,N X i . Then
here exists a constant c > 0 such that, for all y ≤ x,

P(SN − Nµ ≥ x , MN ≤ y) ≤

(
cN y1−γ x−1

)x/y
. (A.2)

1 We were notified by Quentin Berger of a typo in the statement of Theorem 5.1 (ii). We are reporting here the
correct statement.
34



A. Cipriani and M. Salvi Stochastic Processes and their Applications 167 (2024) 104236

r

C
o

s

P

s
{

a

A

B

c

f
i

i

S

t

Proposition A.3. For N ∈ N, let {Z N ,x }x=1,...,N be a collection of N positive independent
andom variables. Assume that there exist a sequence of constants AN > 0 such that Z N ,x ≤

AN < ∞ a.s. and such that
N∑

x=1

E[Z2
N ,x ] ≥ A2

N (log N )2 . (A.3)

all Z N :=
∑N

x=1 Z N ,x and UN :=

√∑N
x=1 E[Z2

N ,x ] log N. For a constant c > 0 not depending
n N one has

P(|Z N − E[Z N ]| > UN ) ≤ e−c(log N )2
(A.4)

o that, P-a.s. for all N large enough,⏐⏐Z N − E[Z N ]
⏐⏐ ≤

√∑N
x=1E[Z2

N ,x ] log N . (A.5)

roof. We compute

P(Z N > E[Z N ] + UN )
(A.1)
≤ exp

{
−

U 2
N/2∑N−1

x=0 E[Z2
N ,x ] + AN UN/3

}
.

Condition (A.3) implies that the last exponent is smaller than −
3
8 (log N )2. With the very

ame method a bound of the same order can be obtained for the probability of the event
Z N < E[Z N ] − UN }, giving (A.4). It follows that

∞∑
N=1

P(
⏐⏐Z N − E[Z N ]

⏐⏐ ≤ UN ) < ∞,

nd we can conclude with the first Borel–Cantelli lemma. □

ppendix B

In this part of the Appendix we collect the technical proofs of some properties of our models.

.1. Proof of Proposition 4.3

For (i), we notice that {∃ x ∈ TN : Wx ≥ Nα(log N )2
} ⊆ {G N is fully connected} and

alculate

P(̸ ∃x ∈ TN : Wx ≥ Nα(log N )2) = P(W1 < Nα(log N )2)N
≤ e−Nε ,

or some 0 < ε < 1 − γ that does not depend on N . Since the right-hand side is summable
n N , the first Borel–Cantelli lemma implies the claim.

To show (ii) we uniformly bound the probability that an edge between any x and y is present
n G N but not in G N :

P(x
G N
↔ y∩x

G N
̸↔ y) ≤ P(x

G N
̸↔ y | Wx Wy ≥ Nα(log N )2) ≤ e−Nα (log N )2/∥x−y∥

α
≤ e−(log N )2

.

o the probability that there exist x, y ∈ TN such that {x
G N
↔ y} but {x

G N
̸↔ y} is smaller than

N 2e−(log N )2
. This is a summable quantity in N , so the first Borel–Cantelli lemma ensures that
his is not going to happen for N large enough.
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For Eq. (4.2) in (iii) we simply calculate

E[D1 | W1] = E
[ N∑

x=2

1{
1↔xin G N

} ⏐⏐ W1

]
= (N − 1)P

(
W2 > Nα(log N )2W −1

1 | W1
)

which immediately gives the desired formula. For (4.1) we first bound (recall that nearest
neighbors are always connected)

E[D1 | W1] − 2 =

N−1∑
y=3

∫
∞

1
1 − e−wW1∥1−y∥

−α

cw−τdw

≤

N−1∑
y=3

(
c

W1

∥1 − y∥α

∫
∥1−y∥

αW−1
1 ∨1

1
w1−τdw + P

(
Wy > ∥1 − y∥

αW −1
1 ∨ 1

))
where we have splitted in two the integral and have upper bounded the integrand of the first part
with (3.1) and the integrand of the second part by 1. A simple calculation shows that, for a fixed
y, both the summands in the last brackets are bounded by a constant times ∥1 − y∥

−γ W τ−1
1 ,

and summing over all y’s gives (4.1).
For (iv), formulas (4.3) and (4.4) can be proved in a very similar way, so we just show the

first one. Abbreviate UN (x) := E[Dx | Wx ]1/2 log N and use a union bound to get

P
(
∃x ∈ TN :

⏐⏐Dx−E[Dx | Wx ]
⏐⏐ > UN (x)

)
≤ N E

[
P
(⏐⏐D1−E[D1 | W1]

⏐⏐ > UN (1)
⏐⏐ W1

)]
(B.1)

We observe that D1 is the sum over x = 2, . . . , N of the variables Z N ,x := 1{1↔x} , which
under P( · | W1) are just N − 1 independent Bernoullis. Since by (iii)∑

x ̸=1

E[Z2
N ,x | Wx ] = E[Dx | Wx ] ≥ N ε

for some 0 < ε < 1 − γ , we can apply (A.4) in Proposition A.3 with AN = 1 to bound (B.1).
We obtain

P
(
∃x ∈ TN :

⏐⏐Dx − E[Dx | Wx ]
⏐⏐ > UN (x)

)
≤ Ne−c(log N )2

which is summable in N and allows us to use the first Borel–Cantelli lemma to conclude.
For the second part of (v) we just integrate (4.2):

E[DG N
] = NE

[
E[D1 | W1]

]
= N

∫
∞

1
E[D1 | w] cw−τ dw

= c(N − 1)N 1−γ (log N )−2(τ−1)
∫ Nα (log N )2

1
w−1dw + N (N − 1)P

(
W1 > Nα(log N )2)

nd (4.6) follows. We go back to the first equation of (v). Using (iv) yields, P-almost surely,
or N large enough,

DG N
=

∑
x∈TN

Dx ≲
∑

x∈TN

E[Dx | Wx ] +

∑
x∈TN

E[Dx | Wx ]
1/2
. (B.2)

e would like to invoke Proposition A.3 with Z N ,x = E[Dx | Wx ], which are mutually
ndependent under P, and A = N . Condition (A.3) is satisfied since, using item (ii), for
N
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some 0 < ε < 1 − γ∑
x∈TN

E[Z2
N ,x ] ≥ NE[(N − 1)21{W1>Nα (log N )2}] ≥ N 2+ε

hich is larger than A2
N (log N )2

= N 2(log N )2. Hence we get that, for N large enough,∑
x∈TN

E[Dx | Wx ] ≲ E[DG N
] + N 1/2E

[
E[D1 | W1]2]1/2

.

ith (4.2) at hand, we can calculate

E
[
E[D0 | W0]2] ≲ N 2−2γ

∫ Nα (log N )2

1
w2(τ−1)cw−τ dw+ N 2P(W1 > Nα(log N )2) ≲ N 2−γ ,

hus ∑
x∈TN

E[Dx | Wx ] ≲ E[DG N
] + N (3−γ )/2 . (B.3)

e are left to deal with the last summand in (B.2). We apply once more Proposition A.3,
his time with Z N ,x = E[Dx | Wx ]1/2 and AN = N 1/2. Condition (A.3) is satisfied since

x∈TN
E[Z2

N ,x ] = E[DG N
] which is larger than A2

N (log N )2
= N (log N )2 by (4.6). Therefore∑

x∈TN

E[Dx | Wx ]
1/2

≲ NE
[
E[D1 | W1]

1/2]
+ E[DG N

]
1/2

(B.4)

s before we bound

E
[
E[D1 | W1]

1/2]
≲ N

1−γ
2

∫ Nα (log N )2

1
w
τ−1

2 cw−τ dw+ N 1/2P(W1 > Nα(log N )2) ≲ N
1−γ

2 .

utting this last result back into (B.4) and combining it together with (B.3) into (B.2), gives an
pper bound of the desired order for DG N

, for N large enough. A lower bound can be obtained
in a completely similar way, yielding (4.5).

B.2. Proof of Proposition 4.6

Recall the notation Q = (log N )τ−1. For item (i) we first compute, for j = 1, . . . , jmax − 1,

E[|V j |] = N P(W1 ∈ [Nα/2(log N ) j , Nα/2(log N ) j+1))

= N 1−γ /2 Q− j(1 − Q−1)
nd analogously

E[|V jc |] = N 1−γ /2 Q j−2(1 − Q−1) , E[|V +

j |] = N 1−γ /2 Q− j−1, E[|V +

jc |] = N 1−γ /2 Q j−3.

ow we claim that, for all j = 1, . . . , jmax − 1 and for all A ∈ {V j , V jc , V +

j , V +

jc }, P-a.s. for
N large enough,⏐⏐|A| − E[|A|]

⏐⏐ ≤ E[|A|]1/2 log N . (B.5)

riting |A| :=
∑N

x=1 1x∈A, we apply Proposition A.3 with Z N ,x := 1x∈A and AN = 1.
ondition (A.3) is satisfied since

N∑
E[Z2

N ,x ] = E[|A|] ≥ (log N )2
x=1
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for all choices of j and A, as can be easily checked. It follows that

P(For some j , ∃A ∈ {V j , V jc , V +

j , V +

jc } : |A − E[|A|]| ≥ E[|A|]1/2 log N ) ≤ 4 jmaxe−c(log N )2

hich is summable in N , and by the first Borel–Cantelli lemma (B.5) follows. To conclude, we
ut together (B.5) and the formulas for the expectations of V j , V jc , V +

j , V +

jc . The case j = jmax
an be treated in the very same way.

For item (ii), we just prove that DV j > 2DV +

j
for any j = 1, . . . , jmax − 1, since the proof

or DV jc , DV +

jc
is very similar. From (4.4) we know that

DV j =

∑
x∈TN

Dx1x∈V j ≥
1
2

∑
x∈TN

E[Dx |Wx ]1x∈V j (B.6)

DV +

j
=

∑
x∈TN

Dx1x∈V +

j
≤ 2

∑
x∈TN

E[Dx |Wx ]1x∈V +

j
. (B.7)

lmost surely for N sufficiently large. Note that we neglect the error E[Dx |Wx ]1/2 appearing
n (4.4) thanks to (4.2). For the first expression we use Proposition A.3 with Z N ,x =

[Dx |Wx ]1x∈V j . Using (4.2) one can check that, for N large enough, Z N ,x ≤ AN := N 1−γ /2 Q j .
ondition (A.3) is verified since

N∑
x=1

E[Z2
N ,x ] ≥ N E

[
E

[
D1 | W1 = Nα/2(log N ) j ]2

11∈V j

] (4.2)
≳ N 3−

3
2 γ Q j

hich is larger than A2
N log N for all j < jmax. Since

E[Z N ] =

N∑
x=1

E
[
E

[
Dx | Wx

]
1x∈V j

]
= cN

∫ Nα/2(log N ) j+1

Nα/2(log N ) j
E[D1 | W1 = w]w−τ dw

(4.2)
= cN 1−γ (N − 1)Q−2 log log N , (B.8)

hich is much larger than
√∑N

x=1 E[Z2
N ,x ], (A.5) implies then that there exists some constant

1 > 0 such that, P-a.s. for all N large enough,

DV j

(B.6)
≥

1
2

Z N ≥ c1 N 2−γ Q−2 log log N . (B.9)

nalogously, for the second expression in (B.7) we use Proposition A.3 by posing Z N ,x =

E[Dx |Wx ]1x∈V +

j
. Condition (A.3) is again verified since

∑
E[Z2

N ,x ] and A2
N log N have the

ame orders as before. So, by (A.5) and calculating E[DV +

j
] as in (B.8),

DV +

j
≤ 4E[DV +

j
] ≤ c2 N 2−γ Q−2

or some c2 > 0, P-a.s. for N large enough. This together with (B.9) concludes the argument.

eferences

[1] M. Barthélemy, Spatial networks, Phys. Rep. 499 (1–3) (2011) 1–101.
[2] I. Benjamini, N. Berger, The diameter of long-range percolation clusters on finite cycles, Random Struct.

Algorithms 19 (2) (2001) 102–111.
[3] I. Benjamini, N. Berger, A. Yadin, Long-range percolation mixing time, Combin. Probab. Comput. 17 (4)

(2008) 487–494.
38

http://refhub.elsevier.com/S0304-4149(23)00208-9/sb1
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb2
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb2
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb2
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb3
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb3
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb3


A. Cipriani and M. Salvi Stochastic Processes and their Applications 167 (2024) 104236
[4] N. Berestycki, E. Lubetzky, Y. Peres, A. Sly, Random walks on the random graph, Ann. Probab. 46 (1)
(2018) 456–490.

[5] Q. Berger, Notes on random walks in the Cauchy domain of attraction, Probab. Theory Related Fields 175
(1) (2019) 1–44.

[6] C. Bhattacharjee, M. Schulte, Large degrees in scale-free inhomogeneous random graphs, Ann. Appl. Probab.
32 (1) (2022) 696–720, http://dx.doi.org/10.1214/21-AAP1693.

[7] N.H. Bingham, C.M. Goldie, J.L. Teugels, J. Teugels, Regular Variation. Number 27, Cambridge University
Press, 1989.

[8] K. Bringmann, R. Keusch, J. Lengler, Geometric inhomogeneous random graphs, Theoret. Comput. Sci. 760
(2019) 35–54.

[9] E. Candellero, N. Fountoulakis, Clustering and the hyperbolic geometry of complex networks, Internet Math.
12 (1–2) (2016) 2–53.

[10] N. Crawford, A. Sly, Simple random walk on long range percolation clusters i: heat kernel bounds, Probab.
Theory Related Fields 154 (3–4) (2012) 753–786.

[11] J. Dalmau, M. Salvi, Scale-free percolation in continuous space: quenched degree and clustering coefficient,
J. Appl. Probab. 58 (1) (2021) 106–127, http://dx.doi.org/10.1017/jpr.2020.76.

[12] M. Deijfen, R. van der Hofstad, G. Hooghiemstra, Scale-free percolation, Ann. Inst. H. Poincaré Probab.
Statist. 49 (3) (2013) 817–838, http://dx.doi.org/10.1214/12-AIHP480.

[13] P. Deprez, R.S. Hazra, M.V. Wüthrich, Inhomogeneous long-range percolation for real-life network modeling,
Risks 3 (1) (2015) 1–23.

[14] P. Deprez, M.V. Wüthrich, Scale-free percolation in continuum space, Commun. Math. Statist. (ISSN:
2194-6701) 7 (3) (2019) 269–308, http://dx.doi.org/10.1007/s40304-018-0142-0.

[15] M.E. Dyer, A. Galanis, L.A. Goldberg, M. Jerrum, E. Vigoda, Random walks on small world networks, ACM
Trans. Algorithms (ISSN: 1549-6325) 16 (3) (2020) http://dx.doi.org/10.1145/3382208.

[16] P. Gracar, A. Grauer, L. Lüchtrath, P. Mörters, The age-dependent random connection model, Queueing Syst.
93 (3–4) (2019) 309–331a.

[17] P. Gracar, M. Heydenreich, C. Mönch, P. Mörters, Recurrence versus transience for weight-dependent random
connection models, Elect. J. Probab. 27 (2022) 1–31, http://dx.doi.org/10.1214/22-EJP748.

[18] L. Gugelmann, K. Panagiotou, U. Peter, Random hyperbolic graphs: degree sequence and clustering, in:
International Colloquium on Automata, Languages, and Programming, Springer, 2012, pp. 573–585.

[19] N. Hao, M. Heydenreich, Graph distances in scale-free percolation: the logarithmic case, J. Appl. Probab. 60
(1) (2023) 295–313, http://dx.doi.org/10.1017/jpr.2022.44.

[20] M. Heydenreich, T. Hulshof, J. Jorritsma, Structures in supercritical scale-free percolation, Ann. Appl. Probab.
27 (4) (2017) 2569–2604.

[21] E. Jacob, P. Mörters, Spatial preferential attachment networks: Power laws and clustering coefficients, Ann.
Appl. Probab. 25 (2) (2015) 632–662.

[22] J. Janssen, A. Mehrabian, Rumors spread slowly in a small-world spatial network, SIAM J. Discrete Math.
31 (4) (2017) 2414–2428.

[23] M. Kiwi, D. Mitsche, Spectral gap of random hyperbolic graphs and related parameters, Ann. Appl. Probab.
28 (2) (2018) 941–989, ISSN: 10505164, 21688737. URL https://www.jstor.org/stable/26542328.

[24] C. Koch, J. Lengler, Bootstrap percolation on geometric inhomogeneous random graphs, in: 43rd In-
ternational Colloquium on Automata, Languages, and Programming, vol. 55, ICALP 2016, Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2016, p. 147.

[25] J. Komjáthy, B. Lodewijks, Explosion in weighted hyperbolic random graphs and geometric inhomogeneous
random graphs, Stochastic Process. Appl. 130 (3) (2020) 1309–1367.

[26] D.A. Levin, Y. Peres, Markov Chains and Mixing Times, vol. 107, American Mathematical Soc., 2017.
[27] E. Lubetzky, A. Sly, Cutoff phenomena for random walks on random regular graphs, Duke Math. J. 153 (3)

(2010) 475–510, http://dx.doi.org/10.1215/00127094-2010-029.
[28] S.V. Nagaev, Large deviations of sums of independent random variables, Ann. Probab. 7 (5) (1979) 745–789.
[29] I. Norros, H. Reittu, On a conditionally Poissonian graph process, Adv. Appl. Probab. 38 (1) (2006) 59–75.
[30] F. Papadopoulos, D. Krioukov, M. Boguná, A. Vahdat, Greedy forwarding in dynamic scale-free networks

embedded in hyperbolic metric spaces, in: 2010 Proceedings IEEE INFOCOM, IEEE, 2010, pp. 1–9.
[31] L.S. Schulman, Long range percolation in one dimension. 16 (17) (1983) L639–L641, http://dx.doi.org/10.

1088/0305-4470/16/17/001.
[32] A. Sinclair, Improved bounds for mixing rates of Markov chains and multicommodity flow, Combin. Probab.
Comput. 1 (4) (1992) 351–370.

39

http://refhub.elsevier.com/S0304-4149(23)00208-9/sb4
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb4
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb4
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb5
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb5
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb5
http://dx.doi.org/10.1214/21-AAP1693
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb7
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb7
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb7
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb8
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb8
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb8
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb9
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb9
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb9
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb10
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb10
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb10
http://dx.doi.org/10.1017/jpr.2020.76
http://dx.doi.org/10.1214/12-AIHP480
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb13
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb13
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb13
http://dx.doi.org/10.1007/s40304-018-0142-0
http://dx.doi.org/10.1145/3382208
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb16
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb16
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb16
http://dx.doi.org/10.1214/22-EJP748
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb18
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb18
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb18
http://dx.doi.org/10.1017/jpr.2022.44
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb20
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb20
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb20
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb21
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb21
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb21
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb22
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb22
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb22
https://www.jstor.org/stable/26542328
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb24
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb24
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb24
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb24
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb24
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb25
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb25
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb25
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb26
http://dx.doi.org/10.1215/00127094-2010-029
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb28
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb29
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb30
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb30
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb30
http://dx.doi.org/10.1088/0305-4470/16/17/001
http://dx.doi.org/10.1088/0305-4470/16/17/001
http://dx.doi.org/10.1088/0305-4470/16/17/001
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb32
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb32
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb32


A. Cipriani and M. Salvi Stochastic Processes and their Applications 167 (2024) 104236
[33] A. Sinclair, Algorithms for Random Generation and Counting: A Markov Chain Approach, in: Progress in
Theoretical Computer Science, Birkhäuser Boston, 2012.

[34] C. Stegehuis, R. van der Hofstad, J.S. van Leeuwaarden, Variational principle for scale-free network motifs,
Sci. Rep. 9 (1) (2019) 1–10.

[35] R. van der Hofstad, J. Komjáthy, Explosion and distances in scale-free percolation, 2017, arXiv preprint
arXiv:1706.02597.

[36] J. Yukich, Ultra-small scale-free geometric networks, J. Appl. Probab. 43 (3) (2006) 665–677.
40

http://refhub.elsevier.com/S0304-4149(23)00208-9/sb33
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb33
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb33
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb34
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb34
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb34
http://arxiv.org/abs/1706.02597
http://refhub.elsevier.com/S0304-4149(23)00208-9/sb36

	Scale-free percolation mixing time
	Introduction
	Spatial random graphs and scale-free percolation
	Stochastic processes on spatial inhomogeneous random graphs
	Our contribution
	Techniques and outline of the paper

	Model and results
	Scale-free percolation on the torus
	The simple random walk on GN and its mixing time
	Main results
	Notation

	Preliminary results
	The Cheeger constant
	Multicommodity flows
	A simple lemma
	Preliminary results on SFP

	Case γ<1 : upper bound in Theorem 2.2
	Proof of Theorem 2.2
	Preliminary results on the simplified model
	Proof of Proposition 4.1
	Proof of Proposition 4.2

	Case 1<τ<2,1<γ<2 : Upper bound of Theorem 2.3. First part.
	Stochastic domination, proof of prlmn
	Comparison of the mixing times, proof of ttgl 

	Case 1<τ<2,1<γ<2: Upper bound of Theorem 2.3. Second part.
	Proof of Proposition 6.1 
	Proof of Proposition 6.3 
	Proof of Proposition 6.4 
	Proof of Proposition 6.5

	Case α>2,γ>2 : upper bound of Theorem 2.5
	Lower bounds
	Lower bound on  tmix(GN) for case α∈(1,2),τ>2 and case τ∈(1,2),γ∈(1,2)
	Lower bound on  tmix(GN) for case γ>2,α>2

	Declaration of competing interest
	Acknowledgments
	Appendix A
	Appendix B
	Proof of Proposition 4.3 
	Proof of Proposition 4.6 

	References


