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Abstract—Consumer healthcare Internet of Things (IoT) devices
are gaining popularity in our homes and hospitals. These devices
provide continuous monitoring at a low cost and can be used
to augment high-precision medical equipment. However, major
challenges remain in applying pre-trained global models for
anomaly detection on smart health monitoring, for a diverse set
of individuals that they provide care for. In this paper, we propose
PRISM, an edge-based system for experimenting with in-home
smart healthcare devices. We develop a rigorous methodology
that relies on automated IoT experimentation. We use a rich
real-world dataset from in-home patient monitoring from 44
households of People Living With Dementia (PLWD) over two
years. Our results indicate that anomalies can be identified with
accuracy up to 99% and mean training times as low as 0.88
seconds. While all models achieve high accuracy when trained
on the same patient, their accuracy degrades when evaluated on
different patients.

I. INTRODUCTION

Internet of Things (IoT) devices are increasingly being used in
the healthcare industry [1], [2], providing patient monitoring
and in-home healthcare solutions for different groups such as
the elderly and People Living With Dementia (PLWD) [3].
These devices often come with a range of sensors and require
access to a number of sources of personal data and continuous
internet connectivity. Traditionally, the personal data which is
highly private and sensitive is sent to the cloud for applications
such as training machine learning (ML) models and using
the models to generate inferences [4]. Such a centralized
system structure poses significant privacy and security issues
to data subjects, especially for in-home healthcare where data
is continuous and personal [5].
Edge-based systems, which provide a decentralized paradigm,
have recently become a preferable choice for designing and
implementing IoT applications, especially in scenarios in
which privacy is critical [6]. Instead of sending data to the
cloud, an IoT application at the edge keeps personal data
locally on edge devices. It can use the data to train ML models
such as Deep Neural Networks (DNNs) [7] and generate
inferences from the models locally, thereby protecting the
privacy of data subjects [8], [9].
Although existing research has shown that edge-based IoT
applications have acceptable overall performance [10], the
accuracy of the applications at the individual level may vary
from one patient to another due to the difference in their
data [11]. Models developed for lab-based scenarios do not
always translate to complex scenarios with patient monitoring
(due to the presence of carers, family members, or unusual

daily activity patterns). Moreover, experiments indicate that
while models can accurately identify devices and anomalies,
they also rapidly decay over time, indicating the need for
continuous, local, and personalized retraining [12].
Previous work has resorted to machine learning to analyze
anomalies in PLWD [13]. The usual approach entails training
machine learning models offline or in a cloud environment.
However, the training and validation of these models is done
on a particular patient, and for a limited time period. Different
patients have different usage patterns, and their behavior might
evolve over time. For example, a patient might have a certain
sleeping routine and consequently different interaction with
their IoT devices, but interact differently with the devices
while he is on medications. It is therefore important to un-
derstand whether adopting ML in edge-based systems benefits
all individual households. We examine this assumption at
the individual level in real healthcare settings and want to
understand how different aspects of data affect accuracy at
the edge for anomaly detection.
In this paper, we propose PRISM, an edge-based system for
in-home smart healthcare anomaly detection. We characterize
the individual-level performance of edge activity inference
model in terms of the trade-off between inference time and
accuracy, and we discuss applications and future directions.
We achieve this by mixing real data collected in an extensive
clinical study with anomaly injection at the newtwork gate-
way. We then focus on training at the edge, where compute
capability is limited. Based on our comparison of different
models, we choose neural network-based models for edge
deployment. PRISM has the ability to deploy a number of
privacy-preserving, dynamically configurable DNN models for
local training, and inference at the edge. We perform a total
of 190,980 rigorous automated controlled experiments, and
we leverage a dataset composed of 44 households including
22 healthcare IoT devices.
The main contributions of the paper are as follows:

• We develop a system for injecting realistic anomalies for
healthcare IoT devices;

• We compare three different types of anomalies and show
that in all cases the accuracy changes with the train
window size, with accuracy up to 99%;

• We show that models need to be updated using data
specific to the patient. A model updated using data from
one patient does not perform well on another patient and
vice versa;
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• We demonstrate that training the model at the edge of the
network on a representative edge device (Raspberry Pi)
is feasible, with training times as low as 0.88 seconds.

The remainder of the paper is organized as follows. We provide
an overview of our system (Section II). We describe our data
set, testbed, and the experiments conducted (Section III). In
Section IV we show the anomaly detection accuracy and we
demonstrate how models can be trained at the edge. We then
discuss limitations and future challenges (Section V). Finally,
We provide an overview of related work (Section VI) and
conclude our work (Section VII).
We make our code and anomaly dataset available. 1

II. SYSTEM DESIGN

In this section, we report the system design for PRISM. We
consider anomaly detection of IoT device data as the inference
task and examine the performance of PRISM. We simulate
the anomaly injection to real patients’ data and evaluate the
trade-off between anomaly detection time and accuracy among
them. Figure 1 shows an overview of our system. PRISM
consists of two components: (i) anomaly injection module
and (ii) anomaly detection module. The description and some
examples of anomalies are reported in the next Section.

A. Anomaly Injection Module

The anomaly injection module allows to select the type of
anomaly to be injected for experimenting with the IoT data.
The module allows selection of: (i) the number of anomalies
to be injected in the data frame; (ii) the type of anomaly; (iii)
the data frame in which the anomalies will be injected.
The module reads the earliest and latest timestamp of the
IoT readings and then creates a random timestamp within that
range in which the anomaly will be inserted at. At the end of
the process, the original data frame is concatenated with the
anomaly data frame. The concatenated result is then reordered
based on the timestamp of the combined readings.

B. Anomaly Detection Module

The anomaly detection module is based on Neural Network
(NN). We choose neural networks for the predictive model
as they can learn complex behavior. It is also possible to
update a neural network’s weights when more data becomes
available [14] and different configurations of the network can
be readily compared [15]. We implement an unsupervised
learning system, hence we do not label the anomalous dif-
ferently from the non-anomalous data.
The anomalies are detected by comparing the loss of the
current validation batch with a threshold based on the loss
generated during training. The threshold is calculated based
on the average training loss∗ of all batches during the last
epoch, multiplied with a coefficient α which is the tuning
parameter of the threshold. The linear equation corresponding
to the threshold computation is:

Threshold = α×mean(Training Loss∗)

1https://github.com/IOTPRISM/prism
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Fig. 1: System overview of PRISM. Each edge device (i.e.,
home gateway) keeps its IoT data locally for ML inference
and training. Anomaly data is injected for each IoT device
and the anomaly detection mechanism is applied and evaluated
individually.

If the loss calculated exceeds that threshold, the batch is
classified as anomalous.
The module parameters are initialized during training. We use
the Stochastic Gradient Descent (SGD) [16] as our optimiza-
tion function whose hyperparameters are set as 3e−5 (learning
rate), and the batch size and number of epochs are initialized
with the values of 1 and 100 respectively. The permutations
which are initialized are used for the batch size implementation
during training.
The output anomalies are then tested to see which ones are
correctly identified, and which ones are false positives. We
calculate the accuracy using the following equation:

Accuracy =
True pos + True neg

True pos+ True neg + False pos+ False neg

Each training and validation time window combination is
repeated 30 times for each IoT device. Note that during each
repetition the point in time from which the time windows are
extracted changes.

III. EXPERIMENTAL SETTING

In this section we describe our experimental setting, the dataset
we use and how we define and inject the anomalies.
As a representative edge device, we use a Raspberry Pi model
4 with 4 GB of RAM. The Raspberry Pi is running the
Ubuntu 22.04 operating system with Python 3.9.7, on which a
traditional ML stack is installed (numpy, scipy, pandas, scikit-
learn, and PyTorch).

A. Dataset

We leverage the data collected by the UK Dementia Research
Institute Care Research and Technology Centre (UK DRI
CR&T) [13], which contains the in-home monitoring IoT data
that includes motion sensors, physiological measurements, and
the use of kitchen appliances from 44 homes of PLWD,
between April 2019 and June 2021. There are 22 different
IoT devices installed in the household of each patient. Table I

https://github.com/IOTPRISM/prism


shows the IoT devices installed in each home, the function
they provide, the data format, and whether the data collection
is continuous.

Function Format IoT Device Continuous
Location Binary WC, bathroom, bedroom, corridor

dining room, hallway -
kitchen, living room, lounge

office, study
Door Binary back door, conservatory

fridge door, front door ✓
garage, main door
secondary, utility

Appliances Binary iron use, kettle use, microwave use -
socket use, toaster use

Temperature Float temperature, body temperature
skin temperature ✓

Health Related Float blood pressure, body mass index
body muscle mass, body weight -

heart rate, body fat
body water, bone mass

Light Integer light level ✓
Sleep Event Binary sleep event, sleep mat snoring

Float sleep mat heart rate ✓
sleep mat respiratory rate

Integer sleep mat state, agitation -

TABLE I: The corresponding functions of the IoT devices, the
data format and whether they are continuously reported.

B. Data Pre-processing

The data pre-processing part is done after the anomaly in-
jection module. Since several patients are used for training
and validation, the resulting data frames of each patient are
concatenated together to create the training data and the
validation data which are then individually broken down to
inputs and labels being X trainD / X valD and Y trainD /
Y valD respectively. Finally, the data frames are converted
into PyTorch Tensors, and then into floats, resulting in the final
training and validation data (which are used by the machine
learning model).
Each dataset is associated with a time delta value t between
0.25 and 24 hours and is filtered to contain only the values
whose timestamps fall between the time delta.
1) Patient Activity Pattern: By studying the data activity
of the patients, we try to detect whether the patients have
behavioral patterns and therefore understand whether the in-
home monitoring data can be used to build a model. By
analyzing the activity of each patient, we note that each patient
has a behavioral pattern, which can be learned by a DNN
module.
2) IoT Device Selection: The IoT devices we adopt for
anomaly detection are reported in Table I. We remove the IoT
devices that have a rare reading (i.e., Body Mass Index, Body
Muscle Mass) or the devices only applied to a minority group
of patients (Blood Pressure, body temperature, body weight,
body mass index, body muscle mass, total Body Fat, Total
Body Water, and Total Bone Mass).
3) Data Pre-processing: Initially, the data from an individual
patient is loaded to our model. During this stage, an addi-
tional feature is added to the data frame, which captures the
difference in time between consecutive readings. This feature

is added to provide the frequency of readings. Hence, the input
features are the readings, and the difference in time. We split
the data into training and testing data. The size of the training
and testing data depends on the size of the time window used
for training and validation. We use six different time windows:
24, 3 hours, and 15 minutes.

C. Anomaly Definition

In this section, we describe the anomalies injected. We con-
sider three types of anomalies, each adapted to the kind of IoT
devices we have in the data set.
On-Off. The On-Off anomaly refers to injecting abnormal fre-
quency of on/off status to the binary value-based IoT devices.
For example, the anomaly corresponds to the door sensor
continuously closing and opening at an abnormal amount and
rate. We manually create on/off events and inject them into
the raw data.
Variance. Time series variance anomalies refer to the injection
of values resembling abnormal variations centered around the
standard readings. The variance anomalies follow the Gaussian
distribution.
Spike. Time series spikes refer to unexpectedly high values,
it is well characterized to investigate the effect of an exposure
spike on an outcome variable. We consider a spike to be an
increase in the data series followed by an immediate return
to the underlying level of the data series. We inject a fixed
number of spikes in random periods.

IV. EVALUATION

In this section, we discuss the performance of PRISM. We
characterize the threshold for anomaly detection and the
individual-level performance of edge activity inference model
in terms of the trade-off between inference time and accuracy.
We also determine the average training and inference running
times at the edge.
Anomaly Detection Accuracy. We first discuss the accuracy
of the edge activity inference model when applied to different
patients’ data.
Figure 2, Figure 3, and Figure 4 show the average accuracy of
different patients’ data with three anomaly types and different
training and validation windows. Unsurprisingly, a decrease
in the training time window results in a decrease in accuracy.
This is because a smaller time window results in fewer data
used when training the model. IoT devices with larger numbers
of data (i.e., Room Location) have smaller deviations and
more stable performance. The validation time window does
not affect the accuracy of the model.
Personalized Models. Figure 5 shows the average accuracy
across all patients while training and validating with the same
and different patients. A model updated using data from one
patient does not perform well on another patient and vice
versa. Figure 6 shows how the model accuracy is affected
when training the model with data from all patients and then
validating using one patient, for three different IoT devices.
The accuracy decreases when training the model with all
patients. This shows that a model updated with data specific to
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Fig. 2: On-Off Anomaly. The anomaly detection accuracy changes with training window size and different validation window
sizes. Each plot shows a validation window size (24h, 3h, 15min). The box plot shows the detection performance spread based
on patients’ data.
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Fig. 3: Variance Anomaly. The anomaly detection accuracy changes with training window size and different validation window
sizes. Each plot shows a validation window size (24h, 3h, 15min). The box plot shows the detection performance spread based
on patients’ data.

each patient will achieve better performance, highlighting the
need for solutions at the edge and using personalized models.
Figure 7 shows the average running time for training the neural
network models on the selected edge device (Raspberry Pi 4)
with different types of anomalies. The average training time
is 26 seconds for the On-Off anomaly, 11 seconds for the
variance anomaly, and 0.88 seconds for the spike anomaly,
demonstrating that training at the edge is feasible.
Alternative Processing Models. We explore the possibility
of using alternative ML models such as Convolutional Neural
Networks (CNN) and K-Nearest Neighbor (KNN). Both model
achieve accuracies that are significantly smaller than the DNN.

V. DISCUSSION

A. Limitations

Our methodology has some limitations.
Model degradation. Although we show that the model retains
reliability over a week-long time period, we can assume that
there will be a point in time when the model’s accuracy will
degrade. It would be beneficial to test the accuracy degradation
over a larger timescale in order to understand how often the
model weights must be updated to retain accuracy.

Scalability. We demonstrate effective identification over a
dataset of 44 patients with a relatively simple, 2-layer neural
network. We do not yet understand if this model architecture
will scale to a larger set of patients. It would also be useful
to understand if the model could be used to accurately predict
the presence of other anomalies.

B. Future Directions

One of the possible solutions that we would like to investigate
in the future is to expand PRISM in order to enable privacy-
preserving device behavior analytic gathering through Feder-
ated Learning (FL) [17], [18]. We will implement the privacy-
preserving Federated Learning framework on the home gate-
way. This will enable the collection of anonymized and
aggregated behavioral data from various IoT devices running
locally while personalizing models to the usage trends of each
household.

C. Ethical Consideration

We fully respected the ethical guidelines defined by our
affiliated organization, and we received approval from our
University’s ethical committee. Moreover, all the data used
and presented in this research has been anonymized.
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Fig. 4: Spike Anomaly. The anomaly detection accuracy changes with training window size and different validation window
sizes. Each plot shows a validation window size (24h, 3h, 15min). The box plot shows the detection performance spread based
on patients’ data.

             Sleep Event             Heart Rate              Light
IoT Device

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Trained with:
Same patient
Different patient

Fig. 5: Average accuracy across all patients while training and
validating with the same and different patients.
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Fig. 6: Average accuracy across all patients while training
with all patients and validating with one patient, compared
to training with all and validating with one patient.

VI. RELATED WORK

In the last decades, a vast number of machine learning-
based network monitoring and anomaly classification tech-
niques, both in a distributed and centralized manner, have
been explored [19]. However, not all methods are suitable for
healthcare IoT, and they are not validated on real in-home
monitoring datasets. Compared with cloud-based systems,
edge-based systems [20] keep generated data on edge devices
and conduct computational tasks locally. Modern edge devices
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Fig. 7: Anomaly detection module training time at the edge.

now are capable of conducting advanced tasks such as training
DNN models and using them for local inference [21], [22].
Combining with IoT techniques, many edge-based systems
have been proposed for smart healthcare [10], [23]–[25], which
is one of the key applications of edge computing. Compared
with existing systems, we focus on the anomaly detection task
in smart healthcare and test our system with long-term and
real-world data.
IoT security management is rapidly transforming from cloud-
based solutions to hybrid and edge-based solutions [26] due
to privacy issues. Many edge-based security management so-
lutions have been proposed in both commercial and industrial
IoT. Thompson et al. [27] propose an edge-based solution for
rapid IoT device identification using DNS traffic. Similarly,
there are other edge-based solutions using network traffic for
the detection of non-essential network connections [6], for
malware detection [28], and for intrusion detection [29]. These
existing systems, however, rely on analysis of network traffic,
which is difficult to access especially in commercial IoT
systems. In comparison, PRISM utilizes application layer data,
which makes it more feasible in commercial IoT systems.

VII. CONCLUSION

Healthcare IoT devices are already very popular, and their
usage is expected to grow rapidly, particularly for in-home



monitoring. There is a need for a system for experimenting
with IoT anomalies at the edge. In our study, we found that
many IoT devices have a clear usage pattern and it is possible
to detect such device anomalies.
In this paper, we proposed PRISM, a system enhancing pri-
vacy preserving analytics for in-home monitoring IoT devices
and experimenting with anomalies. We trained and evaluated
different ML models for IoT device anomaly detection using
data collected in a clinical study by the UK Dementia Research
Institute to improve care for PLWD.
PRISM allows to inject customized anomalies and it is able
to detect them with 99% accuracy within a 24-hour training
window. We demonstrate that the accuracy decreases with the
training window size. We also showed that a model trained
on one patient performs poorly when tested on a different
patient even from the same anomaly, indicating the need for
continuous, local, and personalized retraining.
To address these issues, we evaluated PRISM at the edge using
a representative edge device (Raspberry Pi 4). We showed that
it is feasible to train the model at the edge with training times
as low as 0.88 seconds.
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