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ABSTRACT: Recent earthquake events have highlighted the effectiveness of financial ‘soft’ policies
(e.g., earthquake insurance) in transferring seismic risk away from those directly impacted and
complementing ‘hard’ disaster risk mitigation measures, such as seismic retrofitting. However, the
benefits of existing financial soft policies are often not guaranteed. Among other factors, this may be
attributed to their low penetration rate (e.g., in the case of earthquake insurance) and the fact that they
typically neglect the explicit needs of low-income populations. We facilitate a way to address such
shortcomings by proposing a framework for designing and assessing bespoke, people-centred,
household-level, compulsory financial soft policies related to earthquake risk (including conventional
earthquake insurance, income-based tax relief schemes, or a combination of these) across urban areas.
The proposed framework leverages the Tomorrow’s Cities Decision Support Environment, which aims
to promote pro-poor risk-sensitive urban planning through strong local engagement. The framework
specifically enables decision makers to design and assess the pro-poorness of mandatory financial soft
policies, using financial impact metrics that discriminate earthquake-disaster losses on the basis of
income. We showcase the framework using "Tomorrowville", a hypothetical city that reflects a
global-south urban setting in terms of its socioeconomic and physical aspects.

1. INTRODUCTION

Earthquakes can cause substantial direct eco-
nomic impacts due to physical damage and down-
time. Financial (‘soft’) seismic risk mitigation mea-
sures (e.g., disaster relief funds) protect the as-
sets of individuals or entities from earthquakes by
providing monetary compensation for damages in-
curred (Franco, 2014). These measures can com-
plement ‘hard’ seismic risk mitigation measures
such as seismic retrofitting (Gentile et al., 2021).

Earthquake insurance is a well-known soft mea-

sure for seismic risk mitigation. A typical resi-
dential earthquake insurance policy provides home-
owners with coverage for damages to properties
caused by an earthquake event. The insurance pre-
mium, i.e., the price paid by the insured to the
insurer, can consist of (1) a flat rate for every-
one; or (2) a risk-based rate determined on build-
ing structural type, building location, building re-
placement cost, etc (Goda et al., 2014). Residen-
tial earthquake insurance policies are widely avail-
able (e.g., in California, New Zealand, and Turkey).

1



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14
Dublin, Ireland, July 9-13, 2023

However, penetration rates (i.e., percentages of as-
sets with insurance coverage) vary greatly. More-
over, these policies do not explicitly address the
needs of low-income households, who have been
historically disproportionately impacted by natural-
hazard-driven disasters (due to their inability to pay
for emergency supplies, post-disaster repairs, etc.;
Winsemius et al., 2018). Other financial disaster-
relief tools, e.g., post-disaster cash transfers, do not
sufficiently recognise the amplified needs of low-
income people either. For example, after the 2015
Nepal earthquake (M7.8), an equal amount of finan-
cial assistance was provided by the Government of
Nepal to homeowners regardless of income level,
leaving many low-income households struggling to
afford reconstruction costs (Rawal et al., 2021).

This study facilitates an approach to addressing
the aforementioned shortcomings of conventional
earthquake-risk-related financial soft policies, us-
ing the Tomorrow’s Cities Decision Support En-
vironment (TCDSE) (Cremen et al., 2023). The
TCDSE supports decision making in a collaborative
environment, in which various decision makers, lo-
cal communities, and experts are involved from
the outset in risk-based, pro-poor urban planning
(Galasso et al., 2021). We leverage the TCDSE
to develop a framework for designing and assess-
ing bespoke compulsory financial soft policies re-
lated to residential properties, with a strong focus
on the extent to which these policies are pro-poor.
The compulsory financial soft policies considered
in this study encompass, for instance, components
of conventional earthquake insurance and income-
based tax relief schemes. We demonstrate the pro-
posed framework using a hypothetical city “Tomor-
rowville".

2. PROPOSED FRAMEWORK

The proposed framework, as shown in Figure 1,
has four calculation modules within the Computa-
tional Model: (1) Seismic Hazard Modelling; (2)
Physical Infrastructure Impact; (3) Social Impact;
and (4) Computed Impact Metrics. The decision
makers first design candidate policies (within the
Policy Bundles module), which are applied to a
specific time-dependent urban plan (in the Urban
Planning module), to produce an overall Visioning

Scenario. A pre-determined household-level finan-
cial impact metric (Ihh) is quantified to assess the
loss-mitigation effectiveness of the candidate poli-
cies, considering the residential exposure within the
conditional urban plan, the time-dependent seis-
mic hazard calculations produced in the Seismic
Hazard Modelling module, and physical and so-
cial vulnerability information respectively stored in
the Physical Infrastructure Impact and Social Im-
pact modules. Ihh is then translated into a Poverty
Bias Indicator (PBI), which measures the extent to
which low-income households are disproportion-
ately burdened with earthquake-induced financial
losses. Each iteration of the framework evaluates
the impacts associated with one Visioning Scenario.
Through multiple iterations of the framework, deci-
sion makers can identify the optimal pro-poor pol-
icy bundle (and the overall Visioning Scenario),
which corresponds to the lowest PBI. The proposed
framework captures the uncertainties in the calcu-
lations involved in modules (1) to (4) using Monte
Carlo sampling, which is similar to the approach
adopted in Cremen et al. (2022).

2.1. Urban planning
The Urban Planning module encompasses a con-

ditional urban plan detailing land uses, the building
portfolio, and underlying household and individual
information for a specific temporal instant. If de-
cision makers aim to design and assess policies for
immediate implementation, the input to the Urban
Planning module would be the current layout of the
urban context of interest. If the goal is to design
policies for the future, considering urban expan-
sion and changes in land use, the required input for
the Urban Planning module would be a proposed or
projected urban plan. The information on land use,
buildings, households, and socioeconomic and de-
mographic information are spatially related within
a geographic information system (GIS) database.

2.2. Policy bundles
The Policy Bundles module encapsulates one or

more compulsory financial soft policies designed
to transfer earthquake-related financial risk. These
policies could include, for instance, components
of conventional earthquake insurance, an income-
based tax relief scheme, or a combination of those.
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Figure 1: A flowchart of the proposed framework to design
and assess pro-poor financial soft policies.

They may also alter the financial burden on house-
holds across different social (e.g., income) groups.

2.3. Seismic hazard modelling
The Seismic Hazard Modelling module es-

timates relevant earthquake-event features (e.g.,
source/rupture features) and resulting earthquake-
induced ground-motion intensity measures (IM)
at the locations of considered residential build-
ings. The outputs of this module are ground-
motion fields for multiple intensity measures, e.g.,
peak ground acceleration (PGA), spectral accel-
erations at different structural periods (SA), peak
ground velocity (PGV), and peak ground displace-
ment (PGD), which are computed in a probabilis-
tic sense. These fields can be simulated using a
ground-motion model (GMM), e.g., Campbell and
Bozorgnia (2014). Spatial correlation and cross-IM
correlation models (e.g., Markhvida et al., 2018)
can also be used to produce more accurate fields.
Seismic hazard can be modelled using a single-
scenario or probabilistic approach (considering un-
certainties in the rupture features and occurrence
times). The latter method is more suitable for deci-
sion making in the insurance sector (Cremen et al.,
2022) and therefore the context of the proposed
framework, and is adopted herein.

2.4. Physical infrastructure impact
The Physical Infrastructure Impact module uses

the outputs of the Seismic Hazard Modelling mod-
ule to calculate earthquake-induced physical dam-
ages to residential buildings and the associated
asset losses (i.e., repair costs). Given the sim-
ulated ground-motion fields, this module utilises
fragility relationships to sample the damage state
(DS) of each residential building. It then uses
damage-to-loss ratios or consequence models to
compute the asset loss as a percentage of build-
ing replacement cost. Alternatively, vulnerabil-
ity relationships can be used to directly estimate
the loss ratio caused by a certain level of simu-
lated ground-motion intensity. By repeating the
loss estimation for all ground-motion simulations,
annual exceedance loss curves and expected annual
losses (e.g., EALbld,b, building-level expected an-
nual losses for the bth residential building) can be
obtained.

2.5. Social impact
The Social Impact module uses outputs from the

Physical Infrastructure Impact module to compute
household-level earthquake financial impacts (e.g.,
EALhh,i, household-level expected annual losses for
the ith household), also accounting for pertinent so-
cial characteristics. More specifically, this mod-
ule distinguishes household-level financial burdens
on the basis of relevant socioeconomic information
(i.e., income), and can further disaggregate these
impacts across other social groupings, e.g., age and
gender of household head, if necessary. The cal-
culations in this module can be affected by the fi-
nancial soft policies imposed in the Policy Bundles
module.

2.6. Computed impact metrics
The Computed Impact Metrics module uses out-

puts from the Computational Model to quantify the
impacts for a Visioning Scenario through the lens
of a pre-determined household-level financial im-
pact metric. The Computed Impact Metrics mod-
ule calculates this impact metric for each household
and then translates it into a single-valued Poverty
Bias Indicator (PBI), which measures the extent to
which low-income households are disproportion-
ately burdened in terms of the financial impact of
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interest. The PBI was originally introduced as
the Poverty Exposure Bias Indicator in Winsemius
et al. (2018), and modified by Cremen et al. (2022).
For a given household-level financial impact met-
ric, the PBI adopted in this framework is expressed
as follows:

PBI =
E(Ilow)

E(Iport)
−1 (1)

where E(Ilow) is the mean value of the household-
level financial impact metric across all low-income
households and E(Iport) is its mean value across
all households. A negative value of PBI indicates
that the financial soft policies contained in the Pol-
icy Bundles module are pro-poor, i.e., the financial
losses that result from their implementation do not
disproportionately affect low-income households.
The lower the negative-valued PBI is, the more pro-
poor the associated financial soft policies (and over-
all Visioning Scenario). The framework primarily
aims to facilitate the selection of the Visioning Sce-
nario with the lowest PBI, but can also be leveraged
to compare the extent to which one Visioning Sce-
nario is more pro-poor than another.

3. CASE STUDY
We use the 2 km × 3 km hypothetical city “To-

morrowville” (see Mentese et al., 2022) as our vir-
tual testbed to demonstrate the proposed frame-
work. Tomorrowville imitates a global-south urban
setting in terms of its socioeconomic and physical
characteristics. In this case study, we design and as-
sess eight compulsory financial soft policies related
to Tomorrowville residential buildings (and their
households) using the proposed framework. The
candidate financial soft policies involve conven-
tional earthquake insurance strategies and income-
based financial relief tax schemes. We focus on the
current urban layout of Tomorrowville (known as
“TV0") and account for seismicity related to three
nearby hypothetical strike-slip faults.

3.1. Urban planning
TV0 (shown in Figure 2) includes Tomor-

rowville’s current land use plan, a building port-
folio (containing information such as building lo-
cation, structural type, code level, number of
storeys, building area, and the households associ-
ated with each residential building), and underly-

ing household/individual databases (containing so-
cioeconomic and demographic data of each person
in each household, such as income group, gender,
and age). TV0 contains 3,423 residential buildings
and 7,809 households. Households within the same
polygon belong to the same income group. Resi-
dential polygons are categorised into low-, middle-
, and high-income categories. There are 4,236,
1,705, and 1,868 low-, middle-, and high-income
households, respectively.

See Table 1 in Wang et al. (2023) for an exhaus-
tive list of building typologies in Tomorrowville.
Low-code “brick and mud walls" buildings (typol-
ogy No.2) dominate Tomorrowville’s current resi-
dential building portfolio; over 64% of low-income
households live in buildings of this typology. On
the other hand, 48% of high-income households
live in high-code “Masonry-infilled reinforced con-
crete frame" buildings (typologies No.7 and 10)
- two of the most expensive and strongest build-
ing types. In this case study, we assume that re-
pair costs of multi-family residential buildings are
equally attributed to all households that live within
them. The average replacement costs for low-,
middle-, and high-income households are C5,348,
C8,511, and C11,902, respectively.

3.2. Policy bundles

3.2.1. Financial soft policy

Eight financial soft policies are designed in this
demonstration. We assume that Tomorrowville
households are owner occupied, such that a house-
hold’s financial seismic losses (and any household-
specific required monetary input for a related finan-
cial soft policy) are shouldered by its residents. The
proposed policies include some adapted involve-
ment of the main parameters in an earthquake in-
surance contract, i.e., premium, deductible, limit,
and coinsurance factor. Deductible (D, the amount
of money that the insured party need to pay towards
an insurance claim), limit (C, the highest amount
of a claim covered by an insurance contract), and
coinsurance factor (γ , the percentage of losses paid
by the insurer after the insured party pays the de-
ductible) constitute a typical payout function (Goda
et al., 2014) that determines the insurance payout
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Figure 2: Residential buildings in Tomorrowville (TV0).

(IP), as follows:

IP(L) =


0 L ≤ D
γ · (L−D) D < L ≤C
γ · (C−D) L >C

(2)

where L refers to the total assessed seismic loss,
i.e., ground-up loss, of a building. A payout func-
tion translates the household’s expected annual loss
(EALhh,i) into the household’s expected annual fi-
nancially protected loss (EAILhh,i) and the house-
hold’s expected annual financially unprotected loss
(EAULhh,i), which is analogous to expected an-
nual insured loss and expected annual uninsured
loss, respectively, in a traditional earthquake insur-
ance scheme. EAILhh,i is calculated by integrat-
ing the annual exceedance financially protected loss
curve for the associated building and dividing by
the number of households occupying it. The sum-
mation of EAILhh,i across all households is the ex-
pected annual financially protected loss of the res-
idential building portfolio (EAILport). Multiplying
EAILport by a premium loading factor α gives the
portfolio premium (Pport), i.e., the total premium

that needs to be collected across all financially pro-
tected households. For this case study, we adopt a
premium loading factor of 1.25, in line with Gen-
tile et al. (2021). Each financial soft policy consists
of a payout function and a premium redistribution
scheme (as shown in Table 2).

3.2.2. Payout function
In this case study, we examine two representative

payout functions. Payout function No.1 is uniform
across all income groups; a D of C1,000 and a C of
C40,000 are imposed on each household, regard-
less of its income. The C of C40,000 fully covers
the total replacement cost of over 98% of residen-
tial buildings occupied by low-income households.
Payout function No.2 adopts different D’s for dif-
ferent income groups. D is C6,400, C4,800, and
C1,600 for high-income, middle-income, and low-
income, respectively, which roughly correspond to
5 to 20% of the average total replacement cost of
residential buildings in TV0. We adopt a coinsur-
ance factor (γ) of 1.0 for both payout functions.

3.2.3. Premium redistribution scheme
The premium redistribution scheme (PRS) is

used to compute the premium for each household
as some proportion of Pport . PRS allows the policy-
maker to flexibly determine the premiums payable
by different households, thereby creating opportu-
nities to reduce the financial burden placed on low-
income households. The premium for each house-
hold is imposed in the form of a mandatory tax.

Table 1 summarises the four PRSs considered in
this case study. PRS No.1 imposes a flat-rated pre-
mium on each household, which reflects earthquake
insurance approaches in New Zealand (Middleton,
2001). PRS No.2 distributes premiums based on
EAILhh,i values, which broadly reflects the earth-
quake insurance programs of Turkey and Califor-
nia (Goda et al., 2014). PRSs No.3 and 4 transfer
80% of the expected annual financially protected
loss of the low-income group within the entire port-
folio (EAILl) to middle- and high-income groups,
thereby mitigating the financial burden on the low-
income. PRS No.3 then specifies that the total
premiums imposed on each income group are dis-
tributed to each associated household in proportion
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to EAILhh,i values, while PRS No.4 imposes flat-
rated premiums on each household within a given
income group.

3.3. Seismic hazard modelling
We account for three hypothetical vertical strike-

slip faults in the proximity of Tomorrowville (see
Figure 2 in Wang et al. (2023) for details). We as-
sume all faults can generate non-characteristic and
characteristic events. We assume that the moment
magnitude (M) of non-characteristic events follows
the Gutenberg-Richter magnitude frequency distri-
bution (Gutenberg and Richter, 1944) and their oc-
currence follows a Poisson distribution. We assume
a slope of occurrence b = 1, and a minimum and
maximum magnitude for non-characteristic events
of 4.0 and 6.5, respectively. We assume the mag-
nitude of characteristic events follows a truncated
normal distribution for 6.5 < M < 7.5, with mean
7.0 and standard deviation 0.25 and that their oc-
currence follows a Weibull distribution. The mean
and standard deviation of the inter-arrival time of
characteristic events are 200 and 50 years, respec-
tively. We use Monte Carlo sampling to simulate
10,000 one-year earthquake catalogues, consider-
ing the time since the last characteristic event is 50
years.

We simulate spatial cross-correlated ground-
motion fields across Tomorrowville, using the
GMM in Campbell and Bozorgnia (2014) and
the spatial and cross-IM correlation model in
Markhvida et al. (2018). We use Monte Carlo sam-
pling to simulate 100 sets of ground-motion fields
for each event, on a 200 m × 200 m grid shown in
Figure 2. We use the ground-motion intensity val-
ues simulated at each grid point as a proxy for these
values at nearby building sites.

3.4. Physical infrastructure impact
See Table 5 in Wang et al. (2023) for the fragility

functions associated with each building typology in
Tomorrowville, which are used in conjunction with
a set of deterministic damage-to-loss ratios for each
DS: 0.07 for DS = 1, 0.15 for DS = 2, 0.50 for
DS = 3, and 1.00 for DS = 4 (Cosenza et al., 2018).
In this case study, the outputs of this module in-
clude the annual exceedance loss curve, EALbld,b,

and the expected annual portfolio loss (EALport ;
i.e., the summation of EALbld,b).

3.5. Social impact
The module calculates EALhh,i using EALbld,b

and associated household information of each
building. It uses the payout and premium redis-
tribution functions defined in Section 3.2 to cal-
culate EAILhh,i, the total expected annual finan-
cially protected loss of low-, middle-, and high-
income households (EAILl , EAILm, EAILh, respec-
tively), EAILport , EAULhh,i, the expected annual
financially unprotected portfolio loss (EAULport),
the premium payable by each household (Phh,i), and
Pport .

3.6. Computed impact metrics
We propose a novel household-level financial im-

pact metric, herein referred to as “unprotected loss
ratio” (Ihh,i), to quantify the financial impact of the
candidate soft policies on each household. Ihh,i can
be mathematically formulated as follows:

Ihh,i =
EAULhh,i +Phh,i

RPChh,i
(3)

where RPChh,i refers to the total replacement cost
attributed to each household. The higher Ihh,i is, the
heavier the earthquake-related financial burden on
the household is. We then aggregate Ihh,i to com-
pute E(Ilow) and E(Iport), for input to the PBI cal-
culation expressed in Eq. (1).

4. RESULTS
Figure 3 displays the mean portfolio annual ex-

ceedance loss curves associated with payout func-
tions No.1 (left panel) and No.2 (right panel). Pay-
out function No.1 results in greater financially pro-
tected losses than payout function No.2. The mean
premiums payable by households of each income
group are shown for each policy in Table 3. Policies
No.1 to 4 that adopt payout function No.1 result
in higher premiums, because of its larger EAILport
value compared to payout function No.1. Because
payout function No.2 specifies lower deductibles
for middle- and low-income households and build-
ings occupied by these people are in general less
seismic-resistant compared to those occupied by
the high-income, the average EAILhh,i is higher
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Table 1: Premium redistribution schemes (PRSs) considered in this study. EAILl , EAILm, and EAILh are the total expected an-
nual financially protected loss of the low-, middle-, and high-income households, respectively, whereas EAILhh, i refers to the ex-
pected annual financially protected loss of the ith household (i = 1,2, ...,Nhh, where Nhh is total number of households). Nl , Nm,
and Nh are the number of low-, middle-, and high-income households respectively. α refers to the premium loading factor (=1.25
for this study).

PRS Total premiums
(middle- and high-income)

Total premiums
(low-income)

Household-by-household distribution
within each income group

1 α · (EAILl +EAILm +EAILh) · Nm+Nh
Nhh

α · (EAILl +EAILm +EAILh) · Nl
Nhh

flat-rated
2 α · (EAILm +EAILh) α ·EAILl proportional to EAILhh,i
3 α · (EAILm +EAILh +0.8 ·EAILl) α ·0.2 ·EAILl proportional to EAILhh,i
4 α · (EAILm +EAILh +0.8 ·EAILl) α ·0.2 ·EAILl flat-rated

Table 2: Eight financial soft policies considered for this case
study.

Policy Payout
function

PRS Policy Payout
function

PRS

1 1 1 5 2 1
2 1 2 6 2 2
3 1 3 7 2 3
4 1 4 8 2 4

for low- and middle-income people than for high-
income people. Policies No.3, 4, 7, and 8 that em-
ploy PRSs No.3 or No.4 burden low-income house-
holds with significantly lower premiums compared
to the other policies.

Figure 4 shows the mean, median, and 25th to
75th percentile range of Ihh,i, computed for house-
holds in each income group under each policy. Also
shown are PBI values for each policy. Policies No.3
and No.7 lead to the lowest value of E(Ihh,i). Soft
policies No.1, 2, 5, and 6, which are not explic-
itly designed to be pro-poor, yield the highest val-
ues of Ihh,i for low-income households as expected
(see Figure 4). The positive values of PBI obtained
for these policies further indicate that they result in
a disproportional financial burden on low-income
households. Policies No.3, 4, 7, and 8, which are
all explicitly designed to lower financial burdens on
low-income households, result in a negative (i.e.,
pro-poor) value of PBI as expected.

5. CONCLUSIONS
We leverage the Tomorrow’s Cities Decision

Support Environment (Cremen et al., 2023) to pro-
pose a framework for designing and quantitatively
assessing compulsory, seismic-risk-related people-
centred, household-level financial soft policies for

Figure 3: Mean ground-up, financially protected and unpro-
tected portfolio annual exceedance loss curves.

Table 3: Mean premiums (in EUR) paid by households per
income group and the computed Poverty Bias Indicator (PBI)
for each financial soft policy.

Policy Low-
income

Middle-
income

High-
income

PBI

1 144 144 144 0.343
2 145 140 147 0.284
3 29 273 288 -0.339
4 29 281 281 -0.280
5 101 101 101 0.263
6 122 84 69 0.304
7 24 210 172 -0.229
8 24 191 191 -0.163

earthquake-prone urban areas. This framework ex-
plicitly focuses on addressing the disproportionate
earthquake-related financial burdens often imposed
on low-income people, using novel impact met-
rics that distinguish losses on the basis of perti-
nent socioeconomic information. We demonstrate
the proposed framework through designing and as-
sessing a number of different compulsory financial

7



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14
Dublin, Ireland, July 9-13, 2023

Figure 4: Ihh,i calculated for each candidate financial soft policy. Corresponding PBI values are also shown.

soft policies for the hypothetical city of Tomor-
rowville (Mentese et al., 2022). This demonstra-
tion showcases the framework’s capacity to iden-
tify financial soft policies that are pro-poor in terms
of the earthquake-related impacts experienced as
a result of their application. Stakeholders such as
urban planning authorities, community representa-
tives, and researchers can use the framework for in-
formed decision making on the design of pro-poor
financial soft policies for implementation in current
(and future) earthquake-prone urban communities.
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