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ABSTRACT: Earthquake-induced landslides can significantly increase structural damage to 
buildings located on slopes with respect to the damage due to ground shaking only. 
Accordingly, multi-hazard vulnerability modelling of structures should account for the 
cumulative damage due to earthquake-induced ground motions and landslide-related actions. 
This paper presents a numerical procedure based on surrogate modelling for the 
computationally efficient prediction of structural response to earthquake shaking and resulting 
landslides if any. Specifically, discriminant classifiers and Gaussian process regression are 
used to develop metamodels mapping the main structural characteristics (e.g., geometric and 
material properties) to engineering demand parameters of interest. The proposed procedure is 
applied to an archetype reinforced concrete frame building designed only for gravity loads and 
located at the toe of a slope. Analysis results show that surrogate models allow a quick yet 
accurate prediction of structural performance. 
KEYWORDS: buildings; earthquakes; landslides; Gaussian process regression; multi-hazard 
performance assessment.  

 
1  INTRODUCTION 
In most instances, damage induced by earthquakes’ 
secondary hazards (such as explosions/fire, 
tsunamis, and landslides) is heavier than that caused 
by ground shaking. Recent events highlighted that 
earthquake-induced landslides could lead to severe 
economic and human losses (e.g., Yin, 2008; Cui et 
al., 2009). Indeed, landslides can be classified as one 
of the most dangerous secondary hazardous events 
triggered by earthquake-induced ground shaking. 
Many past studies focused on slow-type landslides 
(e.g., Fotopoulou & Pitilakis, 2017a,b) characterised 
by velocity almost equal to 0.6 mm per day. In this 
case, damage to buildings and infrastructure is 
mainly induced by differential soil settlements under 
those structures on the crest of slopes (Fotopoulou & 
Pitilakis, 2017a,b). In contrast, flow-type landslides 
– characterised by a velocity of up to 30 m/s – can 
induce heavy damage to buildings downstream of 
slopes due to earth-flow impacts. Moreover, 
different objects such as rocks, debris and cars can 
crash on the building façade, further exacerbating 
damage (e.g., Mavrouli et al., 2014). 

Empirical vulnerability models for structures 
subjected to flow-type landslides were developed 
by Fuchs et al. (2007). Moreover, Zeng et al. 
(2015) collected historical damage data of past 
landslides by performing field investigations to 
investigate the failure modes of reinforced 
concrete (RC) columns impacted by earth flows. 
More recently, Parisi & Sabella (2017) 
investigated RC frame buildings subjected to 
landslide impact via 2D nonlinear structural 
models and simplified models of masonry infill 
walls, deriving analytical (or numerical) fragility 
relationships (i.e., likelihood of damage given a 
hazard intensity measure). Miluccio et al. 
(2020a,b) developed fragility relationships for 3D 
nonlinear structural models subjected to 
earthquake-induced landslides. The high 
computational effort associated with the 
derivation of fragility models for a building 
archetype representative of a building class (or 
type) is one of the main challenges of this type of 
analysis, particularly when both within-building 
and building-to-building variabilities are 
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considered. 
In this study, two discriminant classifiers and a 

Gaussian Process (GP) regression are trained to 
investigate the structural performance of a selected 
structural type (aka building class) subjected to 
earthquake-induced ground motion and landslide. 
The computational procedure is based on the 
sequential pushover analysis procedure presented by 
Miluccio et al. (2020a,b), the results of which are 
used to define training datasets for surrogate 
modelling. The proposed surrogate models allow the 
computationally-efficient prediction of 1) the 
cumulative damage caused by a sequence of 
earthquake shaking and landslide impact on the 
considered building class, and 2) fragility estimates 
with high accuracy. 

A pre-code European building class (i.e., 
designed before 1980) is considered as a case study. 
Specifically, the proposed surrogate models are 
trained for an archetype structure representative of 
such a case-study building class. Their accuracy is 
shown through confusion matrices for the 
classifiers, root-mean-square error (RMSE), 
normalised RMSE, and 95% coverage probability 
for GP regression. 

2 METHODOLOGY 
Two classifiers are calibrated to predict collapse due 
to 1) earthquake-induced ground motion; 2) and 
subsequent landslide impact. Moreover, a GP 
regression model is trained to estimate seismic 
demand in terms of chord rotation of the corner 
column that is also impacted by the subsequent 
landslide (the column 101 hereafter; see also Figure 
3) for the non-collapse cases. The datasets to train 
and validate the surrogate models are both generated 
as described in the flow chart in Figure 1; Figure 2 
shows the uses of these datasets to train the 
corresponding surrogate model.  

The first step in the proposed methodology is 
uncertainty characterisation, including uncertainties 
related to geometric and material properties, loads, 
and capacity models. Next, a sample dataset is 
developed using a Latin Hypercube Sampling 
Method (LHS) (i.e., for the training dataset) or a full 
factorial Design of Experiments (DoE) approach 
(i.e., for the validation dataset). A first nonlinear 
static (i.e., pushover) analysis is carried out on the 
intact structure to estimate the structural 
performance under earthquake ground shaking 
applying the Capacity Spectrum Method (CSM; 

Freeman, 1998). An indicator function is set to 1 
or 0 if collapse is reached or not, respectively. 
Two different datasets are thus generated with all 
samples corresponding to collapse, namely, one 
dataset associated with earthquake-induced 
collapse and the other related to landslide-
induced collapse (i.e., this matrix considers the 
previous collapse due to seismic action as well) 
(Figure 1). If the indicator function is equal to 0, 
a dataset associated with the considered seismic 
demand (in terms of chord rotation of column 
101) is generated, and a pre-damaged inelastic 
structural model is developed, considering the 
damage caused by the seismic load. 
Subsequently, another nonlinear static analysis 
with force control is performed to predict the 
structural performance under landslide impact. 
Then, the earthquake-induced landslide dataset is 
generated by including all collapse cases induced 
by earth-flow impact. 

The above steps must be applied for each 
sample generated and each value of the 
considered ground-motion intensity measure (or 
IM; peak ground acceleration, PGA, in this 
study) and landslide IM (i.e., the impact velocity, 
v, in this study) to obtain the training and 
validation datasets. 

The uses of the training datasets generated 
through this procedure are shown in Figure 2, 
where the two classifiers are introduced. The first 
classifier allows predicting whether earthquake-
induced collapse is reached or not (Figure 2a). A 
GP regression model is trained using the seismic 
demand training dataset (Figure 2b). Finally, the 
second classifier is calibrated via the earthquake-
induced landslide training dataset (Figure 2c), 
which consider the landslide-induced collapse 
cases. 

The entire analysis procedure was 
implemented in MATLAB (The MathWorks Inc, 
2020). 
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Figure 1. Analysis flowchart for one training point. 

 
Figure 2. Training of the proposed surrogated models: a) 

Discriminant classifier for earthquake-induced collapse; b) 
Gaussian Process regression to evaluate the drift demand on 

structural elements due to seismic ground shaking ; c) 
Discriminant classifier for landslide-induced collapse. 

Section 2.1 describes the two different 
sampling techniques adopted and the numerical 
structural modelling approach to define the 
training and validation sample sets. The analysis 
procedure is presented in Section 2.2, which 
deals with the discriminant classifiers and GP 
regression model. 

 
2.1 Sampling techniques and numerical 

structural modelling 
In this study, geometry, material, and capacity 
model parameters are considered random 
variables (RVs). Those RVs are assumed 
statistically independent. Each RV is defined 
through a probability distribution model 
characterised by 1) mean and standard deviation 
(or the coefficient of variation, CoV, i.e., the ratio 
of the standard deviation to the mean)  when a 
normal or lognormal variable is defined; 2) a 
range (minimum and maximum values) when a 
uniform distribution is considered. Two sampling 
techniques are used, i.e. the LHS and the full 
factorial DoE to generate the training and 
validation dataset samples, respectively. 

The full factorial DoE is implemented by 
considering n realisations of each RV to build the 
whole dataset by combining each value obtained. 
Based on the number of random parameters, N¸ 
Nn samples are generated. 

LHS considers N hyperplanes, where N is the 
number of random parameters, and each of them 
is divided into several equally probable intervals 
Nsim (i.e., considered number of samples). In this 
way, Nsim hypercubes are created, and a value of 
each parameter is randomly sampled within each 
hypercube – i.e., a type of stratified Monte Carlo 
is considered. 

The OpenSees software (McKenna et al., 
2004) is used to build structural models 
according to a lumped plasticity approach. 
Eurocode 8 (EC8) – Part 3 (CEN, 2005) is used 
to define the plastic hinge behaviour through 
nonlinear springs with trilinear moment-chord 
rotation (M-θ) relationships. Each consists of a 
first elastic branch up to the yielding point, 
followed by a hardening branch up to the 
maximum strength (Mmax) and a degrading 
branch up to zero strength. The yielding point (θy, 
My) is defined by evaluating the yielding chord 
rotation, θy, through the EC8 formulation and the 
yielding moment, My, via sectional analysis. The 
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ultimate flexural chord rotation, θu,f, is evaluated as 
the sum of the plastic rotation, θpl, and the yielding 
rotation, θy, according to EC8. The ultimate 
moment, Mu, is obtained as 0.8Mmax, estimating 
Mmax as the moment leading to the ultimate strain of 
concrete in the most compressed fibre of the RC 
cross-section. The corresponding chord rotation, 
θmax, is set equal to 0.75θu,f. The compressive 
behaviour of the concrete is modelled through a 
parabola-rectangle stress-strain diagram, whereas 
the behaviour of the reinforcing steel is assumed to 
be elastic-perfectly plastic. 

The shear capacity model proposed by Biskinis et 
al. (2004) is adopted to consider the degrading shear 
behaviour of plastic hinges. Moreover, the linear 
capacity loss proposed by Zhu et al. (2007) is 
deemed to simulate shear capacity degradation 
accurately. 

As discussed in Zeng et al. (2014), earth-flow 
impacts can induce damage to the midspan of the 
impacted columns. This motivated the 
implementation of a third nonlinear spring at the 
midspan column section together with the springs at 
the element ends. All of them are defined through 
the M-θ relationship described before. 

A bare framed structural system is modelled, 
accounting for infill masonry walls as gravity loads. 
Floor slabs are considered rigid in their plane, 
whereas a fully fixed boundary condition is assigned 
to the base of the building (i.e., the soil-structure 
interaction is neglected). Uniformly distributed 
loads on beams are considered to simulate gravity 
loads according to their tributary floor areas and the 
presence of infill masonry walls. 

 
2.2 Analysis procedure 
Eigenvalue analysis is used to evaluate the modal 
shapes and vibration periods of each random 
realisation of the elastic structural model. Then, 
nonlinear static (pushover) analysis with 
displacement control is performed by considering 
the intact structure, modelled according to the 
lumped plasticity approach described above. A 
uniform load profile is used to represent the mass 
distribution over the building height. Pushover 
analysis is run by assuming an incidence angle ϑs of 
the lateral loads, hence considering their effects 
along the principal directions of the building plan. 
Finally, the CSM approach is applied to evaluate 
displacement demands and, consequently, structural 
performance for each pushover analysis. It is worth 

mentioning that the CSM is carried out adopting 
the equivalent viscous damping formulation 
provided in Priestley et al. (2007), using the 
elastic response spectrum proposed by EC8 – Part 
1 (Type 1 spectrum) (CEN, 2004). Based on the 
biaxial interaction model proposed by Di 
Ludovico et al. (2013) for RC-column cross-
sections, a single Demand-to-Capacity Ratio 
(DCR) for each structural member is evaluated to 
quantify damage due to earthquake-induced 
ground motion. 

If the maximum DCR reaches or exceeds 
unity, then the building is assumed to collapse 
due to the seismic ground motion, the procedure 
is stopped, and the sample is included in the 
seismic collapse training dataset. Otherwise, 
DCRs related to all frame members are 
considered to define a second inelastic model 
representative of a pre-damaged structure. 
Pushover analysis with force control is thus 
carried out to assess the effects of the landslide 
impact on the pre-damaged structure. In this case, 
all structure samples with DCR < 1 (i.e., non-
collapse cases) are considered. 

The landslide impact results in lateral 
pressures over the height of the impacted 
columns that can be modelled as the sum of a 
linearly distributed pressure (hydrostatic 
component) and a uniformly distributed pressure 
(kinetic component), according to Zanchetta et al. 
(2004), as follows: 

 (1) 

 (2) 
where: g = acceleration of gravity; D = flow 

depth; ρ = flow density; zs = height of generic 
soil layer from the sliding surface of the flow; v = 
impact flow velocity; δf = angle between flow 
direction and perpendicular axis of impacted 
building façade (δf = 0 in case of perpendicular 
impact).  

In this study, according to Parisi and Sabella 
(2017), a uniform equivalent pressure (peq) is 
computed to define a distributed load per unit 
length over the height of the columns by 
assuming the earth-flow height equal to the inter-
story height, as follows: 

 (3) 

 (4) 
where bc and hc indicate the dimensions of 

2 2( ) cos( )d s s fx g D zp vz r r d= - +
2 2( ) sin( )d s s fz g D zp vz r r d= - +

cosex q c fp hq d=

sinez q c fp bq d=
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column cross-section along the X- and Z-axis of the 
building plan, respectively. Moreover, the flow 
impact angle (δf) and the extension of landslide on 
the plan (Lf) are considered as variables. 

Thus, landslide-related loading is modelled as 
uniformly distributed pressures both in plan and 
over the height of columns, as shown in Figure 3. 

 

 
Figure 3. Landslide load distribution in plan (qx and qz are the 

load components along the building axes, Lx and Lz measure the 
portions of building façade along the building axes impacted by 

the landslide; Lf is the landslide size in plan). 

The entire procedure is consistent with the 
assumption that landslide impact follows seismic 
shaking. Sequential pushover analysis is performed 
to assess the cumulative damage to structural 
elements due to earthquake-induced ground motion 
and landslide impact. In this respect, it is assumed 
that structural collapse is reached when column 101 
achieves either the ultimate chord rotation or 
maximum shear strength. Figure 4 shows the 
sequence of structural analyses performed under 
lateral actions representing the effects of 
earthquake-induced ground motion and lateral 
actions representing the landslide impact.  

 

 

 
Figure 4. Sequential nonlinear static analysis: a) Pushover 
analysis on intact structure, b) landslide impact on the pre-
damaged structure, c) plastic hinge behaviour during the 

whole procedure (plastic hinge behaviour characterised by 
yielding chord rotation θy, yielding moment My, maximum 

chord rotation θmax, maximum moment Mmax, ultimate chord 
rotation θu, ultimate moment Mu, rotation demand θd and 
moment demand Md induced by earthquake shaking, and 

residual chord rotation θr). 

 
2.3 Discriminant classifier and GP regression 

The sampling techniques described in Section 
2.1 are adopted to define a vector x that includes 
any geometric characteristics and material 
properties considered in the analysis. Thus, the 
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matrix X is set to comprise all input vectors x (for 
all the training points). In addition, a vector y is 
defined to include the selected engineering demand 
parameter (EDP) values, i.e., the computed chord 
rotation seismic demand, for all the considered 
training points. 

The discriminant analysis is used to train a 
discriminant classifier and to predict the collapse or 
non-collapse cases for the buildings under study. In 
this regard, two data groups are considered as input 
and output, namely, collapse and non-collapse. 

The probability that K = k given a certain 
observation x of X (i.e., Y is the class predicted, and 
k is the observed class) can be obtained by applying 
the Bayes theorem. Thus, Pr(Y = k | x), can be 
defined as follows: 

 (5) 

where fk(x) is the class density function; πk is the 
prior probability of class (i.e., the proportion of 
training data that belongs to the kth class).  

In linear discriminant analysis (LDA), the class 
density function is defined through a multivariate 
Normal model assuming that all classes have the 
same covariance matrix. Since LDA via least 
squares does not use a Gaussian assumption for the 
predictors, its applicability extends beyond the 
realm of Gaussian data (Friedman et al., 2008). 
Therefore, LDA is performed, and linear decision 
boundaries among classes are defined by inserting 
the given fk(x) into Eq. 5, comparing two classes, 
and considering their log-ratio. Therefore, the linear 
discriminant function is given by Eq. 6: 

    (6) 

where δk is a linear function of x; hence, linear 
decision boundaries exist between the classes. 
More details about LDA can be found in 
(Lachenbruch and Goldstein 1979; Friedman et al., 
2008; McLachlan 2004). 

Next, a GP regression is derived. The 
relationship  y = f(x) between x and y is surrogate 
through a statistical model. Thus, the GP can predict 
the EDP of interest given a given input vector faster 
than the numerical analysis.  

The GP describing the relationship f(x) is defined 
by its mean function m(x) = 𝔼[𝑓(𝒙)] and its 
covariance k(x,x′) = 𝔼[(𝑓(𝒙) – m(x))(𝑓(𝒙′) – m(x′))] 
where 𝒙 and 𝒙′ are two different input vectors: 

 (5) 
The properties of the output function - with 

particular reference to its smoothness - are 
governed by the covariance function (or kernel), 
which captures the correlation among different 
input vectors and reflects it in the output. 
Therefore, the structure of the covariance 
function is selected to reflect the expected 
behaviour of the output. A popular choice of 
covariance function is the squared exponential 
covariance – also adopted in this study – since it 
reflects the “stability” of the involved physical 
quantities (i.e. a small perturbation of the input 
geometry or material properties produces small 
changes in the considered output EDP). In this 
case, two hyperparameters are used to describe 
the kernel, σi and σf. The former is representative 
of the length scale of the output given an input 
dimension i. Therefore, in the case of small 
values of σi, the GP regression outputs can 
change quickly with respect to the building’s 
attributes. In contrast, σf is the signal variance 
and represents the variability of the output given 
an input x. The prediction of the training data y is 
defined by maximising the likelihood 𝑝(y|X,𝜽), 
where 𝜽 = {𝜎i, 𝜎f} is a vector of hyperparameters 
and X is the training input dataset. This 
procedure is carried out through MATLAB using 
a quasi-Newton numerical optimisation 
algorithm.  

 
3 CASE STUDY 
An archetype structure representative of the 
European pre-code building class is chosen as a 
case study, considering low-rise buildings 
designed for gravity loads only. Figure 5 shows 
the structural system, consisting of two storeys 
with the same inter-storey height and a 
rectangular plan with two by six bays in the two 
principal global directions. Both material and 
geometric properties are described in Table 1 as 
RVs (Crowley et al., 2004; Parisi & Sabella, 
2017). 
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Figure 5. a) Building plan; b,c) building elevation. 

Beams are assumed to have a rectangular cross-
section with depth and width equal to 0.5 m and 0.3 
m, respectively. LHS and DoE sampling techniques 
are applied to define the validation and training 
sample datasets, respectively, as discussed above. 
Specifically, LHS is implemented by assuming 
uniformly distributed RVs in the range [μ – σ, μ + σ] 
(denoting mean and standard deviation of each RV 
as μ and σ, respectively) and by generating 3000 
samples. Conversely, DoE is implemented by 
considering three values for θs, δf, Lf, fc, fy (i.e., μ – 
σ; μ; μ + σ). Instead, four values of bc and 
Vu,exp/Vu,theor (i.e., μ – σ; (μ – σ)/2 μ; (μ + σ)/2) are 
considered due to their high influence on the 
structural response of the case-study structure for 

the specific problem under investigation. The 
total samples generated through the DoE are 
3888. 

 
Table 1. Considered random variable (RVs) and their 
probability density function (PDFs). 
 

Item RV μ/Range CoV PDF 

Earthquake θs 0 – 90° - Uniform 

Landslide 
δf 0 – 90° - Uniform 

Lf hcol – db – Uniform 

Concrete fc 2.73 MPa 31% Lognor. 

Steel fy 245 MPa 10% Normal. 

Column bc = hc -1.03  m 37% Lognor. 
Capacity 
Model Vu,exp/Vu,th. -0.03 25% Lognor. 

 
The training and validation datasets for the 

case-study building are defined via the procedure 
summarised in Figure 1, assuming 15 values of 
PGA (i.e., from 0.05g to 0.75g with a step of 
0.05g) and 11 values of landslide velocity (i.e., 
form 0 m/s to 10 m/s). Therefore, the 
discriminant classifiers are trained by considering 
collapse cases associated with seismic shaking 
and landslide impact. In this regard, two training 
matrices are defined: (i) the matrix associated 
with seismic collapses includes 45000 
realisations (i.e., 3000 samples multiplied for 15 
values of PGA) and four predictors (fc, fy, bc, 
PGA); (ii) the matrix related to the landslide 
collapses comprises  495000 realisations (i.e., 
3000 samples multiplied for 15 values of PGA 
and 11 velocities) and five predictors (fc, fy, bc, 
PGA, v). Moreover, the GP regression is 
calibrated based on the seismic demand training 
matrix (Figure 1) that includes the same 
predictors of (i). In this study, four predictors are 
chosen to train the surrogate models in order to 
implicitly include the loads and capacity models 
variability into them. In this way, the models can 
be used considering the material and geometry 
variables that can be easily derived from 
literature or surveys. 

On the other hand, the validation datasets 
include: (i) 6480 realisations for the seismic 
collapses matrix (i.e., 432 samples timed 15 
values of PGA) due to the fact that the landslide 
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load parameters (i.e., Lf and df) do not influence the 
seismic structural response (all samples related to 
their variability are not considered in this matrix); 
(ii) 641520 realisations for the earthquake-induced 
landslide collapses matrix (i.e., 3888 samples times 
15 values of PGA and 11 values of velocity). 

The surrogate models prediction power 
isevaluated by considering the validation dataset. 
Finally, confusion matrices for the classifiers, 
RMSE, normalised RMSE and 95% coverage 
probability for GP regression are assessed to define 
the surrogate models’ prediction quality. 

3.1 Results 
A confusion matrix is one of the most useful tools to 
describe classifier performance. Such a matrix 
collects the actual and predicted outputs to evaluate 
the quality of predictions. Three parameters can be 
inferred from the confusion matrix: accuracy, 
precision, and recall. Accuracy is the number of 
correct predictions over the number of samples 
adopted. Precision is defined as the percentage of 
correct predictions for each class. Recall, also called 
sensitivity in binary classification, is the percentage 
of correct predictions over the actual samples in the 
class. 

The discriminant classifier produces a squared 
confusion matrix, where the main diagonal 
represents the correct predictions of the classifiers. 
Figure 6 shows the confusion matrices obtained for 
both classifiers by applying the validation sample 
sets (i.e., the sample sets generated through the DoE 
method).  

 
  

 
Figure 6. Confusion matrix of discriminant classifiers for (a) 

earthquake shaking; and (b) landslide impact. 

The accuracy is displayed in the bottom right 
corners in terms of percentage (i.e., the green 
text). In contrast, the precision and recall are 
shown in the last column (on the right-hand side) 
and the last row (at the bottom) of the confusion 
matrices, respectively. 

The analysis results show that the discriminant 
classifiers have an accuracy of 94% in both 
cases. Moreover, the precision and recall values 
are both higher than 85%. These results show 
good quality for both classifiers, as reported in 
Mangalathu and Jeon (2019). Thus, the proposed 
classifiers have a high power to predict the 
collapse/non-collapse of the considered structure. 
It is worth noting that the proposed classifiers 
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consider the uncertainties in material and geometric 
properties (i.e., fc, fy, bc) and loads parameters (qs ,Lf, 
df). 

The proposed GP regression is trained to predict 
the seismic chord rotation demand on column 101. 
The high accuracy in the GP regression’s prediction 
is first shown in Figure 7, where the multi-
dimensional function is reduced to a 3D plot by 
considering the variability of two parameters and 
assuming a constant value of the others. Therefore, 
the GP regression is tested by applying the DoE 
dataset. In particular, Figure 7 shows the GP 
regression by assuming fc = 16 MPa and fy = 220.5 
MPa. The shaded area in Figure 7 represents the 
95% confidence interval of the predictions, whereas 
the grey surface is the mean value of regression that 
fits the testing points in red. 

   
Figure 7. Example of Gaussian Process prediction for column 
101 chord rotation due to earthquake ground shaking (fc = 16.0 

MPa, fy = 220.5 MPa). 

It can be noted that the GP regression is not fitted 
on the entire variables’ intervals (e.g., for PGA 
values of 0.05g to 0.75g) because in some regions of 
the defined hyperspace, there are no training data. 
Indeed, there is a lack of training points for high 
values of PGA and lower values of bc. This aspect is 
easily explained by following the procedure 
illustrated in Figure 2. Indeed, the classifier 
identifies the collapses due to earthquake shaking, 
and these input data are not included in the 
subsequent GP regression. Thus, the seismic 
collapse classifier acts as a filter. 

The RMSE has a value of 3.1·10–6 in terms of 
chord rotation demand. Additionally, the 
dimensionless RMSE is obtained by dividing the 
computed (absolute) RMSE by the mean value of 
chord rotation demand of the validation dataset. The 
normalised RMSE is equal to 0.08%. Moreover, the 

coverage probability, defined as the proportion of 
the confidence intervals of the surrogated model 
that contains the modelled data, is equal to 
92.8%, which is very close to the theoretical 
value of 95%. 

The surrogate models presented in this paper 
can describe the range of structural responses 
under earthquake shaking and resulting 
earthquake-induced landslides. It is important to 
highlight that the procedure to define the training 
matrices is based on sequential nonlinear static 
analyses that consider the cumulative damage 
induced by the seismic load and consequent 
landslide impact. Thus, the surrogate models can 
predict the damage caused by earthquake ground 
motion and predict the collapse of the pre-
damaged structure subjected to the earth-flow 
impact. Based on the first classifier, the building 
class fragility curves can be easily derived in the 
case of structural collapse due to earthquake 
shaking. Moreover, fragility curves for different 
Damage States (DS) can be defined by applying 
the GP regression. Then, the last classifier should 
be adopted to obtain two more sets of fragility 
curves related to the earthquake-induced 
landslide collapse given a certain seismic DS or a 
defined seismic IM (i.e., a certain value of PGA).  
 
4 CONCLUSIONS 
This paper described a procedure to develop 
surrogate models for a considered archetype 
building representative of a building class. 
Uncertainties in material and geometric properties 
(i.e., fc, fy, bc) as well as in loads parameters 
(qs ,Lf, df) were modelled and propagated in the 
analysis. Training and validation datasets were 
generated by applying two different sampling 
techniques, namely, Latin Hypercube sampling 
and full factorial Design of Experiments, 
respectively. Two discriminant classifiers and one 
GP regression were trained to predict the 
earthquake-induced and landslide-induced 
collapse and structural response under horizontal 
seismic actions, respectively. A sequential 
nonlinear static analysis was performed for each 
sample to predict structural response and 
cumulative damage induced by earthquake 
shaking and landslide impact. In this regard, a 
pre-damaged structural model was developed to 
assess response to earth-flow impact, accounting 
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for the previous seismic damage.  
A case study was considered to illustrate the 

methodology described above and train/validate the 
surrogate models. The building considered is 
representative of European low-rise buildings 
designed for gravity loads only (pre-code building 
class).  

The surrogate models were trained using   45000 
and 495000 realisations for the seismic and 
landslide matrices, respectively. On the other hand, 
the validation datasets comprise 6480 and 641520 
realisations for the seismic and landslide matrices, 
respectively. The validation dataset was applied to 
define the prediction power of the proposed 
surrogate models. In this regard, the confusion 
matrixes and RMSE estimates were obtained for the 
classifiers and GP regression, respectively. The two 
discriminant classifiers show an accuracy higher 
than 94%, with precision for each class equal to 
about 90%. The seismic structural response (i.e., the 
chord rotation demand on the corner column 
impacted by the subsequent landslide) was finally 
predicted through the GP regression. The high 
predictive power of GP regression was highlighted 
by a value of RMSE equal to 3.1·10–6 and a 
corresponding dimensionless RMSE equal to 0.08%. 
Moreover, the calculated coverage probability is 
equal to 92.8% which is very close to the theoretical 
value of 95%. 

The proposed surrogate models can be used to 
derive building-class fragility models by including 
both the within-building variability and cumulative 
damage with high accuracy and sustainable 
computational effort compared to traditional 
fragility analyses based on nonlinear analysis of a 
large number of structural models. In addition, the 
CSM method using real (i.e., recorded) records can 
be applied to obtain more refined seismic 
performance estimates. In this regard, the recently 
proposed cloud-CSM (Nettis et al., 2021) should be 
considered in future work or even nonlinear 
dynamic analyses instead of nonlinear static ones. 
Finally, based on past landslide events, the impact 
of objects on the building’s columns during a 
landslide could be a realistic scenario to consider in 
some cases. Therefore, future studies should also 
consider the dynamic action due to such collisions 
to define surrogate models that can predict a 
premature failure of impacted columns.  
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