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MICA: a multi-omics method to predict gene regulatory
networks in early human embryos
Gregorio Alanis-Lobato1,* , Thomas E Bartlett2,* , Qiulin Huang1,3,* , Claire S Simon1, Afshan McCarthy1, Kay Elder4 ,
Phil Snell4, Leila Christie4, Kathy K Niakan1,3,5,6

Recent advances in single-cell omics have transformed charac-
terisation of cell types in challenging-to-study biological con-
texts. In contexts with limited single-cell samples, such as the
early human embryo inference of transcription factor-gene
regulatory network (GRN) interactions is especially difficult.
Here, we assessed application of different linear or non-linear
GRN predictions to single-cell simulated and human embryo
transcriptome datasets. We also compared how expression nor-
malisation impacts on GRN predictions, finding that transcripts per
million reads outperformed alternative methods. GRN inferences
were more reproducible using a non-linear method based on
mutual information (MI) applied to single-cell transcriptome
datasets refined with chromatin accessibility (CA) (called MICA),
compared with alternative network prediction methods tested.
MICA captures complex non-monotonic dependencies and feed-
back loops. Using MICA, we generated the first GRN inferences in
early human development. MICA predicted co-localisation of the
AP-1 transcription factor subunit proto-oncogene JUND and the
TFAP2C transcription factor AP-2γ in early human embryos.
Overall, our comparative analysis of GRN prediction methods
defines a pipeline that can be applied to single-cell multi-omics
datasets in especially challenging contexts to infer interactions
between transcription factor expression and target gene
regulation.
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Introduction

After the fusion of the oocyte and sperm, the zygote undergoes a
series of cell divisions until it forms a blastocyst before implan-
tation into the uterus. A human blastocyst is formed of a fluid-filled
cavity and ~200 cells that comprise three distinct cell types: the
trophectoderm (TE), which gives rise to fetal components of the

placenta; the primitive endoderm (PE), which forms the yolk sac;
and the pluripotent epiblast (EPI), which gives rise to the embryo
proper (Blakeley et al, 2015). The specification of these three
lineages represents the earliest cell fate decisions in humans.
Understanding the molecular mechanisms that regulate these
decisions is important for applications including stem cell biology,
regenerative medicine, and reproductive technologies (Niakan et al,
2012).

We do not yet understand how cell fate specification is regulated
in the human embryo. Transcription factor (TF) and target gene
regulatory interactions associated with cell fate specification in this
context would be informative and has not been elucidated. Defining
the gene regulatory networks (GRNs) associated with a given cell
type at a distinct time in development facilitates characterisation of
cell type identity and prediction of the transcriptional regulators
and cis-regulatory DNA sequences that may underlie cell fate
specification (Davidson & Erwin, 2006; Materna & Davidson, 2007;
Peter & Davidson, 2011). Challenges to determining GRNs in early
embryos include the small number of cells that contribute to the
distinct cell lineages of the human embryo at these early stages of
development. Moreover, although single-cell omics technologies
facilitate the characterisation of genome-wide gene expression and
chromatin accessibility changes in human blastocysts (Yan et al,
2013; Blakeley et al, 2015; Petropoulos et al, 2016; Li et al, 2018; Liu
et al, 2019), it is unclear if resolution at this level would allow for
accurate predictions of GRNs contributing to cell type specific
identity.

The most common computational approach to infer TF-gene
regulatory interactions is to model the expression of each target
gene as either a linear or non-linear combination of the expression
of a set of potential regulators (e.g., the TFs in the dataset of in-
terest) (Dobra et al, 2004; Marbach et al, 2012). The “target gene”
method uses advanced regression methods, such as sparse
penalised regression or random forests, to model the expression
level of a particular “target” gene (the response), conditional on the
expression levels of a set of other genes (predictors, such as TFs)

1Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London, UK 2Department of Statistical Science, University College, London, UK 3Department of
Physiology, Development and Neuroscience, The Centre for Trophoblast Research, University of Cambridge, Cambridge, UK 4Bourn Hall Clinic, Cambridge, UK 5Wellcome
–Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK 6Epigenetics Programme, Babraham
Institute, Cambridge, UK

Correspondence: kkn21@cam.ac.uk; g.alanis.lobato@gmail.com; thomas.bartlett.10@ucl.ac.uk
*Gregorio Alanis-Lobato, Thomas E Bartlett, and Qiulin Huang contributed equally to this work

© 2023 Alanis-Lobato et al. https://doi.org/10.26508/lsa.202302415 vol 7 | no 1 | e202302415 1 of 17

on 2 November, 2023life-science-alliance.org Downloaded from 
http://doi.org/10.26508/lsa.202302415Published Online: 25 October, 2023 | Supp Info: 

http://crossmark.crossref.org/dialog/?doi=10.26508/lsa.202302415&domain=pdf
https://orcid.org/0000-0001-9339-4229
https://orcid.org/0000-0001-9339-4229
https://orcid.org/0000-0003-0831-9713
https://orcid.org/0000-0003-0831-9713
https://orcid.org/0000-0002-3232-8436
https://orcid.org/0000-0002-3232-8436
https://orcid.org/0000-0003-3510-8268
https://orcid.org/0000-0003-3510-8268
https://orcid.org/0000-0003-1646-4734
https://orcid.org/0000-0003-1646-4734
https://doi.org/10.26508/lsa.202302415
mailto:kkn21@cam.ac.uk
mailto:g.alanis.lobato@gmail.com
mailto:thomas.bartlett.10@ucl.ac.uk
https://doi.org/10.26508/lsa.202302415
https://www.life-science-alliance.org/
http://doi.org/10.26508/lsa.202302415


(Huynh-Thu et al, 2010; Haury et al, 2012). By combining these local
network model fits genome-wide, with each gene taking a turn as
the response or “target gene” (Dobra et al, 2004), the GRN is
constructed. The linear regression model has previously been used
in combination with chromatin accessibility to infer GRNs in human
brain organoids (Fleck et al, 2023). Bayesian networks also model
the expression of each gene conditional on a set of regulating
genes (i.e., parents in the network) by computing how likely it is that
each TF in the dataset was responsible for the expression of a
certain gene (Tipping, 2001; Pe’er, 2005; Marbach et al, 2012;
Kamimoto et al, 2023). The Bayesian/Bagging Ridge model in
combination with chromatin accessibility has been used effectively
to predict the consequence of gene perturbations and to under-
stand cell fate transitions in the context of development and
cellular reprogramming (Argelaguet et al, 2022 Preprint; Kamimoto
et al, 2023). Of note, when fitting Bayesian models, it is usually
necessary to assume global compatibility (of the local network
models), which in turn typically requires that the graph contains no
loops (acyclicity). This is an assumption which is challenging for
biological systems, where feedback loops are a persistent feature
(Brandman &Meyer, 2008). In another important group of methods,
TF-gene (or more generally gene–gene) interactions are ranked
based on a pairwise similarity measure of their expression across
cell samples, such as a variant of correlation or mutual information
(Daub et al, 2004; Krishnaswamy et al, 2014). Again, alternatives are
available that consider conditional statistics (e.g., partial correla-
tion or partial information decomposition) (Chan et al, 2017). Finally,
a range of “black-box” machine learning methods is available that
models the expression of each gene in hard to visualise ways using
for example sophisticated non-linear combinations of TF expres-
sion values (Wang et al, 2020; Shu et al, 2021).

Although GRN inference methods have been comprehensively
compared and developed for whole-tissue or bulk transcriptome
analysis (Marbach et al, 2012; Cahan et al, 2014; Chai et al, 2014; Morris
et al, 2014; Thompson et al, 2015), the interest in cell type–specific
regulatory networks has prompted the application of these methods
to single-cell RNA-seq (scRNA-seq) datasets (Aibar et al, 2017; Chen
and Mar 2018; Fiers et al, 2018; Mochida et al, 2018; Iacono et al, 2019;
Pratapa et al, 2020; Kang et al, 2021; Nguyen et al, 2021; Stone et al, 2021
Preprint; Badia-i-Mompel et al, 2023). These previous studies showed
that the approaches with the best overall performance belong to the
regression and mutual information categories and highlighted the
challenges of performing GRN inference on single-cell datasets. This
is attributed mainly to the heterogeneous and stochastic nature of
gene expression in individual cells (Nguyen et al, 2021). Of note is that
even state-of-the-art methods that have been evaluated on well-
defined benchmark datasets predict a considerable number of false-
positive interactions (Marbach et al, 2012; Pratapa et al, 2020; Kang
et al, 2021; Nguyen et al, 2021; Stone et al, 2021 Preprint). Most of these
false predictions originate from indirect associations, for example a
path a→ b→ c can result in the prediction of a→ c even if there is no
direct link between those nodes (i.e., a “transitive edge” in the
network). Several methods to eliminate such effects have been
proposed (Margolin et al, 2006; Barzel & Barabási, 2013; Feizi et al,
2013; Chan et al, 2017; Wang et al, 2018) but they can be computa-
tionally demanding and sensitive to the choice of hyperparameters
(Feizi et al, 2013).

Given the stage of development of human preimplantation
embryos and their precious nature, together with the restrictions
on such research in some countries, the omics datasets from
human blastocysts are very small compared with those from other
biological contexts. This makes it challenging to mine these
datasets using GRN inference methods, which require a sufficiently
large number of cells to produce reproducible results (Pratapa et al,
2020; Kang et al, 2021). This tight restriction on sample sizes places
corresponding restrictions on statistical power and means that the
optimal statistical network inference methodology may be specific
to this context. Here, we assessed whether the integration of other
types of omics datasets with transcriptomic-based predictions
could help reduce indirect TF-gene relationships and thereby
produce more reliable GRNs in this setting, especially with re-
stricted sample sizes. We used a low number of cell samples in
high-quality omics data from early human embryos at the blas-
tocyst stage (6–7 d post-fertilisation) (Yan et al, 2013; Blakeley et al,
2015; Petropoulos et al, 2016) to evaluate the plausibility of our
predictions: this has the advantage of being a biological context
with only three well-defined cell types to evaluate the plausibility of
our predictions.

The aims of this work were (i) to evaluate whether it is possible to
infer reliable cell type–specific regulatory networks for each one
of the cell types in the early human embryo in spite of the size of
the available omics data, (ii) to determine if the integration of
chromatin accessibility data with transcriptome analysis would
better inform predictions of GRNs, and (iii) to predict and val-
idate previously unidentified gene regulations in the human
blastocyst. Overall, we demonstrate that the available single-cell
transcriptomic data were most robustly analysed by a non-linear
mutual information-based inference method which had been
refined with chromatin accessibility data (MICA). The resulting
analysis predicted the first GRN in human preimplantation de-
velopment and showed that the interactions were consistent
with the transcripts and proteins that are known to be enriched
in specific lineages. MICA predicted a novel putative regulatory
interaction between the TFAP2C transcription factor AP-2γ and
the AP-1 transcription factor subunit proto-oncogene JUND in
human preimplantation embryos. Overall, we propose that MICA
will be an informative method to make GRN predictions in other
challenging-to-study biological contexts with limitations in the
number of cells that can be analysed.

Results

Assessing the conditions for optimal GRN inference on
synthetic data

We generated synthetic gene expression data with known ground-
truth GRN structure for a variety of sample sizes (see the Materials
and Methods section) to determine the characteristics of the
transcriptomic data on which GRN inference methods perform best
and, importantly, to compare these conditions with our human
blastocyst scRNA-seq datasets (see Fig 1A). We then applied four
different GRN prediction strategies to the simulated transcriptomes
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Figure 1. An overview of the regulatory network inference, evaluation, and validation framework and inference on simulated single-cell RNA-seq (scRNA-seq) data.
(A) Footprinting analysis was applied to ATAC-seq data from human embryos at the late blastocyst stage to identify potential transcription factor (TF) binding sites and
TF-gene regulations. The TFs and genes in this list of chromatin accessibility (CA)-predicted regulations were used to refine the size of scRNA-seq data from each of the
cell types in embryos where cells were collected at the same developmental stage (EPI, Epiblast, 26 cells; PE, Primitive Endoderm, 33 cells; TE, Trophectoderm, 45 cells). Four
gene regulatory network (GRN) inference approaches and a random approach were applied to the scRNA-seq data. The scRNA-seq data were normalised using four
different methods for comparison (log(TPM + 1), log(FPKM + 1), batch-corrected, and log-counts).The reproducibility and biological context of the predicted GRNs were
evaluated using several statistical tests. GRNs refined by keeping CA-predicted regulations only were also evaluated. Squares represent genes that regulate other genes,
and circles represent genes that are regulated by other genes. (B) Comparison of different GRN inference methods (L0L2, GENIE3, Spearman correlation, and MI) to
recover the ground-truth GRN structure from simulated gene expression data as measured with the average area under the receiver operating characteristic curve
(AUROC) from 100 simulations. The average AUROC is shown as a function of different sample sizes (n = 10–1,000) and the number of potential regulators of each gene in
the simulated datasets is also varied from 10 to 100. The range of sizes of the three human blastocyst datasets that we analysed is highlighted in grey as a reference.
Error bars correspond to standard errors of the mean. (C) Box and whisker plots show comparison of AUROC values for all simulations for each method with number of
samples n = 100 and number of regulators P = 20, 50, and 100.
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(see the Materials and Methods section for more details). (1) We
applied GENIE3 (Huynh-Thu et al, 2010; Aibar et al, 2017), a random
forests regression approach which takes into account expression
levels of the regulated or target gene and is used for regulatory
network inference in the SCENIC GRN prediction pipeline (Marbach
et al, 2012; Aibar et al, 2017; Pratapa et al, 2020; Kang et al, 2021;
Nguyen et al, 2021; Stone et al, 2021 Preprint). (2) We compared this
to the target gene approach using the L0L2 sparse penalised re-
gression model (Tibshirani, 1996; Hazimeh & Mazumder, 2018
Preprint) which minimizes the total size of the linear model co-
efficients so that a minimal set of regulatory TFs receive the largest
linear model coefficients. (3) We also compared with the correlation
coefficient as a reference: we used Spearman’s rank correlation
coefficient (Fieller et al, 1957) as we expect non-linear associations
in the data. (4) Lastly, we applied a non-linear alternative measure
of pairwise association based on mutual information (MI) that we
speculated may be more appropriate for non-linear response
functions in single-cell data (Faith et al, 2007; Krishnaswamy et al,
2014) (Fig S1A). For the MI method, we used the empirical distri-
bution of the MI values for each gene (Faith et al, 2007). We also
varied the number of transcriptional regulators of each target gene
in the synthetic data to study the impact of this parameter on their
performance. Further details of the analysis methods and step-by-
step code are also available at https://github.com/galanisl/
early_hs_embryo_GRNs.

Two main conclusions emerged from these simulations. First,
using synthetic datasets, the performance of all methods increases
from the sample size of n = 10–1,000, as assessed statistically by
the area under the receiver operating characteristic curve (Fig 1B).
However, we noted that the prediction accuracy of the GRNs
only marginally improves as the number of cell samples surpasses
n = 100 (Fig 1B). Therefore, although sample size is important, in-
creasing this beyond a threshold sample size does not further
improve inference of the predicted transcriptional regulations. We
furthermore note that low sequencing depth (such as in 10x Ge-
nomics single-cell studies) may increase this optimal value of n.
Second, limiting the number of potential transcriptional regulators
of a target gene positively impacts the ability of a chosen inference
method to recover the ground-truth GRN (Fig 1B and C). From our
simulations, 50 or fewer TFs yield the highest area under the re-
ceiver operating characteristic curve values for n < 100 (Fig 1B). This
would be a reasonable prediction for a given gene in a specific cell
type based on our analysis of low-input chromatin accessibility (CA)
data from the human blastocyst (Liu et al, 2019), where the median
number of TF motifs per gene is 35 for the inner cell mass (ICM) and
40 for the TE (Fig S1B).

Based on these results and given the size of our human blas-
tocyst datasets (Fig 1C EPI: 26 cells, PE: 33 cells, TE: 45 cells with 1,366
TFs among 25,098 genes [Yan et al, 2013; Blakeley et al, 2015;
Petropoulos et al, 2016]), we reasoned that TF-gene interactions
predicted from experimentally collected gene expression data
could be refined with complementary, context-specific epigenomic
datasets. Specifically, we used low-input CA analysis of human
blastocyst TE cells and the ICM, comprised of EPI and PE cells, to
refine the GRNs of the respective cell types with putative cis-
regulatory interactions (Liu et al, 2019). Peak calling and annota-
tion were performed with nf-core/atacseq to identify regions of

open chromatin (Ewels et al, 2020). TF motif enrichment analysis in
these open regions of open chromatin was identified using rgt-hint
with TF binding models from HOCOMOCO and JASPAR (Li et al, 2019).
Finally, the open chromatin regions enriched for TF motifs along
with the predicted downstream target genes were determined
based on the nearest transcriptional start sites (most distances
ranging from −5 to 10 kbp). This narrowed down the number of
genes (to 12,780 for EPI and PE, 12,981 for TE) and TFs (514) in the
datasets, thus bringing our sample sizes and potential TFs per gene
to the ranges suggested by our simulations.

Statistical evaluation of inferred human blastocyst GRNs

We next integrated the single-cell transcriptome data (Fig S1C) from
human blastocysts generated using the SMART-seq2 library
preparation protocol (Yan et al, 2013; Picelli et al, 2014; Blakeley et al,
2015; Petropoulos et al, 2016) where fewer cells are sequenced but
better transcript coverage and sequencing depth is obtained
(~15,000 genes and ~7 million reads per cell) compared with more
conventional scRNA-seq methods, such as 10x Genomics (~3,000
genes and ~50,000 reads per cell) (Wang et al, 2021). Because of the
lack of genome-scale experimentally derived GRNs in the human
embryo context, we evaluated the robustness of the predictions
made by four inference approaches (L0L2 regression, GENIE3,
Spearman correlation, and MI) using three different strategies (see
the Materials and Methods section). Because we did not find re-
ports about the impact of gene expression normalisation choice on
GRN predictions, we also assessed this parameter and considered
the application of GRN predictors to log(TPM + 1), log(FPKM + 1), log-
count, and batch-corrected expression data.

We calculated a reproducibility score R for each putative reg-
ulatory interaction after the application of the network inference
methods to human blastocyst data (see the Materials and Methods
section) and investigated the distribution of the reproducibility
values for the top 100,000 predicted edges (Figs 2A and S2). The
reproducibility estimator R estimates the posterior probability of
seeing a network edge given the data; it quantifies the robustness
or stability of the inference of this network edge. The accuracy
quantified by the R reproducibility statistic relates to the stability of
themodel predictions to perturbation of the data. Fig 2A reports the
difference between the median of this distribution and the median
of the distribution produced by a predictor that generates a ran-
dom ranking of all possible TF-gene interactions (ΔR). We found
that the most reproducible regulatory interactions were inferred by
MI followed by a filtering process in which only TF-gene associa-
tions supported by CA data were considered in the final network
(MICA) (Fig 2A). As predicted by our simulations, the size of each cell
type–specific dataset had a clear impact on GRN inference with
methods such as GENIE3 producing more reproducible interactions
in the TE. Interestingly, most inference methods produced better
results with gene expression values following log(TPM + 1) or
log(FPKM + 1) normalisation (Fig 2A).

We also assessed robustness at the level of network structures,
features, or subnetworks. To do so, we randomly split each dataset
(EPI, PE, and TE) into two groups with the same number of cells, then
applied the inference methods to each one (with or without CA
refinement), and finally benchmarked them either focussing on the
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top regulatory interactions (early recognition) or on all regulatory
interactions (see the Materials and Methods section). We repeated
this 10 times for 10 random splits of the data. For the first com-
parison, we identified the top 1% (by network score) of all possible
regulatory interactions from each group, and then quantified the
overlap of these top interactions between the groups using the area
under the precision-recall curve (AUPRC) (Figs 2B and S3). By
comparing the differences between the median of 10 resulting
AUPRCs for each method to the random predictions described
above, we found that MICA outperformed the other network pre-
diction approaches and gave the highest difference in AUPRC when
applied to log(TPM + 1)- and log(FPKM + 1)-normalised expression
values (Fig 2B). For the second comparison, we divided the data into
two portions and then calculated a normalised L2 loss between the
network scores over the whole network, rather than just the top 1%
of interactions (Figs 2C and S4). We found that the inverse value of
this metric also confirms the robustness of MICA (Figs 2C and S4).

Overall, our statistical evaluation strategies showed that the
most robust GRN inference method to analyse the limited number
of human blastocyst cells was MICA. Importantly, if transcriptome-
based predictions are not refined with CA data, most methods
perform just slightly better than random (Figs 2, S2, S3, and S4),
underscoring the importance of integrating multi-omics analysis in
inference models. It was also important to assess the impact of
gene expression normalisation on GRN prediction because we
observed apparent effects in our benchmarks depending on the
normalisationmethod used, with log(TPM + 1) or log(FPKM + 1) being
the most suitable gene expression units in this context.

Association of inferred GRNs to human blastocyst cell lineages

We next evaluated the inferred GRNs to determine if they could
recapitulate interactions of molecular markers of the three cell

types that comprise the human blastocyst. First, we computed the
overlap between the GRN edges predicted by each inference
method for each blastocyst cell type to identify interactions as-
sociated with the EPI, PE, and TE, as well as the interactions
common to the three cell types (see the Materials and Methods
section). We then used the out-degree of NANOG, GATA4, and CDX2,
TFs which respectively mark the EPI, PE, and TE (Fig 3A and B), as a
proxy for their activity in each one of the four networks. Our
prediction is that these TFs should be actively regulating genes in
the cell type–specific networks and participate in only a few in-
teractions in the common GRN based on their known expression
pattern in the blastocyst and function in othermammalian contexts
such as the mouse (Arceci et al, 1993; Chambers et al, 2003; Mitsui
et al, 2003; Strumpf et al, 2005; Dietrich & Hiiragi, 2007; Niakan &
Eggan, 2013; Roode et al, 2012). The common network did not show
marker activity in the predicted GRNs (Figs 3B, S5, S6, S7, and S8),
which is expected given that the expression of these markers is
known to be mutually exclusive at this stage. The expected pattern
for NANOG (active in the EPI and inactive in the PE and TE, Fig 3A)
was observed in the GRNs with TF-gene interactions supported by
CA data and inferred with GENIE3, Spearman correlation, and MI
when applied to batch-corrected, FPKM, and TPM data with some
instances of the non-refined L0L2, GENIE3, and Spearman GRNs also
matching the expected pattern (Fig 3B). In the PE, the expected
activity pattern for GATA4 (active in the PE and inactive in EPI and TE,
Fig 3A) and lack of detectable networks for NANOG and CDX2 were
predicted by applying GENIE3+CA, Spearman correlation+CA, and
MICA to the FPKM and TPM datasets (Fig 3B). Finally, the TE-expected
pattern for CDX2 (active in the TE and inactive in the EPI and PE) and
lack of detectable network for NANOG and GATA4 (Fig 3A) was only
observed when using Spearman correlation or MICA on log-counts
and batch-corrected data, MICA or MICA+CA on FPKM or TPM data
(Fig 3B). L0L2, with or without CA refinement, consistently performed

Figure 2. Statistical comparison of four
different methods to infer early human
embryo gene regulatory networks (GRNs).
Robustness of the GRNs predicted by four
inference methods with or without
chromatin accessibility (CA) refinement was
evaluated by three different metrics. (A) ΔR
measures the difference between the
median edge-level reproducibility for a GRN
inference method and a random predictor.
(B) ΔAUPRC quantifies the extent to which
the interactions inferred from half of a dataset
coincide with the top 1% interactions inferred
from the second half. This twofold cross-
validation experiment was repeated 10 times
and compared with a random predictor. (C) The
inverse of the normalised L2 loss between
the network scores from the twofolds was
computed. L0L2 did not converge when applied
to the TE dataset. All data used was
generated using the SMART-seq2 sequencing
technique.
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poorly at predicting GRNs compared with the other methods used.
Log-count normalisation failed to recover cell type–specific GRNs
for these TFs.

We next manually curated a list of gene sets representing the
most relevant pathways and biological processes in the EPI (e.g.,
regulation of pluripotency) and the TE (e.g., embryonic placenta
development) to perform a gene set enrichment analysis with the
genes involved in the 500 regulatory interactions with the best

prediction scores in the EPI and TE GRNs of the 25 most active TFs
(Tables S1 and S2, see the Materials and Methods section). We
restricted this analysis to the EPI and TE because similar lists of
gene sets were not available for PE, where it is currently unclear
which pathways are most relevant to this cell type. Next, we
computed a validation score V as the number of relevant gene sets
that were enriched at a significance level of 10% (P < 0.1) in the EPI
and TE GRNs (Fig S9). We note that a low significance level was set

Figure 3. Evaluation of the biological relevance
of inferred gene regulatory networks (GRNs) in
the context of early human development.
(A) Two-dimensional UMAP representation of the
single-cell RNA-seq data from each of the three
cell types in the early human at the blastocyst
stage. The expression of marker genes for each cell
type is also represented in UMAP space: NANOG
is used as an epiblast marker, CDX2 as a
trophectoderm marker, and GATA4 as a primitive
endoderm marker. (B) Marker activity in the cell
type–specific GRNs (EPI, epiblast; PE, primitive
endoderm; TE, trophectoderm) and the network
common to the three cell types in the human
blastocyst. The expected pattern, that is, the
marker that was expected to be active in each GRN
is shown for reference. (C) Normalised V-
statistic across datasets and inference methods. V
corresponds to the number of gene sets that were
enriched at a significance level of 10% in a gene
set enrichment analysis performed with the genes
involved in the top-500 regulations by the 25 most-
connected TFs in the EPI or TE GRNs. All
sequencing was performed using the SMART-seq2
technique.
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because the resulting inferences are aggregated, mitigating the
effect of false positive hits for individual gene groups. To facilitate
the comparison between V scores across GRNs from different in-
ference and normalisation methods, we normalised this score to
the maximum score attained at the cell type level (Fig 3C). We found
that the CA-refined data agree better with the cell type–specific
gene sets for both the top-predicted EPI and TE interactions, that is,
the interactions with the highest prediction scores (Fig 3B). The
GRNs inferred by Spearman+CA produced the highest V scores in
the EPI and TE, and these were not impacted by the normalisation
method used. The second-best inference method was MICA, with
consistent V scores across normalisation methods. We note that
both MICA and Spearman+CA are non-linear methods which do
not involve regression, indicating that advanced regression methods
may not be the most effective choice for biological discovery with
these restricted sample sizes. Taken together, both biological eval-
uation metrics that we considered confirmed the importance of
refining single-cell transcriptome–based GRN inferences with CA
data and underscored the robustness of MICA in predicting GRNs
from the analysed human blastocyst datasets. Based on these re-
sults, we decided to focus on the GRNs predicted by this method for
the analyses presented in the following sections.

Predicted TF networks for NANOG, GATA4, and CDX2

Using MICA, we constructed GRNs for TFs expressed in the EPI, PE,
and TE. All MICA GRN predictions can be found on FigShare: doi.org/
10.6084/m9.figshare.21968813. For visualization, the predicted GRN
for each of the TFs is separated into target and regulator TF net-
works. Target networks contain a maximum of 25 top potential
target TFs of the hub (or central) TF, whereas regulator networks
include a maximum of 25 top TFs that potentially regulate the hub.
The average expression of the network members across samples of
the cell type of interest is represented by the size of the node. MI
scores are represented by the thickness of the edges in the network
and edge colour highlights. To further refine the MICA predictions,
we used the Spearman’s rank correlation coefficient between the
expression levels of the source and target nodes across samples of
the cell type of interest to define correlated or anti-correlated
expression. Correlated or anti-correlated node pairs correspond to
positive or negative Spearman’s rank coefficient with P-value
smaller than 0.1, whereas node pairs having P-value equals or
larger than 0.1 were defined as uncorrelated.

Among the top NANOG targets, TFs RREB1, NCAO3, ZNF343, ZFP42,
and NME2 are predicted to be positively regulated by NANOG (Fig 4A).
ZFP42 is a pluripotency marker encoding the REX1 protein and has
been shown to be a direct target of NANOG in mouse pluripotent
stem cells (Shi et al, 2006). ZNF343 is a less well-characterized TF, but
multiple NANOG ChIP-seq datasets in both naı̈ve and primed human
embryonic stem cells (ESCs) showed high binding score (MACS2
score > 1,000) in the proximal region of the transcription start site
(TSS) of ZNF343 (Fig S10A; Barakat et al, 2018; Lyu et al, 2018; Chovanec
et al, 2021), which suggests direct regulation of ZNF343 by NANOG.
Interestingly, NME2 was previously predicted to be a regulator in-
stead of a target of NANOG in mouse pluripotent stem cells using
the TENET GRN inference method (Kim et al, 2021). This inconsistency
may be due to the lack of chromatin accessibility data for robust

directionality inference in the TENET method, or a species difference.
Indeed, some mouse naı̈ve pluripotency regulators, such as ESRRB,
which is also a direct target of NANOG in mouse pluripotent stem
cells (Festuccia et al, 2012), were not expressed in the human EPI
(Blakeley et al, 2015). Putative regulators of NANOG predicted from
our MICA network analysis contain multiple KLF factors, including
KLF3, KLF5, KLF9, and KLF16 (Fig 4B). Spearman correlation analysis
suggest that KLF9 and KLF16 potentially down-regulate NANOG ex-
pression, based on their anti-correlated expression, whereas KLF3
and KLF5 are identified as potential regulators of NANOG byMICA, but
not significantly correlated by Spearman correlation.

In the PE, GATA4 was predicted to positively regulate the ex-
pression of SP8, TET1, and SKIL whereas repressing the expression of
ELF3, TFDP2 POGK, ZNF770, andNR2F2 (Fig 4C). It is also predicted to be
a target of HNF1B and SALL4 and repressed by ETV4 and E2F6 (Fig 4D).
These interactions have not been experimentally validated or
inferred. However, NR2F2 was previously identified as a maturation
marker of polar TE (Meistermann et al, 2021). The repression of NR2F2
by GATA4 predicted in the PE suggests a role for GATA4 inmaintaining
the PE cell identity by inhibiting the polar TE program. Furthermore, it
has been shown that SALL4 is required for mouse PE-derived extra-
embryonic endoderm cell derivation and knockout of SALL4 in these
cells cause down-regulation of GATA4 (Lim et al, 2008). In addition,
multiple endoderm genes such as GATA4, GATA6, and SOX17 were
shown to be SALL4-bound genes by ChIP-seq (Lim et al, 2008). These
findings are consistent with the inferred GATA4 regulatory network.

Interestingly, TBX3 is a target of CDX2 (Fig 4E), and the role of TBX3
has been implicated in trophoblast cell differentiation (Lv et al,
2019). CDX2 is predicted to be regulated by both KLF5 and KLF6,
which are alsomolecular markers of the trophectoderm lineage (Fig
4F). KLF5 is necessary for trophectoderm formation in the mouse
preimplantation embryo and is required for CDX2 expression in
mouse ESCs (Ema et al, 2008; Lin et al, 2010). Interestingly, further
analysis of the CDX2 interactions showed that TBX3 and FOXH1 are
also potential positive regulators of KLF5 and KLF6. Positive
feedback loops are predicted between CDX2, TBX3, and KLF5 as well
as CDX2, FOXH1, and KLF6 (Fig S10B). Other key developmental
regulators including HAND1, GATA3, and GATA6 are also predicted to
regulate CDX2 expression (Fig 4F). This is consistent with the timing
of GATA3 protein expression preceding that of CDX2 (Gerri et al,
2020). Further investigation will be needed to understand the
differences between the CDX2-high and CDX2-low TE cells and how
the positive feedback loops formed within the CDX2 network en-
hance and stabilize CDX2 expression in the CDX2-high population.

Maintenance of TFAP2C expression by JUND in all lineages of
human blastocyst

Wenext sought to determine if the MICA networkmodelling predicts
novel interactions or associations between TFs in early human
embryo development. We focused on TFAP2C as an example for the
network comparison. TFAP2C is a molecular marker that is initially
expressed in all the cells at themorula stage inmouse embryos and
later specifically restricted to the TE at the blastocyst stage and it is
not expressed in other lineages (Cao et al, 2015; Gerri et al, 2020).
However, in human embryos, TFAP2C is expressed in the TE, EPI, and
PE at the blastocyst stage (Blakeley et al, 2015) and has been shown
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to maintain pluripotency in naı̈ve human ESCs by regulating OCT4
expression (Chen et al, 2018; Pastor et al, 2018). By performing
comparisons of TFAP2C networks in human EPI, TE, and PE cells, we
found a conserved putative interaction consisting of TFAP2C, JUND,
SOX4, and GCM1 (Fig 5A). In addition, all four factors showed sig-
nificant positive correlations in their expression (Figs 5B and S11A
and B). MICA predicts that JUND and SOX4 regulate TFAP2C, whereas
TFAP2C targets GCM1 in all three lineages. In the EPI and PE, SOX4
and GCM1 formed a feedback loop. Interestingly, in the TE, the
correlation between GCM1 and SOX4 is absent, and SOX4 is pre-
dicted to target JUND, which in turn may regulate TFAP2C. Our
network predicts that interactions between these four TFs maintain
TFAP2C expression in all three lineages.

To determine if TFAP2C and JUND protein expression is positively
correlated in embryos, as predicted by MICA, we performed immu-
nofluorescence analysis of human preimplantation blastocysts
~6.5 d after fertilisation. We observed that TFAP2C and JUND were
co-expressed in cells of the human blastocysts (Figs 5C and S13A;
n = 4). We next performed 3D nuclear segmentation and calculated
the Pearson correlation coefficient between TFAP2C and JUND
based on the DAPI-normalized protein intensity (Fig 5D). TFAP2C
intensity showed a linear increase with the increase of JUND
intensity in all analysed human embryos, and their intensities are
highly correlated (0.68–0.85 Pearson correlation; P < 0.001; Fig 5D).
Overall, this demonstrates the informativeness of the MICA network
analysis to predict correlations and possible regulatory relationships
between transcription factors that can be experimentally tested.

In addition to theMICA predictions, we also performed Spearman
correlation analysis of the significant edges identified by the MICA
analysis. Surprisingly, around half of the interactions are in non-
linear fashion, highlighting the informativeness of MICA to capture
complex non-monotonic dependencies. From the TFAP2C network
predicted in the EPI lineage, we found that TFAP2C potentially
regulates FOXO3 and ZFP42 in a non-linear manner (Fig S12). The
expression of FOXO3 and ZFP42 seems to fit better with the ex-
pression of TFAP2C on an exponential curve rather than a linear line
between TFAP2C and JUND (Fig S13B). This suggests that when
analysing scRNA-seq or low-input multi-omics analyses similar
non-linear correlations may exist and this may have biological
significance. It would be interesting to know whether and which
types of non-linear interaction predominate and the biological
significance of these non-linear regulations.

Discussion

The relationship between genome-wide transcriptomic and epi-
genomic changes and cell fate specification in human embryogenesis

is unclear. Studies of human preimplantation development rely on
the donation of surplus embryos derived from assisted reproduction
technologies, and the use of such embryos for research is tightly
regulated and subject to significant limitations, such as a lack of
ability to conduct such research in some jurisdictions (Niakan et al,
2012). In addition, the collection of single cells from such precious
embryos is technically challenging and requires specialist expertise
and micropipettes to disaggregate microscopic embryos. Therefore,
currently available omics datasets from human blastocysts comprise
only a few tens of samples per cell type and are therefore very limited.
This contrasts with single-cell analyses in other cellular and de-
velopmental contexts that are based on tens of thousands of
samples (or more) per cell type (Zheng et al, 2017).

Sample size is one of the most important considerations when
selecting or designing statistical methodology, for example to infer
networks of regulations of TFs and their target genes. Hence, GRN
inference in omics data from human preimplantation embryos
presents unique statistical challenges. In particular, methodology
that can leverage information about gene regulations from small
sample sizes is required for this context. On the other hand, the lack
of heterogeneity in early human embryos compared with adult
tissue makes this a good context in which to assess GRN inference
methodologies because there is less unmeasured variability arising
from environmental factors. To assess whether GRN inference
method can be informative in this challenging-to-study context, we
have systematically compared several popular methodologies.
Furthermore, we have tested how incorporation of complementary
cis-regulatory epigenomic data from ATAC-seq improves GRN in-
ferences. Consistent with other contexts (Argelaguet et al, 2022
Preprint; Kamimoto et al, 2023), we found that incorporating
chromatin accessibility/TF motif analysis together with transcrip-
tional inferences improves the accuracy of GRN inference, by first
narrowing down the choice of TF targets from which to infer the
mRNA transcript co-expression network, a principle that is likely to
be especially important with small sample sizes. Notably, we an-
alyse RNA-seq data generated using SMART-seq2 and the se-
quencing method and depth of sequencing will likely impact on the
choice of GRN inference method.

Here, we showed that incorporating complementary epi-
genomic data with transcriptomic data improves the reproduc-
ibility of inferred GRNs. Furthermore, it has enabled us to make
predictions about GRNs operational in early human embryos that
are consistent with an understanding of the function and asso-
ciation of the regulators in other developmental and stem cell
contexts. We suggest that for network inference using advanced
regression methods, it may be preferable to pre-filter using
epigenomic data to first narrow down the TF targets in scRNA-seq
datasets because this gives the network inference algorithm an

Figure 4. TF-gene regulatory networks predicted by MICA to be regulated by, or to regulate, NANOG, GATA4, or CDX2.
Target networks contain a maximum of 25 potential target TFs of the hub (or central) TF, whereas regulator networks include a maximum of 25 TFs that potentially
regulate the hub. The average expression of the transcript is represented by the size of the TF node. MI scores are represented by the thickness of the line in the predicted
network. To further refine the MICA predictions, we used the Spearman’s rank correlation coefficient between the expression levels of the source and target nodes to
define correlated or anti-correlated expression. Correlated or anti-correlated node pairs correspond to positive or negative Spearman’s rank coefficient with P-value
smaller than 0.1. Node pairs with a P-value equal to or larger than 0.1 were defined as uncorrelated, though they are predicted by MICA. (A) Network of TFs predicted to be
targeted by NANOG. (B) Network of TFs that are predicted to regulate NANOG. (C) Network of TFs predicted to be targeted by GATA4. (D) Network of TFs that that are
predicted to regulate GATA4. (E) Network TFs predicted to be targeted by CDX2. (F) Network of TFs that are predicted to regulate CDX2.
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easier time of selecting the regulators from transcriptome data,
which is consistent with the experience of others using alternative
GRN prediction methods (Badia-i-Mompel et al, 2023; Fleck et al,
2023; Kamimoto et al, 2023; Kartha et al, 2022). Alternative methods

incorporate epigenomic data after inference of the mRNA tran-
script co-expression network (González-Blas et al, 2022 Preprint)
and this has been applied successfully to infer GRNs in the fly
brain (Janssens et al, 2022). It will be interesting to determine how

Figure 5. MICA predicted conserved TFAP2C interactions in human early embryo EPI, TE, and PE cells.
(A) Network composed of TFAP2C, JUND, SOX4, and GCM1 in EPI (left), TE (middle), and PE (right). (B) Correlation plots between TFAP2C, JUND, SOX4, and GCM1 in TE cells.
Bottom left: log-transformed RNA expression of genes in single cells. Diagonal: distribution of log-transformed RNA expression for TFAP2C, JUND, SOX4, and GCM1. Top
right: Spearman correlation between TF pairs (***P < 0.001). (C) Immunofluorescence staining of TFAP2C and JUND in E6.5 human blastocysts. (D) Correlation plot of TFAP2C
and JUND protein expression intensity in nuclei of human E6.5 blastocysts. Numbers on the plot are Pearson correlation value (***P < 0.001).
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the type and sequential order of incorporating multi-omics
datasets impact on GRN predictions.

We also note some limitations on the interpretation of the GRNs
predicted. For example, one ATAC-seq peak could cover multiple
transcription factor binding sites in a region. In such cases, we
include all TFs with motifs mapping to this region as potential
regulators of the gene with the closest TSS to the region, for
subsequent transcript co-expression network modelling. However,
it will be interesting to determine if this can be refined, by applying
the recently developed chromVAR-Multiome method to human
blastocysts to generate an in silico ChIP-seq library for this context
(Argelaguet et al, 2022 Preprint). Moreover, the ATAC-seq data ap-
plied in this study analysed the ICM data in bulk, without dis-
tinguishing between EPI and PE cells. Therefore, cell type–specific
chromatin accessibility could not be considered, and specific in-
teractions may have been missed because of the heterogeneity of
the data or if the ICM CA data failed to reflect developmentally cis-
regulations of more developmentally progressed EPI and PE cells. In
addition, predictions based on the nearest TSS will miss long-range
enhancers that are known to be important for gene regulation
(Schoenfelder & Fraser, 2019). In the future, integration of single-cell
or nuclei-matched transcriptome and ATAC-seq chromatin acces-
sibility data, like recent studies in the mouse (Argelaguet et al, 2022
Preprint), would be preferable to apply in the human blastocyst
context. We note that the GRN interferencemethods predicted edges
that overlap between the four inference methods. Identifying
overlapping inferences by comparing more than one GRN inference
method may be a strategy to identify network edges with more
confidence because of the agreement between several inference
methodologies. However, this strategy may also miss some edges
which can only be detected by one method and not another.

We also note that so far, we have separately modelled GRN
structure to specific preimplantation embryonic cell types con-
strained to a single developmental time-point. In the future, we
seek to model dynamic GRN structure in transcriptionally dis-
tinct human blastocyst lineages. Moreover, we seek to integrate
CUT&RUN or CUT&Tag TF-DNA binding analysis (Skene & Henikoff,
2017; Kaya-Okur et al, 2019; Meers et al, 2019) for key putative de-
velopmental regulators, such as GATA3, to further narrow down
experimentally validated occupancy from the ATAC-seq predictions
we used in this study, similarly to a recent application in mouse
blastocysts (Hainer et al, 2019; Hayashi & Inoue, 2023), though we
note that in this context, TF occupancy studies will be restricted to a
few TFs with good quality antibodies. It will also be important to
determine which cis-regulatory regions are required for target gene
regulation through systematic perturbation studies. As the topic of
GRN inference is currently receiving much attention from the
computational biology community, it will also be important in
subsequent work to compare our pipeline with the latest alternatives
beyond SCENIC, such as scMTNI (Zhang et al, 2023).

In summary, the MICA network analysis pipeline we developed
is a tool that can be applied to challenging-to-study develop-
mental contexts with limited sample size, such as the human
blastocyst, to make predictions about TF interactions that can be
experimentally tested in the future. As more datasets become
available, we anticipate that the networks predicted will be fur-
ther refined.

Materials and Methods

Ethics statement

All human embryo experiments followed all relevant institutional
and national guidelines and regulations.

This study was approved by the UK Human Fertilisation and
Embryology Authority (HFEA): research licence number R0162, and
the Health Research Authority’s Research Ethics Committee
(Cambridge Central reference number 19/EE/0297).

The process of licence approval entailed independent peer
review along with consideration by the HFEA Licence and Executive
Committees. Our research is compliant with the HFEA code of practice
and has undergone inspections by the HFEA because of the licence
was granted. Research donors were recruited from patients at Bourn
Hall Clinic, Homerton University Hospital, The Bridge Centre and IVF
Hammersmith.

Informed consent was obtained from all couples who donated
surplus embryos after IVF treatment. Before giving consent, people
donating embryos were provided with all of the necessary information
about the research project, an opportunity to receive counselling and
the conditions that apply within the licence and the HFEA code of
practice. Donors were informed that, in the experiments, embryo
development would be stopped before 14 d post-fertilization, and that
subsequent biochemical and genetic studies would be performed.
Informed consent was also obtained from donors for all the results
of these studies to be published in scientific journals. No financial
inducements were offered for donation. Consent was not obtained
to performgenetic tests on patients andno such testswere performed.
The patient information sheets and consent document provided
to patients are publicly available (https://www.crick.ac.uk/research/a-
z-researchers/researchers-k-o/kathy-niakan/hfea-licence/). Donated
embryos surplus to the IVF treatment of the patient were cry-
opreserved and were transferred to the Francis Crick Institute where
they were thawed and used in the research project.

ATAC-seq data processing and analysis

Chromatin accessibility profiles from the ICM and TE were obtained
from the data produced by Liu et al with the LiCAT-seq protocol (Liu
et al, 2019). Alignment to the reference genome (GRCh38), peak
calling, and annotation were performed with nf-core/atacseq
v1.1.0 (Ewels et al, 2020). Then, we carried out footprinting fol-
lowed by TF motif enrichment analysis in the regions of open
chromatin using rgt-hint v0.13.0 with TF binding models from
HOCOMOCO and JASPAR (Li et al, 2019). Finally, we associated the
TFs that exhibited over-represented motifs in these regions with
their closest transcription-starting sites (most distances ranging
from −5 to 10 kbp).

scRNA-seq data processing and analysis

We integrated scRNA-seq data from three different studies (Yan et al,
2013; Blakeley et al, 2015; Petropoulos et al, 2016) focussing on the
three cell types present at the late blastocyst stage (Figs 1 and S3A).
Cell type annotations were taken from the work by Stirparo et al
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(2018). Alignment to the reference genome (GRCh38) and calculation
of gene counts and TPM-normalised counts were performed on each
dataset separately with nf-core/rnaseq v1.4.2 (Ewels et al, 2020). The
resulting gene expression matrices were integrated and normalised
(log-counts and batch-corrected counts) using Bioconductor tools
(Amezquita et al, 2020). The final set of cells was manually curated
based on the UMAP representation of the batch-corrected data (see
Fig S3 and Table S3). The list of 25,098 genes in the expression
matrices was reduced to the unique set of TFs and TSS derived from
themotif enrichment analysis applied to the ATAC-seq data. We used
the ICM TFs and TSS for the EPI andPEmatrices (12,780 genes) and the
TE TFs and TSS for the TE matrices (12,981 genes).

Network inference methods

For network inference, we compared the best performing strategy in
the DREAM5 challenge, GENIE3 (Huynh-Thu et al, 2010), with a non-
linear alternative based on MI (Faith et al, 2007), the Spearman’s
rank correlation coefficient, and the L0L2 sparse regression method
that we applied using recent advances in sparse multivariate
statistical modelling (Hazimeh & Mazumder, 2018 Preprint; Bartlett
et al, 2019 Preprint) as follows.

For GENIE3, transcription factors are ranked according to the
degree of variability in their expression level and how the ex-
pression of the putative regulator correlates with a target gene. This
ranking is then used to construct the co-expression network for all
genes and transcription factors, by thresholding the algorithm’s
variance reduction score at the 10th percentile of its empirical
distribution. The GRN is then inferred as the intersection of the
edges in this co-expression network with the edges in the network
of all possible gene regulations derived from the chromatin
accessibility/DNA binding motif data. This network of all possible
gene regulations is defined as all network edges from regulating TF
to regulated gene, where an edge represents a DNA binding motif
for the TF in regulatory DNA within open chromatin in the regulated
gene. For GENIE3, all default settings were used.

With the Spearman correlation coefficient, a weighted co-expression
network is inferred as the absolute value of the correlation coefficient.
The GRN is then inferred as the intersection of the edges in this co-
expression network with the edges in the network of all potential gene
regulations derived from the chromatin accessibility/DNA bindingmotif
data.

For L0L2 regression (described in more detail below), the model
automatically chooses a ranked subset of TFs from those predicted
as regulators of the target gene in the chromatin accessibility/DNA
bindingmotif data inferences. In this way, each target gene takes its
turn for a model to be fitted around that target gene. After the
model has been fitted to every target gene, the global GRN can be
constructed by combining the local networks fitted around each
target gene. For L0L2 regression, sparsity hyperparameters were
chosen using the L0Learn package’s internal cross-validation.

In more detail, for L0L2 regression, we start with a linear model of
the expression level yof the regulated target gene (Dobra et al, 2004), in
terms of the expression levels x1, x2, …, xp, of p transcription factors. We
want to use the size of the fitted model coefficients b1, b2, etc. to
measure the strength of regulation of the target gene by transcription

factors (TFs) 1, 2, etc. We use sparse regression to find b1, b2, etc., as this
specifically minimises the number of non-zero model coefficients, by
requiring that the coefficients bj are set to zero as much as possible.
This leads to a more parsimonious model, in which a relatively small
number p’� p of transcription factors is inferred to be regulating the
target gene, as a result of non-zero. Sparse regression minimizes:

�
y −

�
a + b1x1 + b2x2 + ::: + bpxp

��2 + ψ (1)

where ψ “penalises” models with values of bj, ( j = 1, …, p) further
from zero. The most popular choices for ψ include ψ = λ Σ bj2, which
is called “ridge regression” (L2 regression), andψ = λ Σ |bj|, which is
called “the lasso” (L1 regression). It can be shown that Equation (1)
is equivalent to applying the constraint Σ bj2 < t2 for ψ = λ Σ bj2 (L2
regression) or Σ |bj | < t for ψ = λ Σ |bj | (L1 regression). Then, “best-
subset regression” (L0 regression) specifies the number of tran-
scription factors that can have non-zero bj. It does this by using the
constraint Σbj 0 ≤ k, which is equivalent to ψ = λ Σ bj0 in Equation (1).
Combinations of these constraints are often more effective, such as
L1L2 regression (also called “the elastic net” [Zou & Hastie, 2005],
which has proven very successful in genomics), with penalty term
ψ = γ Σ |bj| + λΣbj2. Recently, L0L2 regression has been proposed as
an improvement (Hazimeh & Mazumder, 2018 Preprint), with
penalty termψ = γ Σ bj0 + λ Σ bj2. We use L0L2 regression in this study,
for reasons as follows. Sparse regression using the L0 penalty is an
ideal model for inferring a minimal set of regulating transcription
factors, because it specifically selects the best set of k transcription
factors for the model (i.e., the “best subset,” of the available
transcription factors). Combining with the L2 penalty in L0L2 makes
the model better specified for the data, by minimizing the total size
of the linear model coefficients so that the most important TFs
receive the largest linear model coefficients. We use sparse L0L2
regression to infer the best subset of regulators of each target gene,
from the full list of TF-gene associations supported by the chro-
matin accessibility data.

For MI-based inference, the co-expression network is estimated
first, as follows. We use an empirical estimate of the distribution of
the MI values for each gene (Daub et al, 2004; Faith et al, 2007).
Writing the estimated MI between the expression levels of genes x
and y as Mxy, we estimate the (assumed) standard Gaussian-dis-
tributed variable zxy~N(0,1) according to the equation:

zxy2 = F�1½ F̂yjx Mxy
� ��2 + F�1½F̂xjy Mxy

� ��2 (2)

where F is theN(0,1) cumulative distribution function (c.d.f.), and Fŷ|x
and Fx̂|y are the empirical c.d.f.s of Mxy conditioned on x and y,
respectively. For each of these (assumed) N(0,1) distributed zxy we
calculate P-values, and then threshold each of these at a false
discovery rate of 5%. Again, the GRN is inferred as the intersection of
the edges in this co-expression network with the edges in the
network of all possible gene regulations derived from the chro-
matin accessibility/DNA binding motif data.

We also considered a “random predictor” that outputs a random
ordering of all the possible TF-gene interactions.

The putative regulatory links predicted by each of these methods
using the scRNA-seq data were evaluated as is but also subjected to
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a filtering process in which only TF-gene associations supported by
the chromatin accessibility data were considered in the final network
(for GENIE3, MI, and Spearman correlation methods). In the case of
L0L2 sparse regression, only TF-gene associations supported by the
chromatin accessibility data were considered as potential regulators
of the target gene in the regression model. To identify these refined
predictions, we added the +CA suffix to the name of the GRN in-
ference methods. In both cases, to generate the final network, we
selected the top 100,000 edges by ranking edges according to their
network score. We define network score as the absolute correlation
coefficient or linear regression coefficient (in the case of Spearman’s
correlation and sparse regression respectively), or as −log10p for
mutual information, or the GENIE3 score.

Simulation study

For our simulation study, we used the dagitty package in R to
generate synthetic gene expression data based on pre-defined GRNs
with pre-determined network structure. These GRNs were generated
with network edge density of ρ = 0.07, i.e., 7% of all possible edges (or
gene regulations), are present in the network (this value was esti-
mated from the available ATAC-seq+TF motif data). The synthetic
datasetswere generatedwith a range of sample sizen and number of
potential regulators of each node (gene) p, using linear models, as
follows. For each combination of n and p, we generated 100 GRNs;
then corresponding observed gene expression datasets were gen-
erated for each of the GRNs by specifying that the expression level of
a downstream gene should depend on a linear combination of the
expression levels of its upstream regulators:

xj =�
j0 ≠ j

bj0xj0 + e (3)

where xj is the expression level of the regulated (downstream) gene,
xj' are the expression levels of the p-1 regulating (upstream) TFs, bj'
are corresponding linear combination weightings, and e is an error
term. The different network inferencemethods (GENIE3, L0L2 sparse
regression, MI, Spearman correlation) were then applied to these
generated data, and the results were compared with the known
pre-determined network structure. This comparison was assessed
by the AUC statistic, the “area under the ROC (receiver-operator
characteristic) curve.”

Statistical evaluation metrics

We calculated a reproducibility score R as a bootstrap estimate of
the posterior probability of observing an edge E given the dataset D,
R = P(E|D) (Pe’er, 2005), for the top 100,000 predicted edges. We also
carried out twofold cross-validation in two ways as follows. We
randomly split each dataset (EPI, PE, and TE) in two groups with the
same number of cells 10 times (repeated twofold cross-validation),
applied the inference methods (with or without chromatin ac-
cessibility refinement), took the top 1% of all possible regulatory
interactions from one group and quantified the extent to which the
top interactions inferred from the other group coincide with that
reference using the AUPRC. In addition, we calculated a normalised
L2 loss comparing all the network inferences from the two network

fits on the two folds of the data (at the level of the network scores).
The normalised L2 loss is then defined as the L2 loss comparing the
network scores from each of the two data folds, divided by the
product of the square roots of the L2 norms of the network scores of
each of the two data folds.

Biological evaluation metrics

For each combination of inference method and normalisation ap-
proach, we computed the intersection between the GRN edges pre-
dicted to identify interactions that are specific to the EPI, PE, and TE, as
well as the interactions common to the three cell types. In set notation
this corresponds to EPI-specific = (EPI\PE)\TE, PE specific = (PE\E-
PI)\TE, TE specific = (TE\EPI)\PE and Common = EPI\ PE \ TE. Then, we
used the out-degree of NANOG, GATA4, and CDX2 (marker TFs of the EPI,
PE, and TE, respectively) as a proxy for their activity in each one of the
four networks. We considered that amarkerwas active if its normalised
out-degree (i.e., the proportion of all genes it regulates in that GRN)
was at least the median normalised out-degree across all networks.

We calculated a validation score V as the number of relevant gene
sets that were enriched at a significance level of 10% (P < 0.1) in a
geneset enrichment analysis performed with the genes regulated by
the 25 most connected TFs and that were part of the 500 interactions
with the highest prediction scores produced by the GRN inference
methods for the EPI and TE. The list of gene sets for the EPI and TE
were manually curated and represent the most relevant pathways
and biological processes in each one of these cell types (see Tables
S1 and S2). The starting list of gene sets comprised all the pathways
and Gene Ontology Biological Process (GO BP) terms collated by
the Bader Lab at the University of Toronto on 01 October 2020 (http://
download.baderlab.org/EM_Genesets/October_01_2020/Human/
symbol/Human_GOBP_AllPathways_no_GO_iea_October_01_2020_
symbol.gmt). To facilitate the comparison between V scores from
different GRN inferencemethods within a cell type, we normalised V
to the maximum score attained by a network predictor for that cell
type (i.e., EPI or TE).

Human embryo culture

Human embryos were cultured as previously described (Gerri et al,
2020). Vitrified human blastocyst stage embryos were thawed using
Kitazato Thawing Media (VT602, order number 91121) following the
manufacturer’s instructions.

Human embryos were cultured in drops of pre-equilibrated Global
medium (LGGG-20; LifeGlobal) supplemented with 10% human serum
albumin (GHSA-125; LifeGlobal) and overlaid with mineral oil (ART-
4008-5P; Origio). Preimplantation embryos were incubated at 37°C
and 5% CO2 in an EmbryoScope+ time-lapse incubator (Vitrolife) and
cultured for up to 24 h for human blastocyst.

Immunofluorescence staining

Embryos were fixed with freshly prepared 4% PFA in PBS. Fixation
was performed for 20 min at RT for embryos. Embryos were then
washed three times in 1 × PBS with 0.1% Tween-20 to remove re-
sidual PFA. Permeabilization was performed with 1 × PBS with 0.5%
Tween-20 and followed by blocking in blocking solution (10%
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donkey serum in 1 × PBS with 0.1% Tween-20) for 1 h at RT on a
rotating shaker. Then, antibody incubation was performed with
primary antibodies diluted in blocking solution overnight at 4°C on
rotating shaker. The following day, embryos and cell cultures were
washed in 1 × PBS with 0.1% Tween-20 for three times, and then
incubated with secondary antibodies diluted in blocking solution
for 1 h at RT on a rotating shaker in the dark. Next, embryos and cell
cultures were washed in 1 × PBS with 0.1% Tween-20 for three times.
Finally, embryos were placed in 1 × PBS with 0.1% Tween-20 with
Vectashield and DAPI mounting medium (H-1200; Vector Lab) (1:30
dilution). Embryos were placed on μ-slide eight-well dishes (80826;
Ibidi) for confocal imaging. The antibodies and concentrations used
are reported in Table S4.

Confocal imaging

Confocal immunofluorescence images were taken with a Leica SP8
confocal microscope. 2-μm thick optical sections were collected for
embryo Z-stack imaging.

Nuclei segmentation and quantification

Nuclei segmentation and quantification were performed on
Z-stack confocal images taken at 2-μm thick optical sections.
Stardist Weigert et al (2020) was used for nuclei segmentation
followed by CellProfiler (Stirling et al, 2021) for nuclei tracking
and fluorescence intensity quantification based on a customized
pipeline modified from Lea et al (2021). First, LIF format confocal
images were exported into multi-channel Z-stack TIF format for
each Z-stack image using ImageJ (Schneider et al, 2012). Then,
Stardist was used to identify the nuclei based on the DAPI channel
(358 nm). Finally, Stardist outputs were split into single-channel
single-stack images and loaded into the CellProfiler v4.2.5 to track
nuclei across image slices and quantify the fluorescence intensity.
Customized pipeline and scripts can be found here: https://
github.com/galanisl/early_hs_embryo_GRNs.

Data Availability

scRNA-seq and ATAC-seq data were obtained from the European
Nucleotide Archive (accession numbers: PRJNA153427, PRJNA277181,
PRJEB11202, and PRJNA494280). Data pre-processing and analysis scripts
are available at https://github.com/galanisl/early_hs_embryo_GRNs.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202302415.
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