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Abstract
The high detection efficiencies of direct electron detectors facilitate the routine collection of low fluence electron micrographs and diffraction 
patterns. Low dose and low fluence electron microscopy experiments are the only practical way to acquire useful data from beam sensitive 
pharmaceutical and biological materials. Appropriate modeling of low fluence images acquired using direct electron detectors is, therefore, 
paramount for quantitative analysis of the experimental images. We have developed a new open-source Python package to accurately model 
any single layer direct electron detector for low and high fluence imaging conditions, including a means to validate against experimental data 
through computation of modulation transfer function and detective quantum efficiency.
Key words: detective quantum efficiency, direct detectors, electron microscopy, low fluence, medipix3, modulation transfer function, Monte Carlo methods, 
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Introduction
Electron microscopes have proven to be a powerful tool for in-
vestigating the internal symmetry and morphologies of nano-
sized matter. In the last few decades, interest has turned to 
innovating low dose and low fluence conventional electron mi-
croscopy (EM) and cryo-EM; methods that are employed to im-
pede the structural changes associated with high beam fluences 
or doses (Carlson & Evans, 2012; Fujiyoshi, 2013; Egerton, 
2019; Chen et al., 2020) (see Appendix for a discussion on ter-
minology of dose, flux and fluence). An unfortunate ramifica-
tion of using low fluences is reduced signal-to-noise ratios 
(SNRs) in the electron micrographs, complicating image inter-
pretation, and measurement of structural features. Under low 
fluence conditions, high-angle diffraction peaks can be below 
detection limits because the scattering cross section decreases 
as a function of scattering angle. Modern direct detectors are 
one of the many innovations used to combat the challenges of 
low dose and low fluence EM experiments (Chen et al., 
2020). In particular, these new detectors are more efficient at 
detecting incident electrons for a number of reasons. Firstly, 
they directly detect incident particles by measuring the charges 
generated in each pixel by the incident radiation. Direct detec-
tion avoids some of the signal-loss mechanisms that are associ-
ated with indirect detection (Fernandez-Perez et al., 2021). 
Secondly, they can detect single electron events by choosing 
an appropriate detection threshold, thereby eliminating read-
out noise (Paterson et al., 2020). Higher efficiencies lower the 
information dose and fluence limits, below which useful or de-
sired information cannot be obtained from the image or 
pattern.

Direct electron detectors can be distinguished into two 
groups: hybrid pixel detectors (HPDs), such as the Medipix 
detectors (Ballabriga et al., 2018), and monolithic active pixel 
sensors (MAPS), such as the Falcon 3 and 4 (Guo et al., 2020) 
and the Gatan K2 (Booth, 2012) and K3 (Feathers et al., 2021; 
Sun et al., 2021). Generally speaking, MAPS detectors typical-
ly have arrays of pixels that are smaller and more numerous 
than HPD arrays but are limited by a comparatively poor dy-
namic range when operating in counting mode. Counting 
mode is an operating mode in which the frame rate increases 
to better count individual electron impingements. Accurate 
detection of individual electron impingements is subject to 
frame rate and coincidence loss imposed by significant readout 
speeds. By extension, coincidence loss reduces the dynamic 
range of the detector. Counting mode differs from the conven-
tional linear mode in which energy deposition over the total 
exposure time is integrated, which makes it impossible to 
know the exact number of electrons impinging on a pixel dur-
ing that exposure time. The differences of MAPS detectors and 
HPDs ensure that each one has distinct applications. For ex-
ample, the smaller pixels and large field of view of MAPS de-
tectors position them as particularly well suited for single 
particle cryo-EM imaging (Li et al., 2013; Fan et al., 2019; 
Nakane et al., 2020), while their relatively poor dynamic 
range in counting mode limits their usefulness in high fluence 
diffraction experiments because coincidence loss results in in-
accurate intensity measurements of low-resolution diffraction 
peaks. Note, however, under low fluence conditions, MAPS 
detectors are desirable in diffraction experiments as counting 
mode is advantageous in accurately recording weak, high- 
resolution diffraction peaks. Conversely, HPDs are ideal for 
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high fluence diffraction experiments on crystalline matter if 
the unit cells are sufficiently small to ensure that resolution 
of diffraction peaks is uncompromised by measurement with 
their small arrays of large pixels (Clabbers et al., 2017).

In general, direct detectors are capable of recording high in-
tensities and also of reading out at high speeds to minimize the 
exposure of the specimen to the beam (Paterson et al., 2020). 
Both of these qualities make them highly suited for advanced 
electron diffraction experiments, for example, four- 
dimensional STEM (4DSTEM) experiments (Ophus, 2019) 
and three-dimensional electron diffraction (3DED) experi-
ments (Gemmi et al., 2019). 4DSTEM involves the acquisition 
of two-dimensional (2D) diffraction patterns from a 2D scan 
grid; such data sets are valuable because they can be processed 
in many ways to give different microstructural information. 
For example, since the intensities of the collected patterns 
are dependent on the area underneath the illuminating probe, 
the 4DSTEM data set can be processed to create a map of crys-
talline orientations or phases. Simultaneously, the 4DSTEM 
data set can also be used for phase retrieval by application 
of ptychographic algorithms (Rodenburg, 2008; Ophus, 
2019). 3DED techniques involve the collection of diffraction 
patterns as the crystal is rotated or as the beam is deflected; 
the set of patterns is a sample of the reciprocal lattice that 
can be related to the direct lattice with sophisticated recon-
struction algorithms (Gemmi et al., 2019; Gruene & 
Mugnaioli, 2021).

With the wide application of direct detectors in the collec-
tion of higher quality data, it is pertinent that image simula-
tions are adapted to ensure an appropriate comparison to 
results from experiments in which these detectors are em-
ployed. To elaborate, conventionally, the image contrast in ex-
perimental TEM data is often three to five times less than that 
predicted by theoretical models for both crystalline and 
amorphous materials over a wide range of spatial frequencies. 
Researchers have made efforts to account for the so-called 
Stobbs factor in experiment by considering a variety of elec-
tron scattering models and how they modify the coherent 
Bragg peak intensities and the background (Howie, 2004). 
The considerable improvements in these models and their im-
plementations have not been enough to close the gap between 
experiment and simulation. However, Thust (2009) showed 
that the additional inclusion of empirical frequency-transfer 
properties of the detector, through the modulation transfer 
function (MTF), in simulations led to near perfect consistency 
between simulation and experiment. Moreover, Jia et al. 
(2013, 2014) show quantitative fits of simulations to experi-
ments by inclusion of the measured MTF. It must be noted 
that images simulated using empirical MTF data are limited 
to comparison with experimental images taken under similar 
conditions as the MTF data.

In the subsequent sections, we elaborate on the limitations 
of applying empirical MTF data to simulation and discuss 
InFluence, a new software package in Python that utilizes 
the Monte Carlo single scattering model outlined in Joy 
(1995) to simulate physical experiments in which S/TEM im-
ages of arbitrary exposure conditions are obtained from any 
single layer gapless direct detector operating in single pixel 
mode (SPM) (the details of this operating mode are discussed 
later in the Medipix3 Specifications section). The Monte Carlo 
single scattering model accurately captures the propagation of 
the electron in the sensor layer as it deposits energy for charge 
production. Calculation of each electron trajectory is handled 

separately, and by extension, imaging at low fluences can be 
accurately simulated. InFluence does not model the geometry 
of the specimen; InFluence is applied to an image simulated by 
a multislice (for an in depth account of the formulation of the 
multislice method, see Earl J. Kirkland’s book Advanced 
Computing in Electron Microscopy, specifically chapter 6 
(Kirkland, 2020)) package, such as abTEM (Madsen & Susi, 
2021) or Dr. Probe (Barthel, 2018), completing the simulation 
workflow by adding the effects of measurement by a simulated 
detector. This is different to the usage of a software such as 
CASINO (Drouin et al., 2007), which can model samples 
and detector geometries with vertical and horizontal planes, 
because CASINO cannot be applied to an image produced 
by a multislice package in the same way.

InFluence is open and freely available to use, fitting into the 
growing ecosystem of open free simulation and data process-
ing packages for S/TEM, which includes abTEM, Pyxem 
(Cautaerts et al., 2021), Atomap (Nord et al., 2017), 
HyperSpy (de la Pena et al., 2021), TEMUL Toolkit 
(O’Connell et al., 2022), Prismatic (Ophus, 2017; Pryor 
et al., 2017; Rangel DaCosta et al., 2021), LiberTEM 
(Clausen et al., 2021), and AtomAI (Ziatdinov et al., 2022).

Theory
Medipix3 Specifications
We chose to model the Medipix3 HPD because the technology 
underpinning the detector is well documented; however, pa-
rameters within the software can be adjusted by users to simu-
late other HPDs. This model of the Medipix3 is composed of a 
1-μm-thick aluminum film that sits on top of a 300-μm-thick 
silicon layer that is bump bonded to an application-specific in-
tegrated circuit (ASIC), which is the pixel array and readout 
circuitry. The pixels are modeled as squares with a side of 
length 55 μm. There are 256 × 256 pixels on a detector array 
(Ballabriga et al., 2011; Paterson et al., 2020). For the pur-
poses of the simulation, the origin of a pixel is at its center. 
A defined origin is important because the Monte Carlo simu-
lations, discussed elsewhere, are calculated for each pixel in 
the detector array and the origin is a reference point used to 
check whether the electron has scattered into a neighboring 
pixel. The choice of origin for each pixel is arbitrary but needs 
to be consistent.

The Medipix3 uses hybrid particle counting technology, 
schematic shown in Figure 1: by coating the silicon with an 
aluminum film, it is possible to apply a biasing voltage across 
the detector. As the electrons scatter in the detector, they de-
posit energy that is used in electron–hole pair production. 
For silicon, the energy per pair is assumed to be 3.6 eV. The 
electric field generated by the applied bias causes the holes to 
move toward the ASIC and the electrons to move toward the 
aluminum film. The holes induce a signal at the analog part 
of the ASIC pixel. Additionally, the aluminum film also serves 
as a shield against visible light and soft X-rays.

In SPM, an incident electron is detected in a pixel if the sig-
nal measured in that pixel exceeds a chosen threshold, 
Tcounting, (Paterson et al., 2020). Electrons have sufficient en-
ergy to travel laterally into neighboring pixels and deposit en-
ergy to generate charges in those pixels, leading to the 
possibility that the ASIC counts the incident electron more 
than once in the incident pixel and/or neighboring pixels if 
the threshold value has been set too low. It is also possible 
that the ASIC does not count the incident electron at all if 
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the threshold value has been set too high. The ability to choose 
the counting threshold enables the user to maximize either the 
MTF or the DQE because the number of incident electrons 
counted and their lateral spread are directly related to the 
DQE and MTF (Mir et al., 2017; Paterson et al., 2020). On 
a final note with respect to thresholding, there is a lower limit 
to the choice a user can make for the threshold: it should be set 
above the chip’s thermal electronic noise floor, which is just 
under 5 keV for the Medipix3 (Mir et al., 2017).

The electron loses energy in the aluminum film. The alumi-
num film can also be modeled as a structureless continuum 
(see the Assumptions of the Single Scattering Model section) 
and placed on top of the silicon layer in a Monte Carlo simula-
tion. However, to reduce code complexity, we chose to approxi-
mate the average energy lost in the aluminum film by performing 
a separate calculation of the electron scattering in the aluminum 
film that is then incorporated into the overall calculations within 
our software InFluence. We subtract the average loss from the 
chosen initial electron energy of the incident beam. The implica-
tion of this is that we have removed the noise associated with the 
natural variance of the electron energy as a result of scattering 
within the aluminum layer. According to Equation (2), the 
mean free path decreases as a function of incident energy, imply-
ing that the average time an electron spends in the aluminum 
layer increases with decreasing incident energy. In addition, 
Equation (21) shows that low-energy electrons lose more energy 
per distance travelled. Collectively, this means that the energy 
lost to the aluminum layer becomes more significant as the inci-
dent energy of the electron decreases. In the case of 80- and 
200-keV electrons, making this compromise introduces negli-
gible error. Our simulations revealed that the average energy 
loss is ∼1.1 keV in the aluminum layer for an 80-keV electron 
beam and ∼0.8 keV for a 200-keV electron beam.

The ASIC takes a finite time to process each pulse induced by 
an incident electron. This leads to an underestimation of the sig-
nal if another electron induces a pulse during this processing 
time. The model presented in this paper assumes that no elec-
trons are incident on a pixel during this processing time 
(Fröjdh et al., 2015). In fact, the model in this paper assumes 
that only one electron travels through the column and the de-
tector until counting is completed. This is a valid assumption 
for low flux experiments. Consider the case in which the elec-
trons are travelling through a TEM column of length d at speed 
v. Since an electron takes dv to travel through the column, there is 
a neglibilible chance of two electrons travelling through the col-
umn simultaneously if F × d

v ≪ 1, where F is the flux (e/Å2s).

Single Scattering Model
Monte Carlo models can be used to simulate electron scatter-
ing in a material, where the material is continuous and struc-
tureless. Here, we offer a summarized version of the elastic 
single scattering models given in Joy (1995) and Lowney 
et al. (1994) for the convenience of the reader. We have not 
made changes to the models.

The single scattering model is a method used to generate a 
distribution of possible scattering trajectories for a particle in-
cident on some materials. In the context of this paper, the par-
ticle in question is an electron. The experimental geometry 
follows a right-handed Cartesian coordinate system, with the 
positive z-axis pointing into the material, as shown in Figure 2.

The electron undergoes a scattering event and travels a dis-
tance s from point Pn to point Pn + 1. The distance travelled is 
given by

s = −λ loge(RND), (1) 

where λ is the mean free path of the incident electron and RND 
is a random number selected from a distribution with a range 
from 0.000001 to 0.999999. The mean free path is given by

λ =
A

NAρσM
, (2) 

where NA is Avogadro’s number, ρ is the density of the target 
(g/cm3), and A is the atomic weight of the target (g/mole). σM 

(cm2) is the Mott scattering cross section parametrized by 
Browning (1991) and is written as

σM =4.71 ×10−18 (Z1.33 +0.032Z2)
(E +0.0155Z1.33E0.5)

×
1

(1 −0.02Z0.5e−u2 )
,

(3) 

where E is the electron energy (keV) and Z is the atomic num-
ber and u defined as

u= log10(8EZ−1.33). (4) 

The azimuthal scattering angle ψ of the electron can be any 
number within the range 0° and 360° and is defined by

ψ = 2πRNDψ. (5) 

The polar scattering angle ϕ of the electron can be any num-
ber within the range 0° and 180° and is defined by the rela-
tionship

ϕ = arccos 1−
2ξRND2

ϕ

(1 + α − RNDϕ)

 

, (6) 

Fig. 1. Simplified schematic of the hybrid particle counting technology. 
The aluminum layer sits on top of the silicon substrate enabling the 
application of a biasing voltage between the particle counting pixel 
electronics contained in the ASIC and the aluminum layer. The particle is 
incident on the aluminum layer and then gets scattered in the aluminum 
and silicon substrates. After each scattering event, the incident particle 
loses energy, which is used in electron–hole pair production. The 
generated electrons (red circles) flow towards the aluminum layer at the 
positive side of the bias and the holes (black circles) flow towards the 
pixel electronics at the negative side of the bias. Note that one of the 
particles is incident near the pixel boundary (dashed vertical line) and is 
subsequently scattered into the neighboring pixel; the electron–hole 
pairs it produces by energy deposition are counted by the neighboring 
pixel’s electronics, which leads to image blurring.
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where ξ is a parameter that accounts for nuclear screening 
(Joy, 1995).

ξ =0.0034
Z0.67

E

 

. (7) 

RNDψ and RNDϕ are random numbers chosen from a 
uniform distribution with values in the range 0 and 1. 
The Mott scattering cross section more accurately describes 
the elastic scattering of the electron at low beam 
energies (<20 keV) and for nuclei with higher atomic num-
bers (Z > 30) (Czyżewski et al., 1990). The angular distri-
bution for this Mott model is square and is approximated 
by modifying the Rutherford polar scattering angle (Joy, 
1995).

In the model presented in this paper, the electron scattering 
begins after the electron has already penetrated the detector, 
meaning that the initial penetration depth z is determined us-
ing Equation (1). The x and y coordinates are randomly se-
lected from a uniform distribution with a user-defined 
minimum and maximum: the minimum is −1 times the max-
imum. For the simulated Medipix3 model, the user should 
choose half the pixel (which is modeled as a square) side length 
as maximum since the origin of the simulation is at the center 
of the detector pixel. Hence, the following equations define the 
initial positions:

z = s, (8) 

x = d × RNDx, (9) 

y = d × RNDy, (10) 

where s is the scattering step length, d is the user-defined max-
imum, and RNDx and RNDy are random numbers chosen 
from a uniform distribution with values in the range −1 and 
1. These equations can be easily adjusted to accommodate 
any arbitrary definition of the origin and pixel (or material) di-
mensions. For example, for a rectangular pixel, the d param-
eter would be changed to reflect the difference between the 
maximums in the x and y directions.

The position of the electron after a scattering event is calcu-
lated by

xn = xn−1 + s × ca, (11) 

yn = yn−1 + s × cb, (12) 

zn = zn−1 + s × cc, (13) 

where xn−1, yn−1, and zn−1 are the components of the position 
vector along the x, y, and z axes, respectively, and ca, cb, and cc 

are the direction cosines of the electron position vector after 
scattering has occurred. Illustrated in Figure 2, the new direc-
tion cosines are related to the old direction cosines cx, cy, and 
cz through the polar, ϕ, and azimuthal, ψ, scattering angles:

ca =
1
a2

[a1cy + cx(a3cz + a2cos(ϕ))], (14) 

cb = −
1
a2

[a1cx + cy(a3cz + a2cos(ϕ))], (15) 

cc = −a2a3 + czcos(ϕ), (16) 

where

a1 = sin(ϕ)sin(ψ), (17) 

a2 = (1 − c2
z )0.5, (18) 

a3 = sin (ϕ) cos (ψ). (19) 

The full derivation and further explanation of these equations 
can be found in Lowney et al. (1994); however, we make 
note of some important aspects of the equations and derivation: 
the sum of each old direction cosine squared must equal the sum 
of each new direction cosine squared, which must both equal to 
1. Alternatively stated, the following equation must hold true:

c2
x + c2

y + c2
z = c2

a + c2
b + c2

c = 1. (20) 

The coordinate system is rotated after a scattering event occurs. 
For consistency and for Equation (20) to be satisfied, the new 
direction cosines representing the new position of the electron 
must be represented in the original coordinate system. This is 
achieved by two rotations, one about the x-axis and the other 
about the z-axis.

The electrons lose energy through their Coulomb interac-
tions with the positive nuclei in the scattering material. The 
electrons also lose energy discretely due to inelastic scatter-
ing events. We can approximate the total electron energy 
change per distance travelled by the modified Bethe equa-
tion, which is more appropriate than the original form at 
lower beam energies, i.e., when the electron energy E 
(keV) is less than or equal to the mean ionization energy 
Eionization (keV) (Joy, 1995):

dE
ds

= − 78,500
Z

AE
loge

1.166(E + 0.85Eionization)
Eionization

 

,

(21) 

Fig. 2. Coordinate system used in this Monte Carlo single scattering 
simulation. α, β, and γ are the angles between the position vector of the 
scattered electron and the x-, y-, and z-axes. ϕ and ψ are the polar and 
azimuthal scattering angles. Pn + 1 is the position of the electron after a 
scattering event occurs at its previous position Pn.
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where A is the atomic weight (g/mole). J is measured experi-
mentally for different materials (Berger et al., 1984) but can 
be estimated using the equation (National Research Council, 
1964):

Eionization = 9.76 × Z +
58.5
Z0.19

 

× 10−3, Z ≥ 13

Eionization = 11.5Z, Z < 13.

(22) 

With all the necessary equations defined, we now describe 
how an electron propagates through a material. The user de-
fines the properties of the scattering material and the energy 
of the electron. The initial coordinates are calculated using 
Equations (8)–(10). The electron then scatters to a new pos-
ition, whose coordinates are calculated using Equations 
(11)–(13). The energy that the electron loses is calculated us-
ing Equation (21). This process is repeated until the energy 
of the electron falls below a user-defined threshold at which 
point the electron is assumed to have insufficient energy to 
move through the material or if the electron exits the mater-
ial by backscattering or by transmission. Our application of 
this model to image simulation is discussed later.

Assumptions of the Single Scattering Model
The spatial distribution of the electrons is dominantly deter-
mined by elastic collisions (Joy, 1995). Hence, discrete inelastic 
scattering events are not directly modeled; instead, the energy is 
continuously lost to the surrounding material. Furthermore, the 
model assumes that the energy losses in the simulated specimen 
are negligible compared to the total energy of the electron and 
the energy losses in the detector. The model assumes that energy 
lost to the detector is used for electron–hole pair generation and 
ignores other types of inelastic scattering processes. In general, 
neglect of these phenomena adds some uncertainty in the true 
noise of simulation. However, contributions from secondary 
electron generation, for instance, are minor and can be ignored 
for the purposes of contrast modulation.

The Medipix detectors (which are discussed in the Medipix3 
Specifications section) are composed of crystalline matter; how-
ever, the single scattering model assumes that the detector is con-
tinuous and structureless. This assumption holds when the step 
length is larger than the crystal lattice parameters, because the 
step length defines which features or effects are resolved. In effect, 
phenomena that arise due to crystallinity, such as electron chan-
neling and diffraction, are not considered. We expect the struc-
tureless model to be sufficient for this study as the most 
important outcome of the Monte Carlo simulation is determin-
ing the lateral spread of the electrons in the detector.

Methodologies
The following subsections describe our methods for generat-
ing the data. In summary, to simulate an image with a 
use-specified finite fluence and the contrast modulation due 
to the electron scattering within a detector, the user should 
first generate an image from an image simulation package, 
such as Dr. Probe (Barthel, 2018), MULTEM (Lobato & 
Van Dyck, 2015), Prismatic (Ophus, 2017), or abTEM 
(Madsen & Susi, 2021). The pixel intensities of the images si-
mulated from these packages represent probabilities of an 
electron scattering to that pixel. The intensities are normalized 
such that their sum is one. This description extends to the 
slanted edge and flat-field images before simulating finite 

fluences; therefore, we denote all inputs to InFluence as nor-
malized images. The first, and most simple, task of InFluence 
is to convert the normalized image to one with a user-specified 
finite fluence. The second, and final, task is to simulate elec-
tron scattering in a detector with user-defined properties.

The simulated detector is characterized by application of the 
slanted edge method and the relevant metrics: the MTF, the 
noise power spread (NPS), and the detective quantum effi-
ciency (DQE). For a detailed description of these methods, 
see the Detector Characterization section in the appendices. 
The MTFs and NPSs were obtained with a JavaScript plugin 
for ImageJ (Schneider et al., 2012). DQEs are computed 
from the MTFs and NPSs according to Equation (27).

Simulations and analysis were performed on a computer 
with a Windows 10 operating system, an Intel Core i5 
6600K central processing unit (CPU) overclocked to 
4.2 GHz, 16 GB of random-access memory and an NVIDIA 
GeForce GTX 980 Ti graphics processing unit (GPU).

InFluence
InFluence is a software designed to simulate a modulated image 
of arbitrary electron fluence. To be clear, a modulated image is a 
simulated image that takes into account intensity modulation 
that arises from electron–detector interactions. InFluence will 
be available on GitHub in conjunction with this publication. 
The code is written in Python version 3.6.8 (van Rossum & 
Drake, 2009) and makes use of several highly optimized libraries, 
including NumPy (Oliphant, 2006), math, random, time (Van 
Rossum, 2018), SciPy (Virtanen et al., 2020), Numba (Lam 
et al., 2015), and Matplotlib (Hunter, 2007). We have not tested 
other versions of Python but expect that InFluence should be 
compatible with most, if not all, future versions with perhaps mi-
nor changes to the code. For the convenience of the user, the code 
is separated into four PY files: InFluence.py, plot_trajectories.py, 
common_functions.py, and params.py. InFluence.py uses the 
single scattering Monte Carlo model outlined in the Theory sec-
tion to calculate the trajectories of the electrons in a HPD. The 
model is defined by a set of functions stored in the 

Table 1. Runtimes of Standard InFluence for Several Simulation 
Conditions.

Number of 
Pixels

Number of 
Electrons

Energy 
(keV) Time Taken (s)

256 × 256 500,000 200 259.43 ± 3.61
256 × 256 50,000 200 29.77 ± 0.15
10 × 10 500,000 200 199.07 ± 13.18
10 × 10 50,000 200 23.97 ± 3.33
256 × 256 500,000 80 144.35 ± 6.78
256 × 256 50,000 80 18.83 ± 1.42

Table 2. Runtimes of Alternative InFluence for Several Simulation 
Conditions.

Number of 
Pixels

Number of 
Electrons

Energy 
(keV)

Time Taken for 
Alternative InFluence (s)

256 × 256 500,000 200 111.25 ± 2.26
256 × 256 50,000 200 12.59 ± 1.47

The time taken to load the 2,000 sample distribution is 43.03 ± 2.90. The 
time taken for the alternative InFluence to modulate an image does not 
include the load time of the sample distribution.
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common_functions.py file. Plot_trajectories.py enables the user 
to also visualize the lateral spread and penetration depth of the 
electrons. The experimental parameters for both InFluence.py 
and plot_trajectories.py can be adjusted in the params.py file. 
The code is not limited to the Medipix family; adjustment of 
the detector material properties enables simulation for any 
HPD with a single sensor layer and gapless pixels. These material 
properties are the atomic number, the atomic weight, the mater-
ial density, the detector thickness, the energy threshold for elec-
tron–hole pair generation, and the pixel side length.

For simulating physical experiments, the input image to 
InFluence is the output from an image simulation software 
(ISS), such as abTEM, without any MTF file applied. In the 

Table 3. Runtimes of Standard and Alternative InFluence for Parallel Mode set to True.

Number of 
Pixels

Number of 
Electrons

Energy 
(keV)

Time Taken for Standard 
InFluence (s)

Time Taken for Alternative 
InFluence (s)

First image 256 × 256 50,000 200 25.75 ± 1.50 17.54 ± 1.07
Subsequent 

images
256 × 256 50,000 200 8.92 ± 1.16 4.43 ± 1.15

The time taken to load the 2000 sample distribution is 43.03 ± 2.90. The time taken for the alternative InFluence to modulate an image does not include the load 
time of the sample distribution.

Fig. 3. Simulated (a) 80- and (b) 200-keV normalized TEM images of an 
MoS2 lattice surrounded by vacuum.

Fig. 4. Application of InFluence to unmodulated (a) low fluence (10 e/pixel), (b) medium fluence (100 e/pixel), and (c) high fluence (1,000 e/pixel) images of 
an MoS2 lattice, resulting in the modulated (d) low fluence, (e) medium fluence, and (f) high fluence images. (g)–(i) are the different maps for low, medium, 
and high fluence simulations, calculated by subtracting the modulated images from the unmodulated images. The electrons are incident with an energy of 
80 keV, and the energy of the electron–hole pairs are counted using a threshold of 32 keV.
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case of validating a direct detector, a flat-field noise image and 
slanted edge image are the appropriate inputs. In subsequent 
sections, we show results for 32-bit floating point square im-
ages stored as both NumPy and TIFF format, but InFluence 
could accept any rectangular image of any size and bit format 
with relatively trivial modifications to the file-opening func-
tion of InFluence. The normalized images are converted to fi-
nite fluence images using Poisson noise with Numpy.

To simulate how an ASIC detects electrons, InFluence proc-
esses the scattering of the electrons in each pixel separately, 
while counting the number of electron–hole pairs generated 
in a pixel by the incident electrons as they propagate through 
the pixel (and perhaps its neighbors); if the energy of the pairs 
in a single pixel exceeds the threshold, Tcounting, defined in par-
ams.py, an electron is detected in that pixel. InFluence runs 
until the trajectories of every electron incident on every pixel 
are calculated. The results in Table 1 show that larger images 
do equate to significant increases in runtime as iterating over 
pixels is inefficient. Furthermore, the number of electrons 
and their energy also contribute significantly to the runtime.

In conjunction with the standard version of InFluence is a 
version that enables the user to load a precalculated distribu-
tion of possible electron trajectories from file instead of calcu-
lating the trajectory of each electron in real time. A larger 

number of samples ensure a higher confidence in the sample 
distribution but require greater overhead in the loading time 
of the distribution file. With this in mind, this alternative version 
of InFluence is faster when the load time is negligible when com-
pared to the time it takes to assign a trajectory to each electron in 
the simulation. For example, comparing the results in Tables 1
and 2, it is clear that the standard version of InFluence is faster 
for 50,000 electrons, but slower for 500,000 when taking the 
time taken to load the sample distribution into account. That 
being said, the distribution only needs to be loaded a single 
time when executing InFluence, implying that modulating a set 
of images in a single run of InFluence can realize additional sav-
ings for computational time.

Furthermore, parallel mode with Numba can be enabled 
for the standard and alternative versions of InFluence. 
There are no drawbacks to enabling parallel computation 
for standard InFluence, whereas additional compilation 
time is needed for the alternative version of InFluence; how-
ever, comparison of the results in Tables 2 and 3 shows that 
this cost can be offset if several images are simulated with a 
single run of InFluence.

It must be noted that the results in Tables 1–3 are relevant 
only for the workstation described above and are subject to 
change depending on the exact computational power of the 

Fig. 5. Application of InFluence to unmodulated (a) low fluence (10 e/pixel), (b) medium fluence (100 e/pixel), and (c) high fluence (1,000 e/pixel) images of 
an MoS2 lattice, resulting in the modulated (d) low fluence, (e) medium fluence, and (f) high fluence images. (g)–(i) are the difference maps for low, 
medium, and high fluence simulations, calculated by subtracting the modulated images from the unmodulated images. The electrons are incident with an 
energy of 200 keV, and the energy of the electron–hole pairs are counted using a threshold of 80 keV.
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workstation used. InFluence calculations are currently only 
handled by the CPU.

Results
Application of InFluence on a Simulated Image of an 
MoS2 Lattice
We use the Python package abTEM to simulate normalized 
TEM images of a molybdenum disulphide (MoS2) lattice. 
Figure 3 presents simulated 80- and 200-keV normalized 
TEM images of an MoS2 lattice surrounded by vacuum. The 
simulated electron beams are partially spatially and temporal-
ly coherent, and the microscope exhibits third order spherical 
aberrations, Cs. Deflections of the image relative to the detect-
or can occur because of vibrations, stage drift, and thermal 
magnetic field noise. In abTEM, the contribution of these 
noise sources is adjusted by the Gaussian spread, G. In 
abTEM, temporal and spatial coherence are controlled by ad-
justing the unitless focal spread, δ, and unitless angular spread, 
β, parameters, respectively. The lattices are imaged at Scherzer 
defocus, D. For the 80-kV electron simulation, these parame-
ters are as follows: δ = 40, β = 0.5, Cs = − 7 μm, D ≈ −66.22 

Å, and G = 2 Å. For the 200-kV electron simulation, δ = 40, 
β = 0.5, Cs = − 7 μm, D ≈ −51.32 Å, and G = 2 Å.

Figures 4 and 5 show a set of unmodulated finite fluence 
MoS2 lattice images simulated with an 80- and 200-keV elec-
tron beam, respectively. The corresponding modulated im-
ages and difference images are also shown. The difference 
images are calculated by subtracting the modulated image 
from the unmodulated image. The difference images high-
light how the intensities change after modulation. In other 
words, they show the difference between the image plane 
and detector plane. Figure 4i shows that the intensity differ-
ences between the unmodulated and modulated images are 
negative for 80-keV electrons thresholded at 32 keV. The in-
tensities of the modulated image are higher than those of the 
unmodulated image because the 80-keV electrons are 
counted multiple times in the same pixel as a result of the 
counting threshold used here and since 80-keV electrons 
tend to not scatter into neighboring pixels. Conversely, 
200-keV electrons tend to disperse into neighboring pixels; 
in fact, 200-keV electrons can scatter to ∼4.8 Medipix3 pix-
els from their point of incidence (see the Evaluating the 
Implementation of the Single Scattering Model section for 
more details). Figure 5i shows that counting 200-keV 

Fig. 6. Histogram of the final distance of an electron from the center of a pixel to show the lateral spread of the 60-keV electrons in silicon; two viewpoints 
of the trajectories of the 60-keV electrons are shown below the histogram. There are 5,000 trajectories in this simulation; color is randomly assigned to 
help distinguish between trajectories.
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electrons with a 40% threshold results in an underestimation 
of electron counts and significantly more blurring. 
Effectively, the impact of modulation on measurements is a 
reduction in high spatial frequency information, and the 
magnitude of this reduction becomes more severe as the inci-
dent energy increases.

Evaluating the Implementation of the Single 
Scattering Model
All calculations were performed with standard InFluence, re-
ferred to as just InFluence from here onward.

The trajectories of the electrons simulated with our implemen-
tation of the single scattering model compared well to those in 
other literature: the authors of (Mir et al., 2017) used the 
CASINO software package (Drouin et al., 2007) to calculate 
the lateral spread of 60- and 80-keV electrons in a silicon pixel, 
showing that 95% of the electrons travel out to ∼25 and 
42 μm for 60- and 80-keV electrons, respectively. The histograms 
in Figures 6 and 7 show that the 5,000 60- and 80-keV electrons 
simulated using InFluence exhibit a similar lateral spread. Recall 
from the Medipix3 Specifications section, the Medipix3 sensor 
layer is 300 μm deep, and the pixels are square with a 55-μm 

side. Therefore, an electron incident on the center of the pixel is 
unlikely to scatter into a neighboring pixel; note, though, 60- 
and 80-keV electrons are still likely to scatter into neighboring 
pixels because electrons can be incident on any part of the pixel. 
The histogram in Figure 8 shows that a 200-keV electron can 
travel out to ∼265 μm, which is >4.8 Medipix3 pixels from its 
point of origin. Depending on the value set for Tcounting, an elec-
tron can be counted multiple times across several pixels. To sum-
marize, with high Tcounting, the modulation of the image is not 
very significant or apparent because low-energy electrons tend 
to not scatter into neighboring pixels if they are incident near 
the center of the pixel. High-energy electrons can travel through 
several pixels and can be measured many times or not at all de-
pending on the energy transferred in each pixel and the selected 
Tcounting, which, as will be shown in the subsequent section, leads 
to significant contrast modulation of the input image.

Characterization of the Simulated Medipix3
The MTF, NPS and DQE were evaluated in the spatial fre-
quency range from 0 to 0.5, where 0.5 represents the 
Nyquist frequency. The unmodulated and modulated slanted 
edge and white noise images are shown in Figures 9 and 10, 

Fig. 7. Histogram of the final distance of an electron from the center of a pixel to show the lateral spread of the 80-keV electrons in silicon; two viewpoints 
of the trajectories of the 80-keV electrons are shown below the histogram. There are 5,000 trajectories in this simulation; color is randomly assigned to 
help distinguish between trajectories.
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respectively; the images are simulated with different electron 
fluences: 10 e/pixel and 100 e/pixel. Each edge is oriented at 
an angle of 0.1 rad to the x-axis, giving an oversampling factor 
of ∼10 times the pixel pitch to ensure that the specified eight 
sampling bins are nonempty. The edges are imaged with 
80 keV and with 200-keV electrons that InFluence thresholds 
at 32 and 80 keV, respectively. Note that the darkening of the 
edges of the images arises from the scattering of the electrons 
outside the finite boundary of the detector. These electrons do 
not contribute to the image and InFluence does not simulate 
software postprocessing of the image or detector dead area 
that might remove or account for these artifacts. Note the dis-
tribution of intensities from the white noise images before 
and after modulation shown in Figure 11; the count change 
after modulation is +40% for the 80-keV electrons and 
−50% for 200-keV electrons, despite the energy of the elec-
tron–hole pairs generated by both electron beams being 
thresholded at 40% of the incident beam energy. The nar-
rowing of the 200-keV distribution and the reduction in 
counts after modulation is indicative that a lower threshold 
is required to improve DQE, to ensure that electrons that 
spread their energy to too many neighboring pixels are 
counted.

These slanted edges and white noise images were used to ob-
tain the MTFs, NPSs, and DQEs shown in Figures 12–15. The 
MTF degrades with increasing electron energy, which we attri-
bute to the stochastic lateral spread of the electrons in the sili-
con sensor layer. This lateral spread is the reason the edge 
becomes blurrier with increasing electron energy, as demon-
strated in Figures 9c and 9f.

Figure 12 shows that higher electron fluences result in a 
smoother MTF, since the fluctuations in the intensity profile 
across the edge are less significant compared to the average 
electron fluence. This result is unsurprising because the 
MTF metric is a statistical quantity, thus requiring an ad-
equately large number of electron counts over a suitable ex-
posure time. The stochastic nature of the electron 
scattering in the sensor layer means that each electron trans-
fers spatial frequency information differently. MTFs gener-
ated from an edge imaged under high electron fluence 
conditions cannot be used to simulate low electron fluence 
experiments reliably.

Figures 13 and 14 present the NPS corresponding to the MTFs 
in Figure 12. A perfectly flat power spectrum normalized to 1 is 
only expected for an ideal white noise process and unlikely to 
ever be observed in practice. In general, the degree to which the 

Fig. 8. Histogram of the final distance of an electron from the center of a pixel to show the lateral spread of the 200-keV electrons in silicon; two 
viewpoints of the trajectories of the 200-keV electrons are shown below the histogram. There are 5,000 trajectories in this simulation; color is randomly 
assigned to help distinguish between trajectories.
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power of noise decreases for higher spatial frequencies is more se-
vere for 200-keV electrons than that for the 80-keV electrons. 
This is further evidence that the lateral spread of the electrons 
strongly impacts the measured noise.

We present the simulated DQEs under low and high elec-
tron fluence conditions and the ideal DQE according to 
Equation (32). Since the DQE, MTF, and NPS are related 
through Equation (30), Figure 15 serves to reiterate the points 

Fig. 9. Simulated slanted edge images, with a slant of 0.1 rad from the horizontal of the image: (a, d) before applying InFluence; (b, e) after applying 
InFluence with 80-keV electrons and a 32-keV threshold; (c, f) after applying InFluence with 200-keV electrons and an 80-keV threshold. The average 
electron fluence is 10 e/pixel for (a)–(c) and 100 e/pixel for (d)–(f).

Fig. 10. Simulated white noise images: (a, d) before applying InFluence; (b, e) after applying InFluence with 80-keV electrons and a 32-keV threshold; (c, f) 
after applying InFluence with 200-keV electrons and an 80-keV threshold. The average electron fluence is 10 e/pixel for (a)–(c) and 100 e/pixel for (d)–(f).
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made above. That is, each electron exhibits a unique DQE; 
therefore, DQEs generated from high electron fluence data 
cannot be used to simulate low electron fluence experiments 
reliably.

Presented so far are the results for electrons thresholded at 
40% of their incident energy. Figure 17 shows that a higher 
threshold decreases the relative maximum magnitude of the 
DQE because the energy of the electron–hole pairs generated 
by the propagating electrons is less likely to exceed the thresh-
old. Careful consideration must be made to maximize the 
DQE while minimizing the blurring associated with the lateral 
spread of electrons into neighboring pixels; that is, there is a 
trade-off between maximizing the DQE and MTF. In the 
case of low fluence cryo-EM experiments, in which the elec-
tron fluence is typically on the order of 10 s e/Å2, a high 
DQE is prioritized over a better MTF to maximize the meas-
ured signal. Note, as shown by considering Figures 16 and 
17, an increased threshold improves the MTF but not as dra-
matically as it reduces the DQE.

Comparison to Physical Experiments
Figure 18 is a plot comparing simulated and experimental 
MTFs obtained from images recorded with 60-keV electrons 
thresholded at 5.6, 37.0, and 51.9 keV. We obtained the 
MTFs from Figure A.3, reproduced from Mir et al. (2017), 
and multiplied them by sinc(f) for comparison with our 2D 

MTF trend lines. For all simulations, the average fluence is 
∼40,000 electrons per pixel, leading to smoother curves typic-
ally obtained in experimental MTFs. The simulated ideal de-
tector compares well with the expected ideal frequency 
response: the sinc2(f) function. The experimental and simulated 
MTFs obtained with a 5.6-keV threshold are the only trend lines 
that compare well. The simulated MTFs for 37.0- and 51.9-keV 
thresholds fall predict weaker frequency responses for higher 
spatial frequencies than those observed by Mir et al. There are 
two likely reasons for this: (i) the calibration of the real 
Medipix3 detector could mean that the thresholds used in ex-
periment are not completely comparable those used in simula-
tion. (ii) The uniform distribution of electrons on every pixel 
surface is erroneous. The pixels near the edge object are only 
partially exposed to the electron beam, implying that a more so-
phisticated distribution method is necessary to improve the 
model of the detector. The most obvious way to solve this prob-
lem is to oversample the detector pixels and then bin the output 
image to the desired detector size. Regardless, the improper use 
of a uniform distribution at the edge explains why the simulated 
MTF exhibits more severe degradation at higher spatial frequen-
cies. Reiterating, the MTF characterizes the spread of electrons 
from the pixel on which they impinge. The improper use of a 
uniform distribution of electron on pixels along the edge allows 
some of the electrons to impinge too close to the region blocked 
by the edge object. This increases the blurring effect arising from 
lateral scattering.

Fig. 11 Modulated and unmodulated image distributions for (a, c) 80-keV electrons with a 32-keV threshold, (b, d) 200-keV electrons with an 80-keV 
threshold. The average electron fluence is 10 e/pixel for (a) and (b) and 100 e/pixel for (c) and (d).
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Conclusions
The motivation for making InFluence was to provide an open 
and user-friendly software to simulate image modulation due 
to detector–electron interactions. InFluence is flexible enough 
to allow the user to adjust the simulated sensor layer and beam 
properties. InFluence is reasonably fast on a single CPU core 
but activating parallel mode or refactoring the code to run 
on a GPU would further reduce the calculation time. 
Reductions to the calculation time at the cost of increased un-
certainty can also be realized by loading a sample distribution 
of possible electron trajectories instead of calculating the full 
paths of every electron in real time.

Comprehensive analysis of a simulated Medipix3 detector 
produced results that compared well to expectations and to 
those presented in literature. That is, the choice of accelerating 
voltage and energy threshold plays an important role on the 
MTF and DQE. Generally, high-energy electrons will disperse 

to neighboring pixels, reducing the MTF at high spatial fre-
quencies; a high threshold will improve the MTF, but to the 
detriment of the DQE. Results showed that the characteriza-
tion methods used are appropriate for high fluence experi-
ments, where the SNR is sufficiently large. Low fluence 
MTFs and DQEs were noisy across all spatial frequencies, 
with an increase in fluence resulting in smoother curves.

Current understanding of the Stobbs factor indicates that its 
origin is instrument relate (Juri Barthel et al., 2017). 
Accounting for the effect of the detector on the observed image 
intensities in simulation by application of an empirical MTF rec-
tifies the discrepancy between experiment and simulation 
(Thust, 2009). Beyond the scope of this paper, further investiga-
tion is required to substantiate InFluence as a sufficiently accur-
ate alternative to using empirical MTF files. Such an 
investigation would include a systematic comparison of experi-
mental images to images simulated with InFluence with the 
scope of helping to reduce the Stobb’s factor and generally 

Fig. 12 MTF as a function of spatial frequency for a simulated slanted edge simulated without applying InFluence, with an 80-keV electron energy and 
32-keV threshold and with a 200-keV electron energy and 80-keV threshold. The theoretical curve is modeled using Equation (A.7). The top and bottom plot 
are generated from slanted edge images with an average electron fluence of 10 and 100 e/pixel, respectively.
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Fig. 13. NPS as a function of spatial frequency for a flat-field field image simulated (top) without applying InFluence, (middle) with an 80-keV electron 
energy and 32-keV threshold and (bottom) with a 200-keV electron energy and 80-keV threshold. Each plot is generated from white noise images with an 
average electron fluence of 10 e/pixel. The expected power at each frequency is 1.
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improve the quality of TEM image and diffraction simulation, 
which would reduce the error between simulation and experi-
mental data. InFluence is freely available to be used in conjunc-
tion with any existing multislice simulation software, with the 

aim of aiding researchers in applying TEM simulations to a 
wider array of experimental conditions where the beam fluence 
can be used as an experimental parameter within the simulations 
to determine appropriate beam and fluence conditions for use in 

Fig. 14. NPS as a function of spatial frequency for a flat-field field image simulated (top) without applying InFluence, (middle) with an 80-keV electron 
energy and 32-keV threshold and (bottom) with a 200-keV electron energy and 80-keV threshold. Each plot is generated from a white noise image with an 
average electron fluence of 100 e/pixel. The expected power at each frequency is 1.

1394                                                                                                                                    Microscopy and Microanalysis, 2023, Vol. 29, No. 4
D

ow
nloaded from

 https://academ
ic.oup.com

/m
am

/article/29/4/1380/7224305 by U
niversity C

ollege London user on 01 N
ovem

ber 2023



Fig. 15. DQE as a function of spatial frequency simulated without applying InFluence, with a 80-keV electron energy and 32-keV threshold and with a 
200-keV electron energy and 80-keV threshold. The theoretical curve is modeled using Equation (A.10). The top and bottom DQEs are calculated from 
MTFs and NPSs generated from images that were both simulated with an average electron fluence of 10 and 100 e/pixel, respectively.

Fig. 16. MTF as a function of spatial frequency simulated for 200-keV electrons with 40-, 80-, and 120-keV thresholds. The theoretical curve is modeled 
using Equation (A.7). The plot is generated from a slanted edge image with an average electron fluence of 1,000 e/pixel.
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experiments and to optimize signal-to-noise for beam sensitive 
materials in (S)TEM experiments, as well as enabling more trad-
itional image simulation applications of qualitative image 
matching for low electron beam fluence experiments.

Availability of Data and Materials
The standard and alternative versions of InFluence are avail-
able in this GitHub repository under two separate branches: 
https://github.com/AMCLab/InFluence. Additionally, we pro-
vide a normalized image of a monolayer MoS2 lattice and a 
slanted edge object for testing.
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Fig. 18. Experimental and simulated MTF for the Medipix3 operating in SPM, obtained for 60 and 80 electrons with various values of Tcounting. The data 
from Figure A.3 has been multiplied by the sinc(f ) function for a better comparison to our 2D (for square pixels) MTF trend lines.
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Appendix
Detector Characterization

Modulation Transfer Function
The frequency response of a detector is characterized by the 
MTF. That is, the MTF describes how well the spatial 
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frequencies of an object are transferred to an image or re-
corded by a detector. The MTF is given by

MTF(f ) = |F{LSF(x)}|, (A.1) 

where f is the spatial frequency, x is the spatial distance, F de-
notes the Fourier transform, and LSF(x) is the line spread func-
tion (McMullan et al., 2009; Ahmed, 2015; Li et al., 2016).

The LSF is the extension of the point spread function (PSF) 
from a single point to a line. The PSF characterizes how well an 
imaging system can resolve two identical points separated by a 
distance d, by comparing d to their full width at half- 
maximum (FWHM); if the distance between the two points 
is equal to or exceeds the FWHM, the detector is capable of 
resolving the two points. The LSF improves on the PSF by ex-
tending the point to a line, thereby sampling a larger number 
of FWHMs (Ahmed, 2015).

Practically, since creating an ideal line object is difficult, the 
LSF is obtained by first recording the edge spread function 
(ESF) and then taking its derivative:

LSF(x) =
d
dx

[ESF(x)]. (A.2) 

To emphasize, the ideal ESF is a step function and so the object 
required to obtain the ESF is not a one-dimensional thin line, 
as is required for the LSF; instead, a 2D object is placed just 
above the illuminated detector to partially block the incoming 
radiation, thereby generating a sharp transition from detected 
radiation to undetected radiation, i.e., a step function. 
However, in a real detector, radiation incident on a pixel 
will scatter into neighboring pixels, resulting in the blurring 
of the intensities. In other words, the ESF of a real detector 
is frequently more akin to a ramp function.

The MTF, therefore, characterizes the blurring or modulation 
of the intensities associated with the spreading of the radiation 
into neighboring pixels. The MTF is dependent on ambient con-
ditions, the energy of the incident wavelength, and the physical 
properties of the detector: the atomic composition of the sensor 
material and the volume and pitch of the pixels, and the ASIC 
counting threshold. Furthermore, the MTF is also impacted by 
the exposure conditions on the detector. At high fluxes, some de-
tectors exhibit nonlinear responses to an input because some of 
the incident particles are uncounted if they arrive while the de-
tector is processing the impingement of particles that arrived 
earlier (Fröjdh et al., 2015). Therefore, MTF data must be col-
lected for the exposure conditions used in the experiment in or-
der to accurately simulate images.

Above, it is noted that a 2D object is used to determine the 
ESF. To improve sampling of the edge and avoid aliasing, the 
edge object is slanted relative to the x- and y-axes of the detect-
or. This method is dubbed the slanted edge method (Kohm 
et al., 2003; Masaoka et al., 2014; van den Bergh, 2018). A 
schematic of the construction of the oversampled ESF is given 
in Figure A.1. The projected distance from the edge to the cen-
ter of the pixel, p, is given by X′:

X′ = (p – s).n, X′ – S = (x, y)
(xn, yn)
���������
x2

n + y2
n

 , 

since

p.n = (x, y)
(xn, yn)
���������
x2

n + y2
n

 and S = s.n, (A.3) 

where the coordinates of p and n are (x, y) and (xn, yn)�������
x2

n + y2
n

√ , re-

spectively, and S is a scalar offset that accounts for the choice 
of the reference point on the edge, s. Equation (A.3) means 
that the distance between consecutive X″ values is a multiple 
of 1�������

x2
n + y2

n

√ ; that is, the oversampling factor, OF, is

OF =
���������

x2
n + y2

n



. (A.4) 

The OF is determined by the angle θ because the values of xn 

and yn are determined by the slope of the edge. Subpixel inten-
sities can, therefore, be extracted along the perpendicular nor-
mal n for certain choices of θ. Typically, a predefined number 
of useful evenly spaced bins is selected, say 4 or 8, which de-
fines the maximum value for OF. The filling of these bins de-
pends on the position of the slanted object relative to the 
pixel grid, i.e., the edge phase. The edge phase is added to 
the distance between consecutive X’s, and then the number 
of nonempty bins is inspected. Say, for example, a maximum 
OF of 4 is desired, the bin spacing is 0.25: giving bins at [0, 
0.25, 0.5, and 0.75] along a single pixel. For θ = 0.1 rad, the 
distance between consecutive X’s is ∼0.1 pixels, and, in this 
case, all four bins are filled. For an edge phase equal to 0.3, 
three bins are filled since the points at which an intensity is ex-
tracted are now [0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, and 
1.2]. To be clear, each bin has a width equal to 0.25, and so 
the first bin starting from 0 remains unfilled because no meas-
urement is taken at values in the range [0, 0.25), where [, ) de-
notes a range with an inclusive lower limit and exclusive upper 
limit. The effective OF is, therefore, given by averaging the 
number of filled bins for several edge phases. For additional in-
formation on the edge phase, see Masaoka (2018).

Detective Quantum Efficiency
The DQE is a quantification of the detector’s ability to transfer 
the energy of an incident particle to the final image signal and 
is related to the MTF through the equation

DQE(f ) =
c2MTF(f )2

nNPS(f )
, (A.5) 

where n is the total number of imaging electrons entering the 
detector [fluence times specimen area (e)], c is the total 
counts of the output image, and NPS( f ) is the noise power 
spectrum function (McMullan et al., 2009). The NPS is a 
measure of how well a detector transfers noise at different 
spatial frequencies; it is calculated by radially integrating 
the Fourier transform of an image containing only noise. 
The DQE is a more useful quantity when evaluating the ef-
fectiveness of an imaging system than the MTF alone be-
cause it includes the effect of noise on the quality of the 
output image.

Ideal MTF and DQE
The equations in the Detective Quantum Efficiency section 
and Modulation Transfer Function section relate to how one 
would measure the experimental MTF and DQE of a detector; 
here, consider a perfect ideal pixel. The MTF of a perfect pixel 
can be found by taking the modulus of the Fourier transform 
of the LSF of a pixel (Ahmed, 2015), which results in a damped 
oscillation of the form:

MTFideal = sinc(f ), (A.6) 
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where f is the spatial frequency (McMullan et al., 2009). Note, 
however, for a 2D isotropic homogeneous detector, the MTF 
is given by

MTFideal 2D = MTF2
ideal = sinc2(f ). (A.7) 

Contrasting with the MTF, the NPS is a measure of the 
unwanted noise present in the image. In these simulations, 
we modeled the discrete nature of electron impingement 
on the detector with a homogenous Poisson process. 
The power of the noise for a homogenous Poisson process 
is constant across all frequencies (Jyoti Bora, 2021); there-
fore, the characteristic curvature for an ideal homogenous 
Poisson noise power spectrum is flat and is typically normal-
ized to one.

For a Poisson process, the ideal DQE is defined as

DQE =
MTF2

N
. (A.8) 

The symbol N denotes the normalized power spectrum. The 
thermal vibrations in a real detector induces a signal at the 
ASIC, which can reach values just below 5 keV under standard 
operating temperatures for the Medipix3 (Mir et al., 2017). 
The impact of the thermal noise on the final image can be mini-
mized by choosing an appropriately high threshold, below 
which any signal is not recorded. We neglect to include the ef-
fects of thermal noise, since the counting thresholds chosen in 
these simulations is sufficiently high as to eliminate all thermal 
noise in a real experiment.

Using Equation (A.6) and since N = 1 for all frequencies, 
the ideal DQE can be defined as

DQEideal = sinc2(f ), (A.9) 

and

DQEideal 2D = sinc4(f ). (A.10) 

Dose, Flux, and Fluence
Dose, flux, and fluence are oftentimes used interchangeably in 
the literature. Here, we provide an explanation of the intended 
definition of the terms in the context of this paper. The dose is 
the absorbed energy per unit mass and has units J/kg. The flux 
is the number of electrons passing through a surface perpen-
dicular to the electrons’ direction per unit time and has units 
e/Å2s. The fluence is the flux integrated over time and has units 
e/Å2. e/pixel is a valid unit of fluence since a pixel has a defined 
area. The relationship between the fluence and dose is material 
dependent; the details of their relationship are beyond the 
scope of this paper. See Schneider et al. (2014) and S’ari 
et al. (2019) for uses of dose and fluence, respectively, consist-
ent with the work presented here.

Ideal Frequency Response of a Pixel to an Impulse
A single pixel can be modeled as a rectangular function in x 
and y because it can only measure radiation incident on its 
rectangular domain. For one dimension, this can be written as

Fig. A.1. Schematic of the oversampled slanted-edge method. The 
object (gray rectangle with dashed outline) is oriented at an angle θ to the 
Y-axis. The position of each pixel (blood-orange “x” marks on the 
sampling grid) is projected onto the perpendicular normal n to obtain the 
signed distance X″. The intensity I for every X″ value is recorded to form 
the ESF. The sampling frequency (i.e., the distance between consecutive 
X’s) along n is determined by θ, according to Equation (A.4). Higher 
sampling frequencies enable extraction of subpixel intensities, resulting 
in an oversampled ESF. The sampled intensities are binned and averaged 
to produce the ESF.

Fig.  A.2. Pixel modeled as a rectangular function.
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I(x) = A, −
X
2

≤ x <
X
2

0, otherwise

⎧
⎨

⎩
(A.11) 

where A is the count measured by the pixel within its domain, 
− X

2 ≤ x < X
2. This is visualized in Figure A.2. The frequency 

response of the pixel to an impulse with amplitude A is found 
by taking the Fourier transform of I(x):

MTF = F [I(x)] = ∫
+∞

−∞
I(x)e−2πifxdx = ∫

+X
2

−X
2

Ae−2πifxdx (A.12) 

=
A

−2πif
e−2πifx|

+X
2

−X
2

 
=

A
−2πif

[e−πifX − eπifX]

=
AX
πfX

eπifX − e−πifX

2i

 

=
AX
πfX

sin(πfX) = AX sinc(fX),

where F is the Fourier transform operator and f is the 
spatial frequency. The final result is obtained using the 
relation sinc(fX) = sin(πfX)

πfX . The same result is obtained in the y 
direction.

Experimental Comparison Original Trend Lines
Figure A.2 shows the trend lines given by the authors of 
Mir et al. (2017). Note that the MTF trend lines are com-
pared to the sinc( f ) function, where f is the spatial 
frequency.

Fig.  A.3. Experimental MTF data for the Medipix3 operating in SPM, obtained for 60 and 80 electrons with various values of Tcounting. We reproduce the 
figure from Mir et al. (2017) under the Creative Commons CC-BY license.
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