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Abstract

This paper provides a mapping from portfolio risk diversification into the pairwise cor-
relation between portfolios. In a finite market of uncorrelated assets, portfolio risk is re-
duced by increasing diversification. However, higher the diversification level, the greater is
the overlap between portfolios. The overlap, in turn, leads to greater correlation between
portfolios.

JEL classification: C02 G11

1 Introduction

According to recent empirical evidence, financial sector balance sheets exhibit increasing ho-
mogeneity. This trend has been favored both by deregulation and by financial innovation and
it is revealed in both risk management and business strategies. The upshot is the increase of
return correlation across financial sectors and within them.1 On one side, the homogenization
of risk management practices reflects common standards and compliance with uniform regu-
lations (see, e.g., Persaud, 2000). On the other side, the homogenization of business activities
reflects common underlying behaviors from specialization to diversification.

I am grateful to Claudio J. Tessone, Rene Pfitzner and Frank Schweitzer. The author acknowledges financial
support from the ETH Competence Center “Coping with Crises in Complex Socio-Economic Systems” CHIRP
1 (grant no. CH1-01-08-2), the European Commission FET Open Project “FOC” (grant no. 255987), and the
Swiss National Science Foundation project “OTC Derivatives and Systemic Risk in Financial Networks” (grant
no. CR12I1-127000/1). Correspondence to Paolo Tasca, Chair of Systems Design, ETH, Zurich, WEV G 208
Weinbergstrasse 56/58 8092 Zurich; e-mail: ptasca@ethz.ch.

1The correlation patterns were around 0.7-0.9 when the recent 2007-2008 U.S. financial crisis reached its peak.
See e.g., (Patro et al., 2012).
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In this paper we draw attention to how the homogenization of investors’ portfolios via asset
commonality (i.e., common asset holding) depends on their levels of diversification.2 By ex-
tending the level of portfolio diversification, investors increase the overlap between their port-
folios. This, in turn, increases their correlation. The syllogism goes as follow. The higher the
portfolio diversification, the greater their overlap. The higher the overlap between portfolios,
the greater their pairwise correlation. The higher the correlation between portfolios, the greater
the probability that investors encounter the same source of risk.

Indeed, asset commonality is widely considered to have been the primary source of the recent
financial crises. In the economic literature, Stein (2009) identifies “crowding”, or similar port-
folios among sophisticated investors, as a risk in financial markets. In Wagner (2008), investors
with similar diversification strategies concentrated more in risky projects than liquidity may
cause a liquidity shortages to become more likely as a result, and the probability of a crisis to
rise unambiguously. Acharya and Yorulmazer (2004) and Acharya and Yorulmazer (2007) show
that banks have incentive to herd. In so doing, they increase the risks of failing together. Also
Brunnermeier and Sannikov (2010) identify portfolio overlaps as a destabilizing mechanism in
financial markets. According to Allen et al. (2012) banks swap assets to diversify their indi-
vidual risk. In so doing, they generate “excessive systemic risk”. (Acharya, 2009), building on
the previous work of (Shaffer, 1989), explores the systemic impact that attend banks’ asset-side
homogeneous behavior. Elsinger et al. (2006) identify correlation in banks’ asset portfolios as
the main source of systemic risk. Finally, the complex systems literature highlights the potential
of homogeneous portfolios to create a tension between the individually optimal and the system-
ically optimal diversification. (see, e.g., Arinaminpathy et al., 2012; Beale et al., 2011; May and
Arinaminpathy, 2010; Nier et al., 2007)

Nevertheless, the literature on contagion due to asset commonality misses a methodological
approach that maps the level of individual portfolio diversification into the degree of corre-
lation between portfolios, via asset commonality. To this end, we introduce the overlapping
correlation coefficient (hereafter referred to as OCC) as a measure of the linear correlation (de-
pendence) between two portfolios based on their level of diversification. The OCC between the
portfolios Pi and P j, randomly composed of ni ad n j assets, is denoted as E[Cor(Pi, P j)]. It
gives the expected correlation between Pi and P j, without any information on individual portfo-
lio allocations but for their levels of diversification ni and n j, and the market size N. It assumes
values between 0 and +1 inclusive, where 1 is total positive correlation, 0 is no correlation.

2While, we consider homogenization as driven by diversification, there can also be homogenization driven by
herding.
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To isolate the contribution of diversification to the value of OCC, the assets are assumed to be
independent and identically distributed and uncorrelated. Notice that the assumption of assets
being uncorrelated is not a simplifying device adopted for analytical convenience. Rather, it
allows to understand how the OCC increases solely with the contribution of the asset common-
ality via portfolio diversification. Then, bringing into the analysis an arbitrary correlation matrix
between assets would mislead the concept and alter the results of the OCC. It must be finally
considered that in reality the majority of the assets are positively correlated with the market, and
only very few of them may have negative correlation. Therefore, the OCC represents a lower
bound of the real correlation coefficient between portfolios.

To conclude, the OCC may have general applications beyond the financial context. More
broadly, the OCC captures the correlation between unexpected outcomes that individual strate-
gies, independently chosen from a finite set of mutually exclusive alternatives, may generate.

2 Portfolio Construction

Consider a frictionless finite market composed of a N-set {X1, ..., XN} of risky assets and a group
of M investors. We assume that the assets are indistinguishable and uncorrelated. This means
that E(X`)t≥0 = µ and Var(X`)t≥0 = σ2 for all ` = 1, ...,N and Cov(X`, Xy)t≥0 = 0 for all ` , y.
To keep the notations simple, in the following we omit the time sub-index t.

In a fine-grained portfolio each asset is equally-weighted and represents only a small fraction of
the total portfolio value. The idiosyncratic risks carries by the assets can therefore be mitigated
by holding such a portfolio. Since assets are indistinguishable and uncorrelated, the portfolio
Pi =

(
1
ni

X1 + ... + 1
ni

XN

)
composed of an equally-weighted linear combination of ni ≤ N assets

chosen among the N assets available for investment is also the optimal allocation strategy. ni

defines the level of diversification of Pi. The portfolio variance asymptotically decreases in ni:

Var(Pi) = Var
(

1
ni

X1 + ... +
1
ni

XN

)
(1)

=
1
n2

i

Var(X1) + ... +
1
n2

i

Var(XN)

=
1
n2

i

N∑
`=1

Var(X`) =
1
n2

i

N∑
`=1

σ2

=
σ2

ni
.
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Figure 1: Upper-bound of the correlation between two portfolios Pi and P j with respect to their specific
level of diversification. Market size N = 1000.

The covariance between any portfolio Pi and P j held by investors i and j respectively, is:

Cov(Pi, P j) = Cov
(

1
ni

X1 + ... +
1
ni

XN ,
1
n j

X1 + ... +
1
n j

XN

)
(2)

=
1
ni

1
n j

N∑
`=1

N∑
y=1

Cov(X`, Xy).

Then, the Pearson correlation between Pi and P j is:

Cor(Pi, P j) =
1

nin j

N∑
`=1

N∑
y=1

Cov(X`, Xy)/
(
σ2

√nin j

)
. (3)

The correlation coefficient has an upper bound at min(ni,n j)σ2

nin j
×
√nin j

σ2 that is equivalent to min(ni,n j)
√nin j

.
In a hypothetical market with infinite size, viz. N → ∞, the upper bound is equal to one when
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both ni and n j tend to N and it is equal to zero when only ni (or n j) tends to N. To graphically
understand how the upper-bound of the correlation changes with respect to the levels of diver-
sification, Figure 1 shows the result of a numerical example for a market with a size N = 1000.

3 Overlapping Correlation

In order to formulate the overlapping correlation coefficient (OCC) let us start by considering
that assets are uncorrelated and indistinguishable. Since assets are uncorrelated, the only source
of correlation between any portfolios Pi and P j comes from asset commonality, i.e. the level of
their overlap. Since assets are indistinguishable investors are neutral w.r.t. any asset X` and Xy

for all ` , y in the N-set. More formally, let C(N, ni) be the set of ni-subsets of the N-set. The
set C(N, ni) has cardinality NCni and contains all the possible portfolios P1

i , P
2
i , ... with size ni.

Since assets are indistinguishable we use the convention Pa
i ∼ Pb

i to indicate that the portfolio
“Pa

i is indifferent to Pb
i ” for all Pa

i , P
b
i ∈ C(N, ni). In other terms, each investor i is indifferent

between any possible portfolio chosen from NCni combinations of ni assets taken from the N-set
of assets available for investment.

In the case ni ≥ n j, the general expression for the OCC is3:

E[Cor(Pi, P j)] =
N−niCN−n j niCni

NCn j

(
ni
√nin j

)
+

N−niCn j−ni+l niCni−l

NCn j

(
ni − l
√nin j

)
(4)

≡

√nin j

N
(5)

where l = 1, ..., ni and with the condition that l ≤ N − n j. Figure 2 shows how the OCC
monotonously increases with ni and n j from 0 to 1.

As an illustration to understand our combinatorial approach used to derived the OCC as a func-
tion of the tuple (N, ni, n j), let us consider a 5-asset market {X1, ..., X5}. Then, among the five
assets available for investment, let investor i equally diversify across three randomly selected
assets, i.e., ni = 3. Then, C(5, 3) is the set of 5C3 = 10 possible portfolios composed of three
assets each: P1

i = {1, 2, 3} ∼ P2
i = {1, 2, 4} ∼ P3

i = {1, 2, 5} ∼ P4
i = {1, 3, 4} ∼ P5

i = {1, 3, 5} ∼
P6

i = {1, 4, 5} ∼ P7
i = {2, 3, 4} ∼ P8

i = {2, 3, 5} ∼ P9
i = {2, 4, 5} ∼ P10

i = {3, 4, 5}. Simi-
larly, let j equally diversify across four randomly selected assets, i.e., n j = 4. Then, C(5, 4)
is the set of 5C4 = 5 possible portfolios composed of four assets each: P1

j = {1, 2, 3, 4} ∼

3Since the correlation matrix is symmetric, by inverting the sub-indexes i with j one can obtain the expected
correlation in the case ni ≥ n j.
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Figure 2: Correlation surface between Pi and P j for different diversification levels ni and n j. Market size
N = 1000.

P2
j = {1, 2, 3, 5} ∼ P3

j = {1, 3, 4, 5} ∼ P4
j = {2, 3, 4, 5} ∼ P5

j = {1, 2, 4, 5}. For any portfo-
lio Pa

i ∈ C(5, 3) there are two portfolios Pa
j , P

b
j ∈ C(5, 4) overlapping for 3/4 with Pa

i and three
portfolios Pa

j , P
b
j , P

c
j ∈ C(5, 4) overlapping for 2/5 with Pa

i . See Table 1. Therefore, in our exam-
ple, for any portfolio Pa

i chosen by i, with probability p = 3
5 investor j might chose a portfolio Pa

j

that overlaps for 2/5 with Pa
i and with probability 1 − p = 2

5 , investor j might chose a portfolio
Pa

j that overlaps for 3/4 with Pa
i . 4

If i chooses the portfolio P1
i , then P1

j and P2
j overlap for 3/4 with P1

i . Instead, P3
j , P4

j and P5
j

overlap for 2/5 with P1
i . The pairs of portfolios with the same overlap have also the same level

of correlation:

Cor
(
P1

i , P
1
j

)
= Cov

(
1
3 X1 + 1

3 X2 + 1
3 X3,

1
4 X1 + 1

4 X2 + 1
4 X3 + 1

4 X4

)
/
√

Var
(
P1

i

)
Var

(
P1

j

)
=

1
3

1
4 Var(X1)+ 1

3
1
4 Var(X2)+ 1

3
1
4 Var(X3)√(

1
32 Var(X1)+ 1

32 Var(X2)+ 1
32 Var(X3)

)(
1

42 Var(X1)+ 1
42 Var(X2)+ 1

42 Var(X3)+ 1
42 Var(X4)

)

4Notice that we used the Jaccard index to measure the level of overlap.
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Overlap between Pi and P j for a give choice of Pi

Portfolio Pi overlap with P j = 3/4 overlap with P j= 2/5

P1
i = {1, 2, 3} P1

j = {1, 2, 3, 4} P2
j = {1, 2, 3, 5} P3

j = {1, 3, 4, 5} P4
j = {2, 3, 4, 5} P5

j = {1, 2, 4, 5}

P2
i = {1, 2, 4} P1

j = {1, 2, 3, 4} P5
j = {1, 2, 4, 5} P2

j = {1, 2, 3, 5} P3
j = {1, 3, 4, 5} P4

j = {2, 3, 4, 5}

P3
i = {1, 2, 5} P2

j = {1, 2, 3, 5} P5
j = {1, 2, 4, 5} P1

j = {1, 2, 3, 4} P3
j = {1, 3, 4, 5} P4

j = {2, 3, 4, 5}

P4
i = {1, 3, 4} P1

j = {1, 2, 3, 4} P3
j = {1, 3, 4, 5} P2

j = {1, 2, 3, 5} P4
j = {2, 3, 4, 5} P5

j = {1, 2, 4, 5}

P5
i = {1, 3, 5} P2

j = {1, 2, 3, 5} P3
j = {1, 3, 4, 5} P1

j = {1, 2, 3, 4} P4
j = {2, 3, 4, 5} P5

j = {1, 2, 4, 5}

P6
i = {1, 4, 5} P3

j = {1, 3, 4, 5} P5
j = {1, 2, 4, 5} P1

j = {1, 2, 3, 4} P2
j = {1, 2, 3, 5} P4

j = {2, 3, 4, 5}

P7
i = {2, 3, 4} P1

j = {1, 2, 3, 4} P4
j = {2, 3, 4, 5} P2

j = {1, 2, 3, 5} P3
j = {1, 3, 4, 5} P5

j = {1, 2, 4, 5}

P8
i = {2, 3, 5} P2

j = {1, 2, 3, 5} P4
j = {2, 3, 4, 5} P1

j = {1, 2, 3, 4} P3
j = {1, 3, 4, 5} P5

j = {1, 2, 4, 5}

P9
i = {2, 4, 5} P4

j = {2, 3, 4, 5} P5
j = {1, 2, 4, 5} P1

j = {1, 2, 3, 4} P2
j = {1, 2, 3, 5} P3

j = {1, 3, 4, 5}

P10
i = {3, 4, 5} P3

j = {1, 3, 4, 5} P4
j = {2, 3, 4, 5} P1

j = {1, 2, 3, 4} P2
j = {1, 2, 3, 5} P5

j = {1, 2, 4, 5}

Table 1: Possible levels of overlap between Pi and P j.

=
1
3

1
4σ

2+ 1
3

1
4σ

2+ 1
3

1
4σ

2

σ2
√

3
√

4

= 3
√

3
√

4
.

Cor
(
P1

i , P
2
j

)
= Cov

(
1
3 X1 + 1

3 X2 + 1
3 X3,

1
4 X1 + 1

4 X2 + 1
4 X3 + 1

4 X5

)
/
√

Var(P1
i )Var(P1

j)

=
1
3

1
4 Var(X1)+ 1

3
1
4 Var(X2)+ 1

3
1
4 Var(X3)√(

1
32 Var(X1)+ 1

32 Var(X2)+ 1
32 Var(X3)

)(
1

42 Var(X1)+ 1
42 Var(X2)+ 1

42 Var(X3)+ 1
42 Var(X5)

)
=

1
3

1
4σ

2+ 1
3

1
4σ

2+ 1
3

1
4σ

2

σ2
√

3
√

4

= 3
√

3
√

4
.

Cor
(
P1

i , P
3
j

)
= Cov

(
1
3 X1 + 1

3 X2 + 1
3 X3,

1
4 X1 + 1

4 X3 + 1
4 X4 + 1

4 X5

)
/
√

Var
(
P1

i

)
Var

(
P3

j

)
=

1
3

1
4 Var(X1)+ 1

3
1
4 Var(X3)√(

1
32 Var(X1)+ 1

32 Var(X2)+ 1
32 Var(X3)

)(
1

42 Var(X1)+ 1
42 Var(X3)+ 1

42 Var(X4)+ 1
42 Var(X5)

)
=

1
3

1
4σ

2+ 1
3

1
4σ

2

σ2
√

3
√

4

= 2
√

3
√

4
.

Cor
(
P1

i , P
4
j

)
= Cov

(
1
3 X1 + 1

3 X2 + 1
3 X3,

1
4 X2 + 1

4 X3 + 1
4 X4 + 1

4 X5

)
/
√

Var
(
P1

i

)
Var

(
P4

j

)
=

1
3

1
4 Var(X2)+ 1

3
1
4 Var(X3)√(

1
32 Var(X1)+ 1

32 Var(X2)+ 1
32 Var(X3)

)(
1

42 Var(X2)+ 1
42 Var(X3)+ 1

42 Var(X4)+ 1
42 Var(X5)

)
=

1
3

1
4σ

2+ 1
3

1
4σ

2

σ2
√

3
√

4

= 2
√

3
√

4
.

Cor
(
P1

i , P
5
j

)
= Cov

(
1
3 X1 + 1

3 X2 + 1
3 X3,

1
4 X1 + 1

4 X2 + 1
4 X4 + 1

4 X5

)
/
√

Var
(
P1

i

)
Var

(
P3

j

)
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=
1
3

1
4 Var(X1)+ 1

3
1
4 Var(X2)√(

1
32 Var(X1)+ 1

32 Var(X2)+ 1
32 Var(X3)

)(
1

42 Var(X1)+ 1
42 Var(X2)+ 1

42 Var(X4)+ 1
42 Var(X5)

)
=

1
3

1
4σ

2+ 1
3

1
4σ

2

σ2
√

3
√

4

= 2
√

3
√

4
.

Then, Cor(P1
i , P

1
j)=Cor(P1

i , P
2
j) = 3

√
3
√

4
and Cor(P1

i , P
3
j)=Cor(P1

i , P
4
j)=Cor(P1

i , P
5
j) = 2

√
3
√

4
.

Since, it is not known, a priori, which portfolios Pa
i and Pa

j will be chosen from their respective
set, the overlapping correlation between any randomly selected portfolio Pa

i ∈ C(5, 3) composed
of three projects out of five and any randomly selected portfolio Pa

j ∈ C(5, 4) composed of four
projects out of five, is given in probabilistic terms as follows:

E[Cor(Pi, P j)] = p ×Cor(P1
i , P

1
j) + (1 − p) ×Cor(P1

i , P
3
j) (6)

= p ×Cor(P1
i , P

1
j) + (1 − p) ×Cor(P1

i , P
4
j)

≡ p ×Cor(P1
i , P

1
j) + (1 − p) ×Cor(P1

i , P
5
j)

≡ p ×Cor(P1
i , P

2
j) + (1 − p) ×Cor(P1

i , P
3
j)

≡ p ×Cor(P1
i , P

2
j) + (1 − p) ×Cor(P1

i , P
4
j)

≡ p ×Cor(P1
i , P

2
j) + (1 − p) ×Cor(P1

i , P
5
j)

=
3
5
×

2
√

3
√

4
+

2
5
×

3
√

3
√

4

=
1
5

(
3 × 4
√

3
√

4

)
=

√
3 × 4
5

(7)

In the general case, Eq. (7) can be written as E[Cor(Pi, P j)] =
√nin j

N , which is equivalent to
Eq. (5).

4 Discussion

The correlation coefficient Cor(Pi, P j) in Eq. (3) depends on the market size N, on the levels
of diversification ni, n j and on the specific assets X`=1,...,N chosen by both i and j. Therefore,
Cor(Pi, P j) can be considered a backward looking quantity that depends on the specific portfolio
allocation adopted by both i and j. On the contrary, the OCC is a forward looking quantity that
depends only on: (1) the number N of assets available for investment; (2) the number ni ≤ N
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and n j ≤ N of assets held in Pi and P j, respectively; (3) the cardinality NCni and NCn j of the sets
C(N, ni) and C(N, n j). Therefore, to compute the OCC we do not need to know which assets
exactly compose Pi and P j. We simply need to know their levels of diversification , i.e., ni and
n j.

5 Conclusions

In the current financial arena where the diversity of investors has been gradually eroded by
the sharing of common assets, the study of the exact functional relation between the extension
of risk diversification and the portfolio correlation between investors (via common asset hold-
ing), is of dramatic importance. This is especially true if the risk management strategy of full
diversification is efficient from a single-investor point of view and inefficient from a system
perspective. The contribution of the paper is to present an analytical solution to this problem by
mapping the levels of portfolio diversification into their pairwise correlation.
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