UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Deep generative modelling of the imaged human brain

Pombo, Guilherme; (2023) Deep generative modelling of the imaged human brain. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of phd_ready_for_submission.pdf]
Preview
Text
phd_ready_for_submission.pdf - Other

Download (42MB) | Preview

Abstract

Human-machine symbiosis is a very promising opportunity for the field of neurology given that the interpretation of the imaged human brain is a trivial feat for neither entity. However, before machine learning systems can be used in real world clinical situations, many issues with automated analysis must first be solved. In this thesis I aim to address what I consider the three biggest hurdles to the adoption of automated machine learning interpretative systems. For each issue, I will first elucidate the reader on its importance given the overarching narratives of both neurology and machine learning, and then showcase my proposed solutions to these issues through the use of deep generative models of the imaged human brain. First, I start by addressing what is an uncontroversial and universal sign of intelligence: the ability to extrapolate knowledge to unseen cases. Human neuroradiologists have studied the anatomy of the healthy brain and can therefore, with some success, identify most pathologies present on an imaged brain, even without having ever been previously exposed to them. Current discriminative machine learning systems require vast amounts of labelled data in order to accurately identify diseases. In this first part I provide a generative framework that permits machine learning models to more efficiently leverage unlabelled data for better diagnoses with either none or small amounts of labels. Secondly, I address a major ethical concern in medicine: equitable evaluation of all patients, regardless of demographics or other identifying characteristics. This is, unfortunately, something that even human practitioners fail at, making the matter ever more pressing: unaddressed biases in data will become biases in the models. To address this concern I suggest a framework through which a generative model synthesises demographically counterfactual brain imaging to successfully reduce the proliferation of demographic biases in discriminative models. Finally, I tackle the challenge of spatial anatomical inference, a task at the centre of the field of lesion-deficit mapping, which given brain lesions and associated cognitive deficits attempts to discover the true functional anatomy of the brain. I provide a new Bayesian generative framework and implementation that allows for greatly improved results on this challenge, hopefully, paving part of the road towards a greater and more complete understanding of the human brain.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Deep generative modelling of the imaged human brain
Open access status: An open access version is available from UCL Discovery
Language: English
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Med Phys and Biomedical Eng
URI: https://discovery.ucl.ac.uk/id/eprint/10179992
Downloads since deposit
33Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item